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To an economic theorist, all competitive markets are the same. Regardless

of their institutional differences, we use the Walrasian equilibrium. (...) The

conventional wisdom can then be summed up in the conclusion that friction-

less markets are Walrasian. Since the Walrasian theory itself has nothing to

say on this subject, it remains an interesting and open question whether all

frictionless markets are indeed Walrasian. (Gale [5])

1 Introduction

A conventional wisdom in economics is that a model dealing a large number of agents in

frictionless markets always yields a Walrasian outcome. A frictionless market is defined

as a market in which there is no transaction cost, no informational asymmetries, and

so forth. It seems that many economists have shared this view, and only a few have

challenged to provide a theoretical evidence against it. Rubinstein and Wolinsky [23],

among others, were the first to refute this conventional wisdom by offering a random

matching model, where the matched agents bargain over terms of trade. They argue

that in such markets, the outcome is not necessarily Walrasian. (See also Rubinstein

and Wolinsky [24].) On the other hand, Gale [5] [6] [7], and Gale and Sabourian [9]

argue against them and confirm the conventional wisdom. They offer other frictionless

and decentralized market models in which the equilibrium outcome is Walrasian.

As for dynamic centralized market games, there are few literature on the nature of

the equilibrium. Thus, in this paper we attempt to present a theoretical evidence that

in some markets the outcome is not necessarily Walrasian. We build a dynamic gen-

eral equilibrium model on centralized auction markets, and yield the set of stationary

equilibria which is a continuum. Our model is essentially dynamic; agents live forever

and are involved in either production or consumption in each period. This stands in

contrast with the above random matching models. (For the discussion, see Section 6.)

Moreover, we also build a model on decentralized auction markets and obtain similar

results.

Recently, real indeterminacy of stationary equilibria has been found in both specific

and general search models with divisible money. (See, for example, Green and Zhou

[11] [12], Kamiya and Shimizu [16], Matsui and Shimizu [20], and Zhou [28].) Although

the nature of indeterminate equilibria is very different between search models and Wal-

rasian market models; for example, overlapping generations models have a continuum
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of equilibria in some cases, but the stationary equilibria are generically determinate.

We consider a counterpart of money search models in Walrasian market models is a

cash-in-advance model with infinitely lived consumers. In the model, it is known that

the stationary equilibrium is determinate. (See, for example, Lucas [18].) Given these

arguments, the stationary equilibria in money search models have a quite different

feature from those in Walrasian market models. Our question is whether some central-

ized market models other than Walrasian models have real indeterminacy of stationary

equilibria. Our results provide theoretical evidence that real indeterminacy can occur

even in a centralized auction market model with divisible money.

Now we turn to describe our model. We build a dynamic general equilibrium model

with fiat money and a finite number of perishable goods. For each good, there is a

centralized market, where goods are traded by the uniform price auction using fiat

money. Each agent can produce a good which she cannot consume but is consumed

by other agents. The utility and cost of production are the same for all agents, and

therefore there is no informational asymmetry. In each period, she can visit just one

centralized market. For example, at period t, if an agent wishes to obtain money,

she visits the market of her production good and then in period t + 1 she buys her

consumption good using the money she obtained at t.1 The conditions for a stationary

equilibrium are: (i) each agent maximizes the expected value of utility-streams, (ii)

the money holdings distribution of the economy is stationary, i.e., time-invariant, and

(iii) the total amount of money the agents have is equal to exogenously given amount

of money. We compare the equilibrium with that in the Walrasian market with cash-

in-advance constraints, i.e., the case that equilibria are determined at the price that

demand is equal to supply and the expenditure of each consumer is constrained by the

amount of her money holding. We show that the set of equilibrium allocations with

auction markets is a continuum, i.e., indeterminate, while that of the Walrasian market

model is a singleton. Therefore the sets of equilibria do not coincide.

The general consensus of indeterminacy is either (i) due to the absence of some

important equation, or (ii) equilibria in the real world economy are intrinsically fragile.2

In this paper, we confine ourselves neither to (i) nor to (ii). That is, in the real world

economy, auction markets might have some important feature, which is missing in our

model, and it might lead the economy to determinate equilibria. In this paper, we do

1Even without this limited participation constraint, we can obtain almost the results. See Section B in Appendix.
2The ways are closely related to the Green and Zhou [12]’s statement that assumptions or features of specification

that make the difference between a model economy having determinate or indeterminate equilibrium should be regarded
as economically crucial.
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not investigate the problem and it is an important topic for future research.

The plan of this paper is as follows. In Section 2, we present the common envi-

ronment in this paper. In Section 3, we investigate a dynamic general equilibrium

model with auction markets and show that there is a continuum of stationary equilib-

ria. Then in Section 4, we show that if the trading institution is the Walrasian market

with cash-in-advance constraints, the stationary equilibrium is unique. We keep the

other environments the same besides the trading institution we introduced in Section 2.

In Section 5, we investigate the logic behind the indeterminacy by classifying monetary

trades into two types. Section 6 contains discussion of some related literature. Finally,

in Appendix we present some related models including a decentralized auction market

model.

2 The Environment

In this section, we present the environment common in this paper. Time is discrete

denoted by t = 1, 2, . . . . There is a continuum of agents of which measure is one. There

are k ≥ 3 types of agents with equal fractions and the same number of types of goods.
Only one unit of indivisible and perishable good i can be produced by a type i − 1
(mod k) agent with production cost c > 0. A type i agent obtains utility u > 0 only

when she consumes one unit of good i. Let θ = u/c and assume θ > 1. Let γ > 0

be the discount factor. There is completely divisible and durable fiat money of which

nominal stock isM > 0 . Finally, the above exogenously given parameters are common

knowledge among the agents, and therefore there is no informational asymmetry.

