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1. INTRODUCTION

We develop a general framework to analyze endogenous relationships. To con-

sider relationships in the modern society, neither one-shot games nor repeated games

are appropriate models because the formation and dissolution of a relationship is

not an option. We formulate voluntarily separable repeated games in a large society

of homogeneous players. Players are randomly matched to play a stage game, and,

after each round of play, they can choose whether to continue playing the game

with the same partner or not. Each direct interaction (a partnership) is voluntarily

separable, and, moreover, there is no information flow to other partnerships.

We focus on two-person prisoner’s dilemma as the component game, since it

highlights the merit of mutual cooperation as well as a strong incentive to defect

and escape to avoid retaliation. There are many real-world situations which fit this

model. Borrowers can move from a city to another after defaulting. Workers can

shirk and then quit the job. Still, we often observe cooperative modes of behavior

in such situations. We provide an evolutionary foundation to cooperative behaviors.

We consider boundedly rational players who are endowed with a pure strategy

and analyze evolutionary stability of strategy distributions. Since our model is

an extensive form game, there are many strategies that only differ in the off-path

decision nodes. Hence invasion concept needs to be carefully defined. We extend

Neutrally Stable Distribution (NSD) concept, under which no other strategy earns

strictly higher payoff than the incumbents do.

Known disciplining strategies such as trigger strategies (Fudenberg and Maskin,

1986) and contagion of defection (Kandori, 1992, and Ellison, 1994) do not sustain

cooperation in our model. There are two reasons. First, personalized punishment

is impossible due to the ability to end the partnership unilaterally and the lack

of information flow to the future partners. Second, the large society and random

death make it impossible to spread defection in the society to eventually reach the

original deviator. Our model describes a large, anonymous, and member-changing

society, which needs a different type of discipline from those of a society of directly

interacting long-run players.
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Some literature exists on voluntarily separable repeated games for generalized

prisoner’s dilemma (Datta, 1996, Kranton 1996a, and Ghosh and Ray, 1997). They

focused on symmetric strategy distributions in which all (rational) players play the

same strategy and showed that a gradual-cooperation strategy sustains eventual

cooperation. By contrast, our framework is valid for any component game, and we

consider both symmetric (called monomorphic) strategy distributions, in which no

voluntary separation occurs, and fundamentally asymmetric (polymorphic) strategy

distributions, in which voluntary separation occurs on the equilibrium play path.

We first show that Defect must be played initially to sustain future cooperation.

We then identify a relationship between the death rate (discount factor) and the suffi-

cient number of initial defection (called trust-building periods) of both monomorphic

NSDs and polymorphic NSDs. We found that polymorphic NSDs include strategies

with shorter trust-building periods than monomorphic NSDs, thanks to double dis-

ciplining by not only trust building but also possible exploitation by a strategy with

longer trust-building periods. Hence polymorphic NSDs are more efficient than the

most efficient monomorphic NSD.

The existence of polymorphic NSDs in a homogeneous population provides an

evolutionary foundation to incomplete information models of voluntarily separable

repeated games (e.g., Ghosh and Ray, 1997, and Rob and Yang, 2005). Diverse

strategies co-exist, discipline each other, and the shortest trust-building strategy

can survive thanks to efficient outcome when meeting the same-type partner.

Extensions include cheap-talk model and other types of strategy distributions

and component games. The trust-building periods can be viewed as a signal to

distinguish cooperative strategies from others. Then it is natural to extend the

model to allow cheap-talk. When cheap-talk is introduced at the beginning of a new

partnership, the most efficient symmetric NSD is the unique symmetric NSD that

cannot be invaded by equilibrium entrants (Swinkels, 1992). We also mention how

coordinated action profiles over time (such as alternating (C, D) and (D,C)) can be

sustained. This leads to the analysis of asymmetric stage games such as Hawk-Dove.

This paper is organized as follows. In Section 2, we introduce the formal model
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and stability concepts. In Section 3, we identify the shortest trust-building periods

for monomorphic NSDs. In Section 4, we identify shortest trust-building periods

for various polymorphic NSDs. In Section 5 we discuss extensions including the

cheap-talk model and give concluding remarks.

2. MODEL AND STABILITY CONCEPTS

2.1. Model

Consider a society with a continuum of players, each of whom may die in each

period 1, 2, . . . with probability 0 < (1 − δ) < 1. When they die, they are replaced

by newly born players, keeping the total population constant. A newly born player

enters into the matching pool where players are randomly paired to play a Voluntarily

Separable Prisoner’s Dilemma (VSPD) as follows.1

In each period, players play the following Extended Prisoners’ Dilemma (EPD).

First, they play ordinary one-shot prisoners’ dilemma, whose actions are denoted

as Cooperate and Defect. After observing the play action profile of the period by

the two players, they choose simultaneously whether or not they want to keep the

match into the next period (action k) or bring it to an end (action e). Unless both

choose k, the match is dissolved and players will have to start the next period in

the matching pool. In addition, even if they both choose k, partner may die with

probability 1−δ which forces the player to go back to the matching pool next period.

If both choose k and survive to the next period, then the match continues, and the

matched players play EPD again.

Assume that there is limited information available to play EPD. In each period,

players know the VSPD history of their current match but have no knowledge about

the history of other matches in the society.

In each match, a profile of play actions determines the players’ instantaneous

payoffs for each period while they are matched. We denote the payoffs associated

　
1Although we focus on Prisoner’s Dilemma as the component game, the framework can be

applied to any component game.
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TABLE I

PAYOFF OF PD

P1 \ P2 C D
C c, c `, g
D g, ` d, d

with each play action profile as: u(C, C) = c, u(C, D) = `, u(D,C) = g, u(D,D) = d

with the ordering2 g > c > d > ` and 2c ≥ g + `. (See Table I.)