3 Centralized Auction Markets

In each time period, a centralized market is open for each good. At the jth market,

good j is traded by the auction we specify below. In each period, each agent has a

choice of joining one market or not joining any market. If a type i agent chooses to

join the (i+1)th market, then she becomes a seller of her product, i.e., good i+1. If a

type i agent chooses to join the ith market, then she becomes a buyer and bids a price.

The feature of this trade is that an agent cannot involve in two different transactions

in the same period. However, even if we relax this constraint, we can obtain the similar

results. (See Section B in Appendix.)

We consider the uniform price sealed bid auction. (For the auction, see Krishna [17].)
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If we consider the case that money holdings distribution is discrete, it is sufficient to

analyze just two following cases:

(i) each realized bid is made by a positive measure of agents, and

(ii) only one bid is made by just one agent and the other bids are made by a positive

measure of agents.

Note that the strategy is an equilibrium no matter what the specifications in the other

cases are.

Let S ∈ [0, 1] be the measure of sellers, and b1, b2, . . . , bL be the bids made by
positive measures of agents, and B1, B2, . . . , BL ∈ [0, 1] be the corresponding measures.
Without loss of generality, we can assume b1 > b2 > · · · > bL ≥ 0. Denote B̃` =

P`
i=1Bi

and let B̃0 = 0.

First, we consider the case (i). If S < B̃L, there exists ` such that S ≥ B̃`−1 and
S < B̃`. Then the buyers with bi, i < `, obtain the good with probability one. The

buyers with b` obtain the good with probability
S−B̃`−1
B`

. Of course, any seller can sell

her good. The uniform price is b`. If S ≥ B̃L, then all buyers obtain one unit of goods
with price bL. Any seller can sell her good with probability

B̃L
S
.

Next, we consider the case (ii). Let b̂ be the bid by the single agent, say Buyer

0. Consider that the distribution of the other bids is the same as in the case of (i).

Then for the buyers other than Buyer 0, the uniform price and the buyers’ possibility

of winning is defined as in the case of (i). As for Buyer 0, if S < B̃L and b̂ > b`, she can

obtain the good with probability one. If S < B̃L and b̂ = b`, she can obtain the good

with probability S−B̃`−1
B`

. If S < B̃L and b̂ < b`, she cannot obtain the good. Finally, if

S ≥ B̃L, she can obtain the good with probability one.
In this paper, we focus on a stationary equilibrium which has the following features.

First, money holdings distribution has a support {0, p, . . . , Np}, where p > 0 is an equi-
librium price. Thus the money holdings distribution is expressed as (h0, h1, . . . , hN ),

where hn is the measure of agents with money holding np. Second, equilibrium strate-

gies are Markovian, i.e., we seek for an equilibrium strategy depending only on money

holdings. Finally, the actions taken by the agents with identical characteristics are

symmetric. Thus a candidate for an equilibrium strategy can be defined as a function

of a money holding η ∈ R+,

ξ : R+ → {σ} ∪ ({β} ×R+) ∪ {ν},
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where ξ(η) = σ implies that the agent chooses to be a seller, ξ(η) = (β, b) implies

that she chooses to be a buyer and her bid price is b, and ξ(η) = ν implies that she

does nothing. Thus if there is a finite number of bid prices (b1, b2, . . . , bL) such thatP
{n|bi=ξ(np)} hn > 0, i = 1, . . . L, then the price of each good is determined by the above

rule of the uniform price auction. The price is expressed as a function of (h, ξ), denoted

by π(h, ξ). Moreover, as for sellers, the probability of selling good is expressed as a

function of (h, ξ), denoted by νS(h, ξ). Similarly, for each bid b ∈ R+, the probability
of obtaining good is expressed as a function of (b, h, ξ), denoted by νB(b, h, ξ).

The stationary equilibrium is defined as follows.

Definition 1 hp, h, ξ, V i, where V : R+ → R is a value function, is said to be a

stationary equilibrium with a discrete money holdings distribution if

• h is stationary under the strategy ξ,

• p = π(h, ξ),

• PN
n=0 pnhn =M ,

• there is a finite number of bid prices (b1, b2, . . . , bL) such that
P

{n|bi=ξ(np)} hn > 0,
i = 1, . . . L, and

• given h and ξ, the value function V , together with ξ, solves the Bellman equation,

i.e., for η ∈ R+,
V (η) = max

©
νS(h, ξ) (−c+ γV (η + π(h, ξ))) + (1− νS(h, ξ))γV (η),

max
b∈R+

[νB(b, h, ξ) (u+ γV (η − π(h, ξ))) + (1− νB(b, h, ξ))γV (η)], γV (η)
ª
.

In this section, we focus on stationary equilibria with N = 1. We consider the

following strategy as a candidate for equilibrium:

• an agent with η ∈ [0, p) chooses to be a seller, and
• an agent with η ∈ [p,∞) chooses to be a buyer and bids η.

We consider the case of h0 ≤ 1
2
. This implies that the measure of buyers is larger than

or equal to that of sellers, and therefore an agent with η ∈ (0, p) could not win even if
she had chosen to be a buyer.

The stationarity of money holdings distributions is expressed as follows. Since

νB(p, h, ξ) =
h0
1−h0 holds, the measure of agents who can buy is (1− h0) h0

1−h0 and their
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money holdings become 0. On the other hand, since agents without money can always

sell, the measure of agents who can sell is h0 and their money holdings become p. Thus

the stationarity of money holdings at 0 is

(1− h0) h0
1− h0 = h0.

Similarly, the stationarity of money holdings at p is

h0 = (1− h0) h0
1− h0 .

Both of them are (the same) identities and thus any (h0, h1) satisfying h0+h1 = 1, h0 ≥
0, and h1 ≥ 0, is a stationary distribution.
Under the strategy, the value function is expressed as follows:

V (η) =

⎧⎪⎨⎪⎩
−c+ γV (η + p), if η < p,

r (u+ γV (0)) + (1− r)γV (p), if η = p,

u+ γV (η − p), if η > p,

where

r =
h0

1− h0 .

Let n be the integer part of η and ι be the residual, then η is uniquely expressed as

η = np+ ι. Thus the value function is expressed as follows:

V (np+ ι) =

⎧⎪⎪⎨⎪⎪⎩
rγu−(1−γ+rγ)c
(1−γ)(1+rγ) , if ι = 0, n = 0,

1
1−γ

n
u− γn−1

1+rγ
[(1− r + rγ)u+ rγc]

o
, if ι = 0, n 6= 0,

1
1−γ

n
u− γn

1+γ
(u+ c)

o
, if ι 6= 0.

(1)

We need to check the following incentive conditions:

(i) incentive for an agent with η ∈ [0, p) to be a seller instead of doing nothing,
(ii) incentive for an agent with η ∈ [0, p) to be a seller instead of being a buyer,
(iii) incentive for an agent with η ∈ [p,∞) to be a buyer instead of doing nothing,
(iv) incentive for an agent with η ∈ [p,∞) to be a buyer instead of being a seller, and
(v) incentive for a buyer with η ∈ [p,∞) to bids η instead of bidding another price.
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It is easily verified that (ii) is reduced to (i), and (iii), (v) are automatically satisfied.

(i) and (iv) are reduced to the following inequalities respectively:

(I) V (0) ≥ 0,
(II) V (p) ≥ −c+ γV (2p).

By (1), the following inequality is equivalent to (I):

r ≥ 1− γ

γ(θ − 1) . (2)

Again, by (1), the following inequality is equivalent to (II):

r ≥ γθ − 1
(1 + γ − γ2)θ − γ2

. (3)

In this section, we restrict our attention to the case of γ > 1
θ
. Then the RHSs of (2)

and (3) lie in (0, 1). Thus for any r such that

r ∈
∙
max

½
1− γ

γ(θ − 1) ,
γθ − 1

(1 + γ − γ2)θ − γ2

¾
, 1

¸
, (4)

there is the corresponding equilibrium, and moreover the above interval is non-empty.

Since r = h0
1−h0 , (4) is equivalent to

h0 ∈
∙
max

½
1− γ

γ(θ − 2) + 1 ,
γθ − 1

(1 + 2γ − γ2)θ − 1− γ2

¾
,
1

2

¸
. (5)

Theorem 1 For any γ ∈ (1
θ
, 1), there exists a stationary equilibrium with a discrete

money holdings distribution with N = 1 for any h0 satisfying (5). Moreover, the

interval in (5) is non-empty.

4 Walrasian Markets

In this section, we define the concept of stationary Walrasian equilibrium, where a

competitive market is open for each good. We hold the same environment as in the

previous section. More precisely, (a) each agent maximizes the discounted sum of

utility stream for given prices of goods under the budget constraint and the cash-in-

advance constraint, (b) the markets of goods clear, i.e., for each good, the measure of

sellers is equal to that of buyers, (c) the money demand is equal to supply, and (d) the

money holdings distribution and the price of good are stationary, i.e., time-invariant.
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Moreover, as in Section 3, we assume each agent can only join just one market in each

period.

As in the previous section, we focus on stationary equilibria in which all agents with

identical characteristics act similar and in which all of the k types are symmetric. Thus

we seek for equilibria, where the prices of goods are the same. Let the price be p ∈ R+.
For a given p, the behavior of an agent with η ∈ R+ is expressed in terms of a Bellman
equation as follows:

V (η) = max
(χ,ζ)∈C

χu− ζc+ γV (η0), (6)

s.t. χp+ η0 = η + ζp, χp ≤ η, η0 ≥ 0,

where (χ, ζ) = (1, 0) when an agent is a buyer, (χ, ζ) = (0, 1) when she is a seller, and

(χ, ζ) = (0, 0) when she does nothing. Since she cannot become a buyer and a seller

at the same time, C = {(1, 0), (0, 1), (0, 0)}. Note that χp ≤ η is the cash-in-advance

constraint. The above Bellman equation is expressed by

V (η) =

(
max{u+ γV (η − p),−c+ γV (η + p), γV (η)}, if η − p ≥ 0,
max{−c+ γV (η + p), γV (η)}, if η − p < 0.

For a given p, the unique value function V : R+ → R and the optimal policy corre-

spondence φ : R+ → {β,σ, ν} are obtained, where β,σ, and ν stand for ‘buy’, ‘sell’,

and ‘do nothing’, respectively. Let B be the Borel σ-algebra on [0,∞). A transition
function T : R+ × B → [0, 1] is said to be consistent with φ if, for any A ∈ B, T (η, A)
is positive only if 3

• σ ∈ φ(η) and η + p ∈ A, or
• β ∈ φ(η) and η − p ∈ A, or
• ν ∈ φ(η) and η ∈ A.

Then a stationary Walrasian equilibrium is defined as follows.

Definition 2 hp, F, V,φ, T i, where F is a probability measure on B, is said to be a
stationary Walrasian equilibrium if

3A transition function T : R+ × B → [0, 1] is a function such that

• for each η ∈ R+, T (η, ·) is a probability measure on (R+,B), and
• for each A ∈ B, T (·, A) is a B-measurable function.

For the details, see Stokey and Lucas [27].
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(i) φ : R+ → {β,σ, ν} is the optimal policy correspondence associated with V ,
(ii) T : R+ × B → [0, 1] is consistent with φ

(iii) F is stationary under T ,

(iv)
R∞
n=0

ηdF =M ,

(v) given p, V satisfies (6),

(vi) T (η, {η − p}) and T (η, {η + p}) are measurable functions of η, andZ
T (η, {η − p})dF =

Z
T (η, {η + p})dF

holds.

As for (i)-(v), no explanation is needed. (vi) is the market clearing condition for

goods; namely, the measure of buyers is equal to that of sellers. Note that, by Walras’

law, money demand is equal to money supply if (vi) is satisfied.