Because we assume that the innate discount rate is zero except for the possibility

of death, each player finds the relevant discount factor to be δ ∈ (0, 1). With this,

life-long payoff for each player is well-defined given his own strategy (for VSPD) and

the strategy distribution in the matching pool population over time.

Let t = 1, 2, . . . indicate the periods in a match, not the calendar time in the

game. Under the limited information assumption, without loss of generality we

can focus on strategies that only depend on t and the private history of actions

in the Prisoner’s Dilemma within a match.3 Let Ht := {C, D}2(t−1) be the set of

partnership histories at the beginning of t ≥ 2 and let H1 := {∅}.

DEFINITION. A pure strategy s of VSPD specifies (xt, yt)
∞
t=1 where:

xt : Ht → {C, D} specifies an action choice xt(ht) ∈ {C, D} given the partnership

history ht ∈ Ht, and

yt : Ht×{C, D}2 → {k, e} specifies whether to keep or end the partnership, depend-

ing upon the partnership history ht ∈ Ht and the current period action profile.

The set of pure strategies of VSPD is denoted as S and the set of all strategy

distributions in the population is denoted as P(S). For simplicity we assume that

each player uses a pure strategy.

We investigate stability of stationary strategy distributions in the matching pool.

Although the strategy distribution in the matching pool may be different from the

2We make a remark on the case of 2c < g + ` in the concluding remark.
3The continuation decision is observable, but strategies cannot vary depending on combinations

of {k, e} since only (k, k) will lead to the future choice of actions.
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distribution in the entire society, if the former is stationary, the distribution of vari-

ous states of matches (strategy pair and the “age” of the partnership) is also station-

ary, thanks to the stationary death process. Hence stability of stationary strategy

distributions in the matching pool implies stability of “social states”. Moreover, by

looking at the strategy distributions in the matching pool, we can directly compute

life-time payoffs of players easily.

2.2. Life-time and Average Payoff in a Match

When a strategy s ∈ S is matched with another strategy s′ ∈ S, the expected

length of the match is denoted as L(s, s′) and is computed as follows. Notice that

even if s and s′ intend to maintain the match, it will only continue with probability

δ2, which is the probability that both survive to the next period. Suppose that if

no death occurs while they form the partnership, s and s′ will end the partnership

at the end of T (s, s′)-th period of the match. Then

L(s, s′) := 1 + δ2 + δ4 + · · ·+ δ2{T (s,s′)−1} =
1− δ2T (s,s′)

1− δ2
.

The expected total discounted value of the payoff stream of s within the match

with s′ is denoted as V I(s, s′). The average per period payoff that s expects to receive

within the match with s′ is denoted as vI(s, s′). Clearly,

vI(s, s′) :=
V I(s, s′)
L(s, s′)

, or V I(s, s′) = L(s, s′)vI(s, s′).

2.3. Life-time and Average Payoff in the Matching Pool

Next we show the structure of the life-time and average payoff of a player endowed

with strategy s ∈ S in the matching pool, waiting to be matched randomly with

a partner. When a strategy distribution in the matching pool is p ∈ P(S) and is

stationary, we write the expected total discounted value of payoff streams s expects

to receive during his lifetime as V (s; p) and the average per period payoff s expects

to receive during his lifetime as

v(s; p) :=
V (s; p)

L
= (1− δ)V (s; p),
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where L = 1 + δ + δ2 + · · · = 1
1−δ

is the number of total days s expects to live.

A straightforward way to compute V (s; p) is to set up a recursive equation. If p

has a finite support, then we can write

V (s; p) =
∑

s′∈supp(p)

p(s′)
[
V I(s, s′)

+[δ(1− δ){1 + δ2 + · · ·+ δ2{T (s,s′)−2}}+ δ2{T (s,s′)−1}δ]V (s; p)
]
,

where supp(p) is the support of the distribution p, T (s, s′) is the date at the end

of which s and s′ end the match, the sum δ(1 − δ){1 + δ2 + · · · + δ2{T (s,s′)−2}} is

the probability that s loses the partner s′ before T (s, s′), and δ2{T (s,s′)−1}δ is the

probability that the match continued until T (s, s′) and s survives at the end of

T (s, s′) and goes back to the matching pool.

Let L(s; p) :=
∑

s′∈supp(p) p(s′)L(s, s′). By computation,

V (s; p) =
∑

s′∈supp(p)

p(s′)
[
V I(s, s′) + {1− (1− δ)L(s, s′)}V (s; p)

]

=
∑

s′∈supp(p)

p(s′)V I(s, s′) + {1− L(s; p)

L
}V (s; p).

Hence the average payoff can be decomposed4 as a convex combination of “in-

match” average payoff:

v(s; p) =
V (s; p)

L
=

∑

s′∈supp(p)

p(s′)
L(s, s′)
L(s; p)

vI(s, s′), (1)

where the ratio L(s, s′)/L(s; p) is the relative length of periods that s expects to

spend in a match with s′. In particular, if p is a strategy distribution consisting of

a single strategy s′, then v(s; p) = vI(s, s′).

2.4. Nash Equilibrium

DEFINITION. Given a stationary strategy distribution in the matching pool p ∈
P(S), s ∈ S is a best reply against p if for all s′ ∈ S,

v(s; p) ≥ v(s′; p),
4However, this means that, in general, v(s; p) 6= ∑

s′ p(s′)vI(s, s′). That is, v is not linear in
the second component. This is due to the recursive structure of the V function.
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and is denoted as s ∈ BR(p).