Clearly, p = 0 is not consistent with the incentive of sellers. Suppose p > 0 is an

equilibrium price. An agent with η ≥ p clearly chooses to be a buyer. Thus η ≥ 2p
is no longer a transient state. Similarly, an agent with η < p cannot buy and chooses

to be a seller if γV (η + p) − c > γV (η). Thus, if the inequality holds, the market

clearing condition implies that the measure of agents with η ∈ [0, p) is equal to that
with η ∈ [p, 2p). Then the Bellman equation becomes as follows:

V (η) =

(
−c+ γV (η + p), if η ∈ [0, p),
u+ γV (η − p), otherwise.

The value function is obtained as follows:

V (η) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

γu−c
1−γ2 , if η ∈ [0, p),
u−γc
1−γ2 , if η ∈ [p, 2p),
...
1
1−γ

n
u− γn

1+γ
(u+ c)

o
, if η ∈ [np, (n+ 1)p),

...

(7)

Note that γV (η + p)− c > γV (η) holds for η ∈ [0, p) if

γ >
1

θ
,
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is satisfied. It is straightforward to show that the stationary Walrasian equilibrium

allocation is achieved when a half of agents have η ∈ [0, p) and their value is γu−c
1−γ2 ,

and the other half of agents have η ∈ [p, 2p) and their value is u−γc
1−γ2 . Note that the

money holdings distribution is stationary if and only if F ([0, η]) = F ([p, p+ η]) for any

η ∈ [0, p).
Theorem 2 For any γ ∈ ¡

1
θ
, 1
¢
, there exists a stationary Walrasian equilibrium

hp, F, V,φ, T i. Moreover, any Walrasian equilibrium is characterized by

(I) V is given by (7),

(II)

φ(η) =

(
{σ} if η ∈ [0, p),
{β} if η ∈ [p,∞),

(III)

T (η, A) = 1 iff

(
η + p ∈ A and η ∈ [0, p), or

η − p ∈ A and η ∈ [p,∞),

(IV) F satisfies
R
ηdF =M , F ([0, p)) = 1/2 , F ([p, 2p)) = 1/2, and

F ([0, η]) = F ([p, p+ η]), ∀η ∈ [0, p).

Proof:

From the discussion in the above, for a given p, (V,φ, T ) are characterized by (I), (II),

and (III), and they clearly exist. Thus it is sufficient to show the existence of (F, p)

satisfying (IV). Let p∗ = 2M and F ∗ be such that F ∗({0}) = 1/2 and F ∗({p}) = 1/2.
They clearly satisfy (IV).

In the proof of the above theorem, a probability measure satisfying (IV), F ∗, is
presented. Of course, there are other probability measures satisfying (IV). For example,

p̃ = 4M
3
and F̃ such that F̃ ({0}) = F̃ ({1

2
p̃}) = F̃ ({p̃}) = F̃ ({3

2
p̃}) = 1

4
satisfy (IV).

In the equilibrium with (p̃, F̃ ), an agent with 1
2
p̃ deterministically alternates between

acquiring p̃ as a seller and spending p̃ as a buyer, i.e., she alternates between states
1
2
p̃ and 3

2
p̃. Thus the behavior of an agent with 1

2
p̃ is exactly the same as that of an

agent without money. Moreover the real allocation and transactions of goods on the

equilibrium are completely the same as those on the equilibrium with (p∗, F ∗). It is
quite natural for one to think there is just one equilibrium.
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Corollary 1 The distribution of value in stationary Walrasian equilibria is uniquely

determined, i.e., the half of agents have γu−c
1−γ2 , the case of η ∈ [0, p) , and the rest of

agents have u−γc
1−γ2 , the case of η ∈ [p, 2p).

Thus in order to investigate real allocations, we can restrict our attention to the

stationary Walrasian equilibrium with (p∗, F ∗). 4

Now we have described each market, we turn to compare the auction markets out-

come derived in the previous section as versus stationary Walrasian equilibrium out-

come derived in this section. Setting h0 = 1/2 in the value function (1), we obtain

V (0) = γu−c
1−γ2 and V (p) =

u−γc
1−γ2 . In this case, a half of agents have the former value

and the rest of the agents have the latter value, i.e., exactly same as the case of the

Walrasian market outcome in Corollary 1. As shown in Theorem 1, there are other

stationary equilibria for h0 <
1
2
in the auction markets, where the values are different

from those in Corollary 1.

Theorem 3 The set of outcomes in the auction market equilibrium does not coincide

with that of the stationary Walrasian equilibrium.

5 Real Indeterminacy of Stationary Equilibria in Monetary

Models

In this section, we explore the logic behind Theorem 3. As shown in the previous

sections, the auction markets have a continuum of stationary equilibrium allocations,

while the Walrasian markets have the unique equilibrium allocation, and thus the

outcomes do not coincide. Below, we show that there are two types of fundamental

natures of monetary trades; one has a continuum of stationary equilibrium and the

other has locally unique equilibria. A typical example of the former case is the auction

market, while that of the latter case is the Walrasian market.

In the Walrasian market, the price of goods is determined in the centralized markets.

Thus, as shown in Section 4, it suffices to investigate money holdings distributions with

a support expressed by {0, p}, where p > 0 is an equilibrium price. In auction markets,
there may exist equilibrium money holdings distributions of which support are not

{0, p}. However, in order to show that the outcomes in the latter case includes the
outcomes in the former case, we only need to focus on distributions with a support

4If we assume that there is an infinitesimally small cost of holding money, then only the equilibrium with F ∗ survives.
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expressed by {0, p}. Let h = (h0, h1) be a probability distribution on the support,

where hn is a measure of agent with money holding np.