DEFINITION. A stationary strategy distribution in the matching pool p ∈ P(S) is a

Nash equilibrium if, for all s ∈ supp(p), s ∈ BR(p).

LEMMA 1. For any pure strategy s ∈ S that starts with C in t = 1, let ps be the

strategy distribution consisting only of s. Then ps is not a Nash equilibrium.

PROOF: Consider a myopic strategy d̃ which plays D at t = 1 and ends the part-

nership for any observation at t = 1. For t ≥ 2, which is off-path, specify arbitrary

actions. Then any d̃-strategy earns g as the average payoff under ps, which is the

maximal possible payoff. I.e., d̃ ∈ BR(ps) and s 6∈ BR(ps). Q.E.D.

Therefore, trigger strategy used in the ordinary folk theorem of repeated pris-

oner’s dilemma cannot constitute even a Nash equilibrium. There needs to be at

least one period of (D,D) in any symmetric equilibrium.

By contrast, pd̃ consisting only of a d̃-strategy is a Nash equilibrium. Against a d̃-

strategy, any strategy must play one-shot Prisoner’s Dilemma. Hence, any strategy

that starts with C in t = 1 earns strictly lower average payoff than that of a d̃-

strategy, and any strategy that starts with D in t = 1 earns the same average payoff

as that of a d̃-strategy.

2.5. Neutral Stability

Recall that in an ordinary 2-person symmetric normal-form game G = (S, u), a

(mixed) strategy p ∈ P(S) is a Neutrally Stable Strategy if for any q ∈ P(S), there

exists 0 < ε̄q < 1 such that for any ε ∈ (0, ε̄q), Eu(p, (1 − ε)p + εq) ≥ Eu(q, (1 −
ε)p + εq). (Maynard Smith, 1982.)

An extension of this concept to our extensive form game is to require a strategy

distribution not to be invaded by a small fraction of a mutant strategy who enters

the matching pool in a stationary manner.
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DEFINITION. Given ε > 0 and a stationary strategy distribution p ∈ P(S) in the

matching pool, a strategy s′ ∈ S invades p for ε if for any s ∈ supp(p),

v(s′; (1− ε)p + εps′) ≥ v(s; (1− ε)p + εps′), (2)

and for some s ∈ supp(p),

v(s′; (1− ε)p + εps′) > v(s; (1− ε)p + εps′), (3)

where ps′ is the strategy distribution consisting only of s′.

A weaker notion of invasion that requires weak inequality only (which is used

in the notion of Evolutionary Stable Strategy) is too weak in our extensive-form

model since any strategy that is different in the off-path actions from the incumbent

strategies can invade under the weak inequality condition.

DEFINITION. A stationary strategy distribution p ∈ P(S) in the matching pool is

a Neutrally Stable Distribution (NSD) if, for any s′ ∈ S, there exists ε̄ ∈ (0, 1) such

that s′ cannot invade p for any ε ∈ (0, ε̄).

If a symmetric strategy distribution consisting of a single pure strategy s is a

neutrally stable distribution, then s is called a Neutrally Stable Strategy (NSS). The

condition for s to be a NSS reduces to: for any s′ ∈ S, there exists ε̄ ∈ (0, 1) such

that, for any ε ∈ (0, ε̄),

v(s; (1− ε)ps + εps′) ≥ v(s′; (1− ε)ps + εps′).

It can be easily seen that any NSD is a Nash equilibrium.

Similar to the “static” notion of evolutionary stability, this definition is based on

the assumption that mutation takes place rarely so that only single mutation occurs

within the time span in which stationary strategy distribution is formed. However,

unlike the ordinary notion of neutral stability (or ESS) of one-shot games, we need

to assume the expected length of the life-time of a mutant strategy in order to

calculate the average payoff. We adopted a strong requirement that the incumbents
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are not worse-off than mutants even if mutants stay stationarily in the population,

let alone if they die out. While we do not insist that the above definition is the best

among we can imagine, it is tractable and justifiable.

We show that any d̃-strategy is not NSS, even though it constitutes a symmetric

Nash equilibrium. Hence NSD concept selects among Nash equilibria in our model.

LEMMA 2. Any myopic d̃-strategy is not an NSS.

PROOF: Consider the following c1-strategy.

t = 1: Play D and keep the partnership if and only if (D,D) is observed in the

current period.

t ≥ 2: Play C and keep the partnership if and only if (C, C) is observed in the

current period.

For any ε ∈ (0, 1), let p := (1− ε)pd̃ + εp1. From (1),

v(d̃; p) = d;

v(c1; p) = (1− ε)
L(c1, d̃)

L(c1; p)
vI(c1, d̃) + ε

L(c1, c1)

L(c1; p)
vI(c1, c1) > d,

since vI(c1, d̃) = d, and vI(c1, c1) = (1− δ2)d + δ2c > d. Q.E.D.

2.6. Simple, Trust-building Strategies

We will analyze equilibria of a certain form called trust-building strategies. Our

purpose of this paper is not to provide a folk theorem but to clarify how repeated

cooperation can be played by boundedly rational players in an anonymous society

who do not play carefully constructed punishment strategies. Needless to say, Nash

equilibrium and NSD are proved by checking all other strategies in S (not just

among trust-building strategies).