Below, we compare the equilibrium conditions in the previous two sections. Limiting

our analysis on the case that the measure of buyers is larger than or equal to that of

sellers, the equilibrium condition for the auction markets is as follows:

p =
M

h1
,

h0 + h1 = 1,

h1
h0
h1
= h0,

h0 = h1
h0
h1
,

V (η) = max
©
(−c+ γV (η + π(h, ξ)))

max
b∈R+

[νB(b, h, ξ) (u+ γV (η − π(h, ξ))) + (1− νB(b, h, ξ))γV(η)], γV (η)
ª
.

On the other hand, the equilibrium condition for Walrasian markets is as follows:

p =
M

h1
,

h0 + h1 = 1,

h1T (p, {0}) = h0T (0, {p}),
h0T (0, {p}) = h1T (p, {0}),

V (η) =

(
γV (η + p)− c if η ∈ [0, p),
γV (η − p) + u otherwise,

where the third and the forth equations are the conditions for stationarity of money

holdings. In the both systems, for a given (h0, h1), p and V are uniquely determined by

p = M
h1
and the Bellman equations. As for (h0, h1), in the equilibrium condition for the

auction markets, any (h0, h1) satisfying h0+h1 = 1 , h0 ≥ 0, and h1 ≥ 0, is a stationary
distribution, since h1

h0
h1
= h0 and h0 = h1

h0
h1
are identities. On the other hand, in the

equilibrium condition for the Walrasian markets, (h0, h1) satisfying h0 + h1 = 1 is not

necessarily a stationary distribution, since h1T (p, {0}) = h0T (0, {p}) is not an identity.
(See the discussion below.) Thus there is one degree of freedom in the former system,

while the solution is determinate in the latter system.

Below, we show that there are two types of fundamental natures of monetary trades;

one has a continuum of stationary equilibrium and the other has only locally unique

equilibria. They are:
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• the amount of money the sellers obtain is always equal to that of buyers pay even
out of equilibria, and

• the amount of money the sellers obtain is not necessarily equal to that of buyers
pay.

It is clear that the auction market is classified as the former type and the Walrasian

market is classified as the latter type. Indeed, in the auction markets, the amount of

money the sellers obtain is ph0 and that of buyers pay is ph1
h0
h1
= ph0. By this identity,

any money holdings distribution is stationary, i.e., all (h0, h1) satisfying h0 + h1 = 1,

h0 ≥ 0, and h1 ≥ 0 is stationarity, and the set of equilibria is a continuum. On the
other hand, in the Walrasian markets, if p is large enough, then all agents without

money choose to be sellers, i.e., T (0, {p}) = 1, and the amount of money the sellers

obtain is ph0 and the amount of money the buyers pay is at most p(1−h0). Of course,
they are not necessarily the same.

In order to understand the logic of indeterminacy, we investigate more general case,

i.e., the case that a money holdings distribution is expressed as h = (h0, h1, . . . , hN)

for some positive integer N . That is, in the auction markets, we consider the case that

some agents with np becomes sellers and the rest of them become buyers. Then the

transition probability is represented by QSn ≥ 0 and QBn ≥ 0 such that QSn + QBn = 1,
where QSn is the measure of agents who have np and become sellers and Q

B
n the measure

of agents who have np and become buyers. Then the stationarity of money holdings is

written as:

D0 ≡ QB1 −QS0 = 0,
D1 ≡ QB2 +QS0 −QB1 −QS1 = 0,
...

...

DN ≡ QSN−1 −QBN = 0.

In this case, the amount of money the sellers obtain is
PN−1

n=0 pQ
S
n and the amount of

money the buyers pay is
PN

n=1 pQ
B
n , and they are identically the same because of the

14



rule of the uniform price auction. Thus

NX
n=0

npDn = 0pD0 + 1pD1 + 2pD2 + · · ·+NpDN

=

N−1X
n=0

((n+ 1)pQSn − npQSn) +
NX
n=1

((n− 1)pQBn − npQBn )

=

N−1X
n=0

pQSn −
NX
n=1

pQBn

= 0

always holds and thus
PN

n=0 npDn = 0 is an identity. Moreover, Q
S
n (Q

B
n ) appear twice

in the above equations, and they are positive and negative, respectively. Thus another

identity

NX
n=0

Dn = D0 +D1 +D2 + · · ·+DN

= 0

holds. If D2 = D3 = · · · = DN = 0 holds, then by the above two identities, D1 = 0 and

D0 = 0 follow. Hence among Dn = 0, n = 0, 1, . . . , N , two equations are redundant.

Since the number of variables (h0, h1, . . . , hN) is N + 1 and the number of linearly

independent equations including
PN

n=0 hn = 1 is N , there is at least one degree of

freedom. Especially, in the case of N = 1 in Section 3, both D0 = 0 and D1 = 0 are

redundant and any (h0, h1) satisfying h0 + h1 = 1 is a stationary distribution. Note

that an example with N = 2 is given in Section A in Appendix.

In decentralized market models with divisible money, monetary trades typically

classified as the first type. (See, for example, Green and Zhou [11], Kamiya and Shimizu

[16], Matsui and Shimizu [20], and Zhou [28].) For example, suppose (a) a buyer

randomly meets a seller, (b) then the buyer offers a price and an amount of good she

wants to buy, and (c) finally the seller decides whether to accept or to reject the offer.

In this case, in each matching the amount of money the buyer pays is always the same

as that of the seller obtains even out of equilibria. Thus in the economy the total

amount of money the buyers pay is always the same as that of the sellers obtain even

out of equilibria. By the same logic as in the centralized economy, the equilibria are

typically indeterminate. The only one difference between decentralized market models

and centralized market models of the first type is that equilibrium price dispersion
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might occur in decentralized market models. (See Kamiya and Sato [15] and Matsui

and Shimizu [20].)

6 Discussion

In this section, we classify the related literature into three categories and discuss them

in turn.