Intuitively, we focus on generalized versions of c1-strategy that can invade the

population of a myopic d̃-strategy. To formalize, we first define simple strategies,

which have a set of acceptable paths and end a partnership as soon as a deviation

from acceptable paths is observed. Simple strategies, however, do not restrict the
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equilibrium outcomes because the equilibrium continuation payoffs cannot be lower

than the continuation payoff after voluntary separation.

Let Ω = ∪∞t=1({C, D} × {C, D, ∅})(t−1). Interpret that the first coordinate is the

player’s own action and the second coordinate is the current partner’s “acceptable”

action. The ∅ means that any action by the partner is not acceptable, i.e., the

strategy intends to end the partnership regardless of the observation at that point.

For any q ∈ Ω, let |q| be the length of the sequence q, i.e., the number of action

profiles contained in q.

DEFINITION. Q ⊂ Ω is the set of acceptable paths if,

(1) for any q, q′ ∈ Q and any t = 1, 2, . . . , min{|q|, |q′|}, if (q(1), . . . , q(t − 1)) =

(q′(1), . . . , q′(t− 1)), then q1(t) = q′1(t);

(2) for any q ∈ Q, if q2(t) = ∅ for some t, then |q| = t.

The first condition guarantees that the action is uniquely determined after any

acceptable observed path. The second condition means that if a strategy intends to

end the partnership at t, then the specification of the acceptable path ends there.

DEFINITION. For any set of acceptable paths Q ⊂ Ω, a strategy s(Q) ∈ S is a simple

strategy if, in each period t,

(a) in the stage game, it plays according to the unique q1(t) generated by Q and the

observed path; and

(b) in the continuation decision phase, it keeps the partnership if and only if the

observed path is the same as the first t components of some q ∈ Q.

An extension of the ordinary C-trigger strategy to our model is a simple strategy

with a singleton set of acceptable path

Qtr = {((C, C), (C, C), . . .)}.

Any myopic d̃-strategy is also a simple strategy with Qd̃ = {((D, ∅))}.
Next, we define trust-building strategies, a generalization of c1-strategy.
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DEFINITION. For any T = 1, 2, 3, . . ., let a trust-building strategy with T periods

of trust-building (written as cT -strategy hereafter) be a simple strategy with the

singleton set of acceptable path

QcT
= {(

T times︷ ︸︸ ︷
(D,D), . . . , (D,D), (C, C), (C, C), . . .)}.

The first T periods of cT -strategy are called trust-building periods and the periods

afterwards are called the cooperation periods. This class of simple strategies are of

particular interest, since if matched players use the same cT -strategy, the cooperation

periods give the most efficient symmetric outcome as long as they live. However, in

order to sustain the perpetual cooperation, we need at least one period of (D,D)

due to Lemma 1. We are interested in the shortest trust-building periods to sustain

such a cooperative long-term relationship.

3. MONOMORPHIC STRATEGY DISTRIBUTIONS

We first consider monomorphic strategy distributions, consisting of a single cT -

strategy. The literature of voluntarily separable repeated games has focused on

similar symmetric strategy distributions.

Let pT be the strategy distribution consisting only of cT -strategy. The average

payoff of cT -strategy when pT is the stationary strategy distribution in the matching

pool is computed as follows. A match of cT against cT continues as long as they

both live and the payoff sequence is d for the first T periods and c thereafter:

L(cT , cT ) = 1 + δ2 + · · · = 1

1− δ2
,

V I(cT , cT ) = {1 + δ2 + · · ·+ δ2(T−1)}d + (δ2T + · · · )c.

Since v(cT ; pT ) = vI(cT , cT ) = V I(cT ,cT )
L(cT ,cT )

, the average payoff is

v(cT ; pT ) = (1− δ2T )d + δ2T c. (4)

By the logic of dynamic programming, it is necessary and sufficient for a strategy

to be optimal that it cannot be improved by one-step deviations. Although the
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literal one-step deviations are infeasible in our model (since a player cannot change

strategies across matches), it is easy to see that if a strategy is unimprovable by

(infeasible) one-step deviations, then it is unimprovable by any strategy within S.

Therefore we find a condition that strategies which differ from cT in one-step (in

particular during the cooperation periods) do not give a higher average payoff than

cT -strategy when the stationary strategy distribution in the matching pool is pT .

Suppose that one plays D at some point during the cooperation periods. The

player receives g but returns to the matching pool if he does not die. The con-

tinuation payoff is thus g + δV (cT ; pT ). By contrast, the expected continuation

payoff of cT -strategy during the cooperation periods is L(cT , cT )c + δ(1 − δ)(1 +

δ2 + · · · )V (cT ; pT ) = L(cT , cT )c + δ(1 − δ)L(cT , cT )V (cT ; pT ). Therefore, one-step

deviation during cooperation periods is not better than cT -strategy if and only if

g + δV (cT ; pT ) ≤ L(cT , cT )c + δ(1− δ)L(cT , cT )V (cT ; pT ),

⇐⇒ v(cT ; pT ) ≤ 1

δ2
[c− (1− δ2)g] =: vBR, (5)

which we call the Best Reply Condition. Since vBR is independent of the length T

of trust-building periods and v(cT ; pT ) decreases as T increases, (5) implies a lower

bound to T .

Now we prove that in fact the Best Reply Condition (5) is the only condition

that is required for pT to be a Nash equilibrium. Let on-path history at a decision

node of t = 1, 2, 3, . . ., be the play path until the decision node of the t-th period in

a match of two cT -strategies. That is, the on-path history in PD in periods t ≤ T is

(D,D)t−1 and in periods t ≥ T +1 is {(D,D)T , (C, C)(t−T−1)}. The on-path history

at the continuation decision phase is similarly defined.

LEMMA 3. Take an arbitrary T = 1, 2, 3, . . .. Let pT be the stationary strategy dis-

tribution in the matching pool, consisting only of cT -strategy.

(a) Any strategy that ends the match in some period t = 1, 2, . . . along on-path

history is not a best reply against pT .
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(b) Any strategy that chooses C at some t < T + 1 along on-path history is not a

best reply against pT .

(c) Let s be any strategy that chooses D at some t ≥ T + 1 along on-path history.

Then v(cT ; pT ) ≥ v(s; pT ) if and only if v(cT ; pT ) ≤ vBR.

PROOF: See Appendix.

In the explicit expression of the parameters, the Best Reply Condition is

g − c

c− d
≤ δ2(1− δ2T )

1− δ2
.

Given T , define δ(T ) as the solution to

g − c

c− d
=

δ2(1− δ2T )

1− δ2
.

Then the Best Reply Condition (5) is satisfied if and only if δ ≥ δ(T ). It is easy to

see that

δ(1) =

√
g − c

c− d
> · · · > δ(∞) =

√
g − c

g − d
.

Although δ(1) may exceed 1, δ(∞) < 1. Hence for any δ > δ(∞), there exists

the minimum length of trust building periods that warrants (5):

τ(δ) := argminτ∈R++{δ(τ) | δ ≥ δ(τ)}.

It is easy to see that τ is a decreasing function of δ.

PROPOSITION 1. For any δ ∈ (δ(∞), 1), the monomorphic strategy distribution pT

consisting only of cT -strategy is a Nash equilibrium if and only if T ≥ τ(δ).

PROOF: (Can be omitted.) Lemma 3 implies that no strategy which differ on the

play path from cT -strategy is better off if and only if T is sufficiently long so that

(5) holds, i.e., T ≥ τ(δ). Strategies that differ from cT -strategy off the play path do

not give a higher payoff. Q.E.D.

Note that the lower bound to the discount factor (as δ2) that sustains the trigger-

strategy equilibrium of the ordinary repeated prisoner’s dilemma is
√

g−c
g−d

= δ(∞).

This means that cooperation in VSPD requires more patience.
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Next we investigate when a Nash equilibrium pT is neutrally stable. In general,

in order to check whether a Nash equilibrium distribution is a NSD, we only need

to consider mutants that are best replies to the Nash equilibrium distribution.

LEMMA 4. Suppose p ∈ P(S) is a Nash equilibrium. If a pure strategy s′ ∈ S invades

p for some ε > 0, then s′ is an alternatvie best reply to p, i.e., s′ ∈ BR(p).

PROOF: (Obvious from (1). Can be omitted.) See Appendix.

There are only two kinds of strategies that may become alternative best replies to

pT . The obvious ones are those that differ from cT -strategy off the play path. These

will give the same payoff as cT -strategy and therefore cannot invade pT . The other

kind is the strategies that play D at some point in the cooperation periods. When

T > τ(δ), however, Lemma 3 (c) implies that such strategies are not alternative

best reply. Therefore cT -strategy is NSS for this case.

When τ(δ) is an integer, the Nash equilibrium pτ(δ) has alternative best replies,

among which cτ(δ)+1 earns the highest payoff when meeting itself. It suffices to check

if cτ(δ)+1-strategy cannot invade pτ(δ).

Below we first show general properties of the average values of cT -strategy and

cT+1-strategy for any T when both of these are present in the matching pool. This is

useful in the later analysis as well. After that we show a condition that cτ(δ)-strategy

earns a higher payoff when the fraction of cτ(δ)+1-strategy is sufficiently small.

For any T , let pT+1
T (α) = αpT + (1−α)pT+1 be a two-strategy distribution of cT

and cT+1.

LEMMA 5. For any δ ∈ (δ(∞), 1) and any T = 0, 1, 2 . . ., v(cT ; pT+1
T (α)) is strictly

increasing and concave function of α.

PROOF: (By differentiation. Can be omitted.) See Appendix.

LEMMA 6. For any δ ∈ (δ(∞), 1) and any T = 0, 1, 2 . . . such that T ≤ τ(δ),

v(cT+1; p
T+1
T (α)) is strictly increasing and convex function of α.

PROOF: (By differentiation. Can be omitted.) See Appendix.
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FIGURE 1. – The value functions of cT -strategy and cT+1-strategy when T = τ(δ).

(Parameter values: g = 10, c = 6, d = 1, ` = −1, δ = 2√
5
, T = τ(δ) = 1.)

The intuition of the concavity and convexity of the average payoffs of cT and

cT+1-strategy respectively is as follows. As α decreases from 1 towards 0, cT -strategy

gets exploited by cT+1-strategy more often and the exploitation accelerates as the

fraction of cT+1-strategy increases. Hence the average value of cT -strategy drops

more as α decreases. On the other hand, as α increases from 0 to 1, cT+1-strategy

benefits more and more by the increased probability of meeting cT -strategy. Thus

the average value of cT+1-strategy increases more as α increases.

Thanks to the concavity and convexity, cT+1-strategy cannot invade pT if and

only if the slope of v(cT ; pT+1
T (α)) is strictly smaller than the slope of v(cT+1; p

T+1
T (α))

at α = 1, see Figure 1.

LEMMA 7. Take any δ ∈ (δ(∞), 1). Let T = τ(δ). Then

∂v(cT ; pT+1
T (α))

∂α

∣∣∣
α=1

<
∂v(cT+1; p

T+1
T (α))

∂α

∣∣∣
α=1

if and only if

[1− δ2(T+1)](g − `) < c− d. (6)
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PROOF: (By computation. Can be omitted.) See Appendix.