The first category is cooperative game approach. Relevant literature analyze

economies with a large population by making use of the concept of core. This approach

is initiated by Edgeworth [4]’s classical work, and followed by Shubik [26], Debreu and

Scarf [2], Aumann [1], and Hildenbrand [14], which show the core convergence result in

considerably general frameworks. Particularly, Aumann [1] directly assumes that there

is a continuum of agents and shows that the set of core allocations exactly coincides

with that of Walrasian equilibrium. However, these papers do not give any specification

of trading institution or mechanism, and neither lead to any institutional consideration

about market.

Next we define the literature on non-cooperative game approach as the second cat-

egory. This includes Cournot-type models as Novshek and Sonnenschein [21], and

strategic market games as Shapley and Shubik [25],5 and decentralized market models

as Rubinstein and Wolinsky [23] and Gale [5], [7]. Although these models specify the

details of trading process, they differ from the present paper in modeling the notion of

‘time.’

Marshall [19] defines the tripartite division of time: a day, a short period, and a long

period. (See also Hicks [13].) The production decision cannot be changed in a day,

but the amount of production good can be changed for a given capital if given a short

period, and in a long period the amount of capital can be changed as well. Following

Marshall’s definition, we label the models within a day as static models and those within

a short period as dynamic models. Then any model referred in the previous paragraph

is static, since they all describe an economy in which the production is done. On the

other hand, the environment of the present paper is dynamic, since agents are involved

in either production or consumption in each period.

The third category, which is most closely related to the present paper, is consisted

from search theoretic models with divisible money. This category includes Green and

5Dubey, Mas-Colell, and Shubik [3] present axiomatic approach to this issue. For a survey on strategic market games,
see Giraud [10]
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Zhou [11] [12], Kamiya and Shimizu [16], Matsui and Shimizu [20], and Zhou [28]. In

this category, real indeterminacy of stationary equilibria has been found in both specific

and general models, and now there are theories that explain the stationary equilibria

have a quite different feature from those in Walrasian market models.

Our model belongs to this category. We consider the centralized auction markets,

and show that the real indeterminacy of stationary equilibria occurs in such markets.

We emphasize that any other model offered in this category assume an agent is ran-

domly matched with other agents and transaction is made in a decentralized way.

Therefore, our paper has significance in showing that decentralized feature of money

search models is not crucial for the real indeterminacy result.

Finally, we would like to note that at the end of his book, Gale [8] claims that

convincing models of general equilibrium are the ones in which markets of goods are

distinct, and agents do not trade most goods and do not therefore participate in most

markets, although his formal model in the book does not have the feature. In our

model, there are k ≥ 3 types of agents and the same number of types of goods; a type
i agent produces type i+ 1 good and she consumes type i good. Moreover, each agent

can transact in just one market in each time period.

Appendix

A Mixed Strategy Equilibria in Centralized Auction Markets

In this section, we prove the existence of mixed strategy stationary equilibria in the

centralized auction market model investigated in Section 3. First, we define a mixed

strategy stationary equilibrium. A candidate for an equilibrium mixed strategy can be

defined as a function of a money holding η ∈ R+,

ξ̃ : R+ → Ω ({σ} ∪ ({β} ×R+) ∪ {ν}) ,

where Ω(A) is the set of probability distributions on a set A. In parallel with Definition

1 in Section 3, a mixed strategy stationary equilibrium is defined in the case of a finite

number of bid prices.

We consider the following mixed (behavioral) strategy:

• an agent with η ∈ [0, p) chooses to be a seller,
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• an agent with p chooses to be a buyer and bids p with probability δ ∈ (0, 1), and
chooses to be a seller with probability 1− δ, and

• an agent with η ∈ (p,∞) chooses to be a buyer and bids η.
Under the above strategy, money holding 2p is not a transient state. Let h = (h0, h1, h2)

and

r =
h0 + (1− δ)h1 − h2

δh1
. (8)

An agent with p can buy a good with probability r. It is shown that r ∈ [0, 1] holds
in equilibria. Under the above strategy, the stationarity of money holding distribution

can be written as follows:

rδh1 = h0,

h2 + h0 = rδh1 + (1− δ)h1,

h2 = (1− δ)h1,

h0 + h1 + h2 = 1.

As we have shown in Section 5, two of the first three equations are redundant. The

stationary distribution is obtained as follows:

h0 =
δr

2− δ + δr
, h1 =

1

2− δ + δr
, h2 =

1− δ

2− δ + δr
. (9)

Clearly, r ≥ 0 implies hn ∈ [0, 1] for n = 0, 1, 2.
If δ > 0, the uniform price is p. Thus we obtain the Bellman equation as (1) in

Section 3, where r is defined by (8). The incentive conditions for choosing the above

strategy are as follows:

(i) V (0) ≥ 0,
(ii) V (p) = −c+ γV (2p).

The first inequality is the incentive to be a seller for an agent who possesses no money.

Since V (p) is the value when an agent becomes a buyer, the second equality implies

that the agent is indifferent between being a buyer or being a seller. As in Section 3,

the other incentive conditions can be easily checked. (i) is equivalent to (2) in Section

3, where r is defined by (8), and (ii) is equivalent to

r =
γθ − 1

(1 + γ − γ2)θ − γ2
. (10)
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Note that γ > 1
θ
implies r ∈ (0, 1). It is also worthwhile noting that, substituting (10)

into (9) , (h0, h1, h2) can be parametrized by δ. Then substituting (10) into (2), we

obtain the following inequality:

−(θ + 1)γ3 + (θ2 + θ + 1)γ2 − (θ − 1)γ − θ ≥ 0.

It is verified that there exists γ ∈ ¡1
θ
, 1
¢
such that the above inequality holds for any

γ ∈ ¡γ, 1¢.
Theorem 4 There exists γ ∈ ¡1

θ
, 1
¢
such that, for any given γ ∈ ¡γ, 1¢, the above

mixed strategy is a stationary equilibrium with a discrete money holdings distribution

for any δ ∈ (0, 1].