Hence, if we define τ̂(δ) implicitly as the solution to

[1− δ2(T+1)](g − `) = c− d,

then cτ+1-strategy cannot invade pτ if and only if τ(δ) < τ̂(δ).

To interpret (6), notice that L(cT , cT ) = 1 + δ2 + · · · and L(cT+1, cT ) = 1 + δ2 +

· · ·+ δ2T . Hence the condition (6) is equivalent to

(g − `)L(cT+1, cT ) < (c− d)L(cT , cT ) (7)

at T = τ(δ). The RHS of (7) can be interpreted as the relative merit of cT -strategy

against cT+1-strategy (to start cooperating one period early when meeting itself)

and the LHS is the relative merit of cT+1-strategy when meeting cT -strategy.

As δ increases (when G is fixed), T must increase to keep the equality (6). Thus

τ̂ is an increasing function of δ and goes to ∞ as δ → 1.

LEMMA 8. There exists a unique δ∗ ∈ (δ(∞), 1) that satisfies

δ R δ∗ ⇐⇒ τ̂(δ) R τ(δ).

PROOF: (Can be omitted. See Figure 2.) Recall that τ(δ) is decreasing in δ. When

δ = 1, τ̂(1) = ∞ > τ(1). The δ satisfying τ̂(δ) = 0 is δ =
√

g−c+d−`
g−`

>
√

g−c
g−d

=

δ(∞), where the inequality obtains by computation. Hence when δ is close to δ(∞),

τ̂(δ) < τ(δ). Q.E.D.

In summary, most of the symmetric Nash equilibirum strategies are NSS except

at some boundary values.

PROPOSITION 2. (a) For any δ such that δ∗ < δ < 1, cT -strategy is NSS if and

only if T ≥ τ(δ).

(b) For any δ such that δ(∞) < δ ≤ δ∗, cT -strategy is NSS if and only if T > τ(δ).
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FIGURE 2. – Parametric summary of monomorphic NSS

4. POLYMORPHIC STRATEGY DISTRIBUTIONS

The literature on voluntarily separable repeated games has concentrated on

monomorphic equilibria so that no voluntary break-up occurs, except for sorting

out inherent defectors under incomplete information case. (See concluding remark

Section 5.5.) We now investigate equilibria consisting of cT -strategies with differ-

ent length of trust-building periods, hence voluntary break-ups occur on the play

path. Recall that our model is of complete information and with homogeneous play-

ers. Therefore this section can be interpreted as an evolutionary foundation to the

incomplete information models of diverse types of behaviors.

4.1. Bimorphic Distribution

We investigate the shortest T for a two-strategy distribution (called bimorphic

distribution) of pT+1
T (α) = αpT + (1 − α)pT+1 to be a NSD for some α ∈ (0, 1).

For a bimorphic distribution to be a NSD, all strategies in the support must earn

the same average payoff for some α ∈ (0, 1). Moreover, if α increases, cT -strategy

should be worse than cT+1-strategy and vice versa. Then the strategy distribution

17



cannot be invaded by strategies that have the same play path as cT or cT+1-strategy.

Therefore we need:

Payoff Equalization: there exists αT+1
T ∈ (0, 1) and a neighborhood U of αT+1

T such

that for any α ∈ U

α R αT+1
T ⇐⇒ v(cT+1; p

T+1
T (α)) R v(cT ; pT+1

T (α)). (8)

To derive the Best Reply Condition, note that there are two kinds of one-step

deviations under a bimorphic distribution. First, a strategy can play D and keep

the partnership until the partner ends the match. This strategy earns the same

average payoff as cT+k-strategy with k ≥ 2. Second, a strategy can imitate cT or

cT+1-strategy to enter cooperation periods (i.e., play C at least once at T + 1 or

T + 2) and then play D to earn g for sure. Both kinds of one-step deviation do not

earn higher average payoff than the incumbent cT and cT+1-strategies if and only if

a similar condition to (5) holds.

LEMMA 9. Best Reply Condition: Any one-step deviation strategy from cT or cT+1-

strategy does not earn higher average payoff than cT or cT+1 if and only if

v(cT ; pT+1
T (αT+1

T )) ≤ vBR. (9)

PROOF: (By computation. Can be omitted.) See Appendix.

As before, the boundary case of v(cT ; pT+1
T (αT+1

T )) = vBR may not warrant a

NSD but the interior case is sufficient.

Let us describe the intuition of the existence of a bimorphic NSD using Figure 3.

Clearly, there is no bimorphic NSD with the support {cτ(δ), cτ(δ)+1}. For T slightly

below τ(δ), the average value functions v(cT ; pT+1
T (α)) and v(cT+1; p

T+1
T (α)) intersect

at α < 1 and the value at the intersection is below vBR. The latter holds when the

slope of v(cT ; pT+1
T (1)) is smaller than the slope of v(cT+1; p

T+1
T (1)), that is, when

T < τ̂(δ), using a similar logic to Lemma 7.
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FIGURE 3. – The existence of a bimorphic NSD as T is slightly below τ(δ).

(Parameter values: g = 10, c = 6.1, d = 2.1, ` = 2, δ = 0.96, T = 1, τ(δ) ≈ 1.06.)

In a bimorphic NSD, the shortest trust-building periods is shorter than any of

monomorphic NSD because earlier opportunity to deviate is offset by the possible

exploitation by cT+1-strategy in the future match.