Note that since (h0, h1, h2) and (V0, V1, V2) depend on δ, there is real indeterminacy

in equilibria.

B Relaxing the Limited Participation Constraint

In this section we relax the limited participation constraint and show that the similar

results can be obtained as in Sections 3 and 4. We do so by assuming that agents in

this section can simultaneously can involve in both transactions: sell and buy in the

same period.

B.1 Centralized Auction Markets

First, we analyze centralized auction markets. We focus on stationary equilibria in

which money holdings distribution has support {0, p}. We investigate the following
strategy:

• an agent with η ∈ [0, p) chooses only to be a seller,
• an agent with p chooses only to be a buyer and bids p,
• an agent with η ∈ (p, 2p) chooses to be a buyer and seller, and as a buyer, bids η,
and

• an agent with η ∈ [2p,∞) chooses only to be a buyer and bids η.

19



Under the strategy, the value function is expressed as follows:

V (η) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−c+ γV (η + p), if η ∈ [0, p),
r (u+ γV (0)) + (1− r)γV (p), if η = p,

u− c+ γV (η), if η ∈ (p, 2p),
u+ γV (η − p), if η ∈ [2p,∞),

where

r =
h0

1− h0 .

Let n be the integer part of η and ι be the residual, then η is uniquely expressed as

η = np+ ι. Thus the value function becomes as follows:

V (np+ ι) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

rγu−(1−γ+rγ)c
(1−γ)(1+rγ) , if ι = 0, n = 0,

1
1−γ

n
u− γn−1

1+rγ
[(1− r + rγ)u+ rγc]

o
, if ι = 0, n 6= 0,

γu−c
1−γ , if ι 6= 0, n = 0,
u−γn−1c
1−γ , if ι 6= 0, n 6= 0.

We consider the case of γ > 1
θ
. Then the incentive conditions are as follows:

(i) incentive for an agent without money only to be a seller instead of doing nothing,

(ii) incentive for an agent with p only to be a buyer instead of being only a seller,

(iii) incentive for an agent with p only to be a buyer instead of being a buyer and seller,

and

(iv) incentive for an agent with 2p only to be a buyer instead of being a buyer and

seller.

Since the value of η = np is the same as the one in Section 3, (i) and (ii) are

equivalent to (2) and (3) respectively.

(iii) is expressed as

V (p) ≥ r [u− c+ γV (p)] + (1− r) [−c+ γV (2p)] ,

and it is equivalent to

− £γ(2− γ)θ − γ2
¤
r2 +

£
γ(2− γ)θ − γ2

¤
r − (γθ − 1) ≥ 0. (11)
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Substituting (2) with equality into the RHS of (11), we obtain

γθ − 1
γ(θ − 1)2

©
(θ + 1)γ2 − (θ2 + θ + 2)γ + 2θ

ª
.

Denote the expression in the braces by F (γ), then we have

F

µ
1

θ

¶
> 0,

F (1) < 0.

Therefore there exists γ1 ∈
¡
1
θ
, 1
¢
such that for any γ ∈ ¡1

θ
, γ1
¢
, there exists r ∈³

1−γ
γ(θ−1) , 1

i
such that (2) and (11) hold for any r ∈ [r, r], where r = 1−γ

γ(θ−1) . Moreover,

we can choose γ1 sufficiently close to
1
θ
such that (3) holds for any r ∈ [r, r].

Next, (iv) is expressed by

V (2p) ≥ u− c+ γV (2p),

and it is equivalent to

−r(θ + 1)γ2 + [r(θ + 1)− θ] γ + 1 ≥ 0. (12)

Denote the LHS by G(γ). Then it is verified that

G

µ
1

θ

¶
> 0, if r > 0,

G(1) < 0.

Then there exists γ2 ∈
¡
1
θ
, 1
¢
such that for any γ ∈ ¡1

θ
, γ2
¢
, (12) holds for any r > 0.

Finally, let γ = min{γ1, γ2}. Then for any γ ∈ ¡1
θ
, γ
¢
, there exist r and r satisfying

0 < r < r ≤ 1 such that there exists a stationary equilibrium for any r ∈ [r, r]. Since
r = h0

1−h0 , we obtain the following result:

Theorem 5 There exists γ ∈ ¡1
θ
, 1
¢
such that for any γ ∈ ¡1

θ
, γ
¢
, there exist h0 and

h0 satisfying 0 < h0 < h0 ≤ 1
2
such that there exists a stationary equilibrium for any

h0 ∈
£
h0, h0

¤
.

B.2 Walrasian Markets

Next, we consider Walrasian markets. Holding fix the other conditions, we redefine

C and φ. Here, we define C as C = {(1, 1), (1, 0), (0, 1), (0, 0)} and φ as φ : R+ →
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{ω, β,σ, ν}, where ω stands for ‘sell and buy’. Note that the Bellman equation is also
expressed by (6).

Below, we consider the case of γ > 1/θ = c/u. As in the discussion in Section 4, an

equilibrium price, if it exists, is p > 0. Since an agent with η ∈ [0, p) cannot buy,
V (η) = max {0,−c+ γV (η + p)}

holds. Since an agent with η + p can buy and sell,

V (η + p) ≥ u− c
1− γ

,

holds. Thus by

−c+ γ
u− c
1− γ

=
γu− c
1− γ

> 0,

we obtain

V (η) = −c+ γV (η + p), (13)

i.e., φ(η) = {σ}. Thus by (13),
u− c+ γV (η) = u− c+ V (η − p) + c > u+ γV (η − p).

holds for any η ∈ [p, 2p). Since it is easily verified that σ /∈ φ(η), we obtain φ(η) = {ω}.
Moreover, it is also easily verified that φ(η) = {β} for any η ∈ [2p,∞). Then we obtain
the following result.