PROPOSITION 3. For any δ > δ∗, there exists τ2(δ) such that τ2(δ) < τ(δ), and,

for any T such that τ2(δ) < T < τ(δ), there exists a bimoprhic NSD of the form

pT+1
T (αT+1

T (δ)), where αT+1
T (δ) ∈ (0, 1).

PROOF: See Appendix.

Therefore, cooperation and exploitation can co-exist. The minimal trust-building

periods τ2(δ) warrants that the payoff-equalizing αT+1
T (δ) exists. Then one can prove

that the Best Reply Condition is satisfied for that αT+1
T (δ). Unlike monomorphic

NSDs, however, we need δ to be sufficiently large, i.e., δ > δ∗. To warrant an integer

T , we need to restrict G so that (τ2(δ), τ(δ)) contains an integer. Figure 3 is a

numerical example of such G.
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FIGURE 4. – Bimorphic NSD.

4.2. Higher Efficiency of Bimorphic NSD

For a given δ > δ∗, the shortest trust-building periods in the support of a bimor-

phic NSD, if it exists, is at least one period less than any of monomorphic NSS. Let

the shortest trust-building periods of NSS be T + 1 and consider a bimorphic NSD

pT+1
T (αT+1

T (δ)). The average payoff of cT+1 strategy as a NSS is

v(cT+1; pT+1) = v(cT+1; p
T+1
T (0)).

Lemma 6 shows that v(cT+1; p
T+1
T (α)) is an increasing function of α, and thus

v(cT+1; p
T+1
T (0)) < v(cT+1; p

T+1
T (αT+1

T (δ))),

since αT+1
T (δ) > 0. (See Figure 3.) Hence bimorphic NSDs, if they exist, are more

efficient than any monomorphic NSS, thanks to earlier cooperation, even though

equilibrium break-up occurs.

4.3. Staggered Distribution: Finite Support

We can extend the analysis of the bimorphic NSDs for NSDs with a finite support

of the form {cT , cT+1, . . . , cT+K}, which we call a (K+1)-morphic distribution. First,

we derive trimorphic NSDs with the support of {cT , cT+1, cT+2} as a benchmark.
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Let pT+2
T (α, β) = αpT +(1−α)βpT+1 +(1−α)(1−β)pT+2 be a trimorphic distri-

bution. The Payoff Equalization condition should be derived backwards. Given the

fraction α of cT -strategy, find β∗(α) ∈ (0, 1) such that there exists a neighborhood

U of β∗(α) and for any β ∈ U ,

β R β∗(α) ⇐⇒ v(cT+2; p
T+2
T (α, β)) R v(cT+1; p

T+2
T (α, β)). (10)

The β∗(α) exists if and only if the quadratic equation of β,

{v(cT+1; p
T+2
T (α, β))− v(cT+2; p

T+2
T (α, β))}

×{αL(cT+1, cT ) + (1− α)βL(cT+1, cT+1) + (1− α)(1− β)L(cT+1, cT+2)}
×{αL(cT+2, cT ) + (1− α)βL(cT+2, cT+1) + (1− α)(1− β)L(cT+2, cT+2)} = 0

has two solutions within (0, 1). The larger one is β∗(α).

Then we find αT+2
T ∈ (0, 1) (dependent on δ) and its neighborhood W such that

for any α ∈ W ,

α R αT+2
T (δ) ⇐⇒ v(cT+1; p

T+2
T (α, β∗(α))) R v(cT ; pT+2

T (α)). (11)

Note that the average payoff of cT -strategy only depends on α, since cT+1 and cT+2

behave the same way against cT . The payoff-equalizing αT+2
T (δ) exists if and only if

the intersection exists between v(cT ; pT+2
T (α)) and v(cT+1; p

T+2
T (α, β∗(α))), both of

which are functions of α only. See Figure 5.

The Best Reply Condition is derived in the same way as before. Any cT+k-

strategy (k = 0, 1, 2) is optimal if and only if

g + δV (cT+k; p
T+2
T (α, β∗(α))) ≤ c

1− δ2
+

δ(1− δ)

1− δ2
V (cT+k; p

T+2
T (α, β∗(α)))

⇐⇒ v(cT+k; p
T+2
T (α, β∗(α))) ≤ c− (1− δ2)g

δ2
= vBR. (12)

It can be shown that the average payoff of cT+1 under a payoff-equalizing trimor-

phic distribution (i.e., under (α, β∗(α))) intersects with vBR at α where it intersects

with vBR under a bimorphic distribution. Moreover, since there are exploiters for

cT+1-strategy (namely cT+2-strategy), the average value of cT+1-strategy is lower
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FIGURE 5. – Existence of Polymorphic NSDs.

(Parameter values: g = 10, c = 6.1, d = 2.1, ` = 2, δ = 0.96, T = 1, τ(δ) ≈ 1.06.)

under the trimorphic distribution than under the bimorphic distribution with the

same α. See Figure 5.

LEMMA 10. For any δ > δ∗ and any T < τ(δ), let α∗T+1(v
BR) be the fraction of

cT -strategy that solves

v(cT+1; p
T+1
T (α)) = vBR.

Then, β∗(α∗T+1(v
BR)) = 1 and for any α < α∗T+1(v

BR),

v(cT+1; p
T+2
T (α, β∗(α))) < v(cT+1; p

T+1
T (α)).

PROOF: See Appendix.

Hence if a bimorphic NSD pT+1
T exists, then a trimorphic NSD exists. (But not

vice versa.)

PROPOSITION 4. For any δ > δ∗ there exists τ3(δ) < τ2(δ) and, for any T such that

τ3(δ) < T < τ(δ), there exists a trimorphic NSD of the form pT+2
T (αT+2

T , β∗(αT+2
T )),

where αT+2
T ∈ (0, 1).
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PROOF: Lemma 10 implies that if there exists α such that v(cT+1; p
T+1
T (α)) =

v(cT ; pT+1
T (α)) < vBR which satisfies (8), then there exists α such that

v(cT+1; p
T+2
T (α, β∗(α))) = v(cT ; pT+2

T (α)) < vBR which satisfies (11). Moreover, even

if T = τ2(δ) so that there is no bimorphic NSD, the payoff-equalizing αT+2
T exists

to warrant a trimorphic NSD. Therefore the lower bound to T for the existence of

a trimorphic NSD is lower than τ2(δ). Q.E.D.

In addition, the average payoff of the trimorphic NSD is greater than that of the

bimorphic NSD, thanks to the increasing nature of v(cT ; pT+1
T (α)) in α. This means

that even if the shortest trust-building periods is the same between a bimorphic

NSD and a trimorphic NSD, more diversity gives higher efficiency. The intuition is

that with more variety of strategies (i.e., more exploiters) in the society, the strategy

with the shortest trust-building periods must increase its fraction in equilibrium.

In general, let

pT+K
T (α, β1, β2, . . . , βK) = αpT + (1− α)

K∑

k=1

Πk−1
m=1(1− βm)βkpT+k

be a (K+1)-morphic distribution. Define the Payoff-Equalizing β∗k ’s (k = 1, 2, . . . , K)

as follows. For notational simplicity, let us write a vector βk
1 = (β1, . . . , βk) for any

k = 1, 2, . . . , K.

Given the fractions (α, βK−1
1 ), define β∗K(α, βK−1

1 ) ∈ (0, 1) that makes cT+K and

cT+K−1 equivalent and un-invadable by strategies with the same on-path actions:

βK R β∗K(α, βK−1
1 )

⇐⇒ v(cT+K−1; p
T+K
T (α, βK−1

1 , βK)) R v(cT+K ; pT+K
T (α, βK−1

1 , βK)), (13)

for any βK in some neighborhood of β∗K(α, βK−1
1 ). Similarly, given (α, βK−2

1 ) and

β∗K(·), define β∗K−1(α, βK−2
1 ) ∈ (0, 1):

βK−1 R β∗K−1(α, βK−2
1 )

⇐⇒ v(cT+K−2; p
T+K
T (α, βK−2

1 , βK−1, β
∗
K(α, βK−2

1 , βK−1))

R v(cT+K−1; p
T+K
T (α, βK−2

1 , βK−1, β
∗
K(α, βK−2

1 , βK−1))),
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FIGURE 6. – Finite Support Polymorphic NSDs.

for any βK−1 in some neighborhood of β∗K−1(α, βK−2
1 ). After computing β∗k(α, βk−1

1 )

for all k = 1, 2, . . . , K, finally find αT+K
T ∈ (0, 1) (dependent on δ) such that

α R αT+K
T (δ) ⇐⇒ v(cT+1; p

T+K
T (α, β∗1(α))) R v(cT ; pT+K

T (α)), (14)

for any α in some neighborhood of αT+K
T (δ). Note that the average payoff of cT -

strategy only depends on α, since cT+1, . . . , cT+K behave the same way against cT ,

and the average payoff of cT+1-strategy only depends on α and β1.

The payoff-equalizing αT+K
T (δ) exists if and only if the intersection exists between

v(cT ; pT+K
T (α)) and v(cT+1; p

T+K
T (α, β∗1(α))). The Best Reply Condition is derived in

the same way as before. Using the same logic as Lemma 10, a (K +1)-morphic NSD

exists if K-morphic NSD exists. See Figure 6. In particular, for T ∈ (τ2(δ), τ(δ)),

any K-morphic NSD exists for K = 2, 3, . . ..

4.4. Staggered Distribution: Infinite Support

Finally we consider simple strategy distributions with the support {cT , cT+1, . . .},
i.e., infinitely many variety of trust-building periods. We first prove that if a strategy

distribution with the support {cT , cT+1, . . .} is to become a NSD, then the population

distribution of ct-strategies must be “geometric”.
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LEMMA 11. For any T < ∞, let p be a stationary strategy distribution with the

support {cT , cT+1, . . .}. If v(cT ; p) = v(cT+k; p) for all k = 1, 2, . . ., then there exists

α ∈ (0, 1) such that the fraction of cT+k-strategy is of the form α(1 − α)k for each

k = 0, 1, 2, . . ..

PROOF: See Appendix.

Denote the geometric distribution of {cT , cT+1, . . .} as p∞T (α). If p∞T (α) is the

stationary strategy distribution in the matching pool and if cT and cT+1 have the

same average payoff, then all other strategies in the support have also the same

payoff. The intuition is as follows. From the second period on, cT+1-strategy behaves

the same way as cT -strategy against itself (there are T remaining periods of trust-

building) and against longer trust-building strategies (it ends the partnership after

T periods). The conditional probabilities of meeting itself and longer trust-building

strategies are also the same as those of cT -strategy.

Similarly, from the second period on, cT+2-strategy behaves the same way as

cT+1-strategy against itself and against longer trust-building strategies. Therefore,

if cT and cT+1-strategy have the same average payoff, all others have the same

average payoff as well. (See Table II in the Appendix.)

LEMMA 12. For any T < ∞ and any α ∈ (0, 1), if v(cT ; p∞T (α)) = v(cT+1; p
∞
T (α)),

then v(cT+k; p
∞
T (α)) = v(cT ; p∞T (α)) for all k = 