Theorem 6 For any γ ∈ ¡
1
θ
, 1
¢
, there exists a stationary Walrasian equilibrium

hp, F, V,φ, T i. Moreover, any Walrasian equilibrium is characterized by

(i)

φ(η) =

⎧⎪⎨⎪⎩
{σ} if η ∈ [0, p),
{ω} if η ∈ [p, 2p),
{β} if η ∈ [2p,∞),

(ii) V is defined as

V (η) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

γu−c
1−γ , if η ∈ [0, p),
u−c
1−γ , if η ∈ [p, 2p),
...
1
1−γ {u− γn−1c} , if η ∈ [np, (n+ 1)p),
...
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(iii)

T (η, A) = 1, iff

⎧⎪⎨⎪⎩
η + p ∈ A and η ∈ [0, p), or

η ∈ A and η ∈ [p, 2p), or

η − p ∈ A and η ∈ [2p,∞),

(iv) F satisfies

F ([p, 2p)) = 1,Z 2p

p

ηdF =M.

Corollary 2 The distribution of value in stationary Walrasian equilibria is uniquely

determined, i.e., the value of any agent is u−c
1−γ .

The above corollary implies that the indeterminacy is not a real one but a nominal

one as in Section 4.

C Decentralized Auctions

In the same environment as in Section 2, we consider an economy, where trades take

place in decentralized second price auction markets, and show that there is also a

continuum of stationary equilibria.

In each period, each agent is given a choice of becoming either a seller or a buyer,

or not doing anything. Each seller posts a minimum bid of her second-price auction.6

After observing the distribution of posted minimum bids, each buyer simultaneously

chooses which auction he participates in. After observing the number of the other

participants in the auction he participates in and bids a price. In this environment, we

consider the following strategy:

• an agent with η ∈ [0, p) chooses to be a seller and post a minimum bid p,

• an agent with p chooses to be a buyer and always bids p,
• an agent with η ∈ [p,∞) chooses to be a buyer, and

— bids p if there is no participant in the auction,

— bids η if there are other participants in the auction.
6Nothing would change if we assume the sellers also choose her auction format.
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Moreover, we consider the stationary equilibria in which

(i) the support of the money holdings distribution is {0, p},
(ii) h0 ≤ 1

2
, and

(iii) every buyer randomizes with equal probabilities between auctions with the same

minimum bids.

The equilibrium with (iii) is often investigated in many directed search model, e.g.,

Peters [22]. In such an equilibrium, although the measure of the sellers is no less than

that of the buyers, a seller could be left out of the trade. To be more precise, let

ρ = 1−h0
h0

(then ρ ≥ 1). Then the probability a seller succeeds to sell a good in each
period is obtained as 1− e−ρ, and the probability each buyer with p succeeds to buy a
good in each period is obtained as 1−e

−ρ
ρ
.7 Let α = 1− e−ρ.

The value function is defined as follows:

V (η) =

⎧⎪⎨⎪⎩
α (−c+ γV (η + p)) + (1− α)γV (η), if η < p,
α
ρ
(u+ γV (0)) +

³
1− α

ρ

´
γV (p), if η = p,

u+ γV (η − p), if η > p.

Let η = np+ ι, where n is the integer part of η and ι is the residual. Then we obtain

V (np+ ι) =⎧⎪⎪⎨⎪⎪⎩
γα2(u−c)−(1−γ)αρc
(1−γ)[(1−γ+γα)ρ+γα] , if ι = 0, n = 0,

1
1−γ

n
u− γn−1

(1−γ+γα)ρ+γα {[(ρ− α)(1− γ + γα) + γα]u+ γα2c}
o
, if ι = 0, n 6= 0,

1
1−γ

n
u− γn

1+γα
(u+ αc)

o
, if ι 6= 0.

The incentive conditions are the same as in the centralized auction model, i.e.,

(I) V (0) ≥ 0.
(II) V (p) ≥ −c+ γV (2p).

(I) is equivalent to

γ ≥ γ(ρ) =
ρ

(θ − 1)α + ρ
.

Note that γ(ρ) ∈ (1/θ, 1). Similarly, (II) is equivalent to
H(γ; ρ) =

£
ρ(1− α)θ − α(2− α)θ − α2

¤
γ2

+
£−ρ(1− α + θ) + α2θ + α(1− α)

¤
γ + ρ+ αθ ≥ 0.

7We obtain these probabilities in the limit of finite economies. See Peters [22] for the details.
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Since

H(0; ρ) > 0,

H(1/θ; ρ) > 0,

H(1; ρ) < 0,

∂H(γ; ρ)

∂γ
< 0, ∀γ ∈ [0, 1],

there exists γ(ρ) ∈ ¡1
θ
, 1
¢
such that, for γ ∈ (0, 1),

γ ≤ γ(ρ)⇔ H(γ; ρ) ≥ 0.
By tedious calculations, we obtain

H
¡
γ(1); 1

¢
=

α∗(θ2 − 1)
[α∗θ + (1− α∗)]2

©
(α∗)2(θ − 1) + (3α∗ − 1)ª ,

where α∗ = 1 − e−1. Since α∗ > 1
3
, it is verified H

¡
γ(1); 1

¢
> 0, and therefore

γ(1) > γ(1). The continuity of γ(ρ) and γ(ρ) at ρ = 1 implies there exist γ, γ and ρ

such that

1

θ
< γ < γ < 1,

ρ > 1,

and for any γ ∈ (γ, γ), there exists a stationary equilibrium with the specified strategy
with any ρ ∈ [1, ρ). Let h0 = 1

ρ+1
, then we obtain the following result:

Theorem 7 There exist γ, γ, and h0 satisfying
1
θ
< γ < γ < 1 and h0 ∈ (0, 12) such

that for any γ ∈ (γ, γ), there exists a stationary equilibrium for any h0 ∈
¡
h0,

1
2

¤
.
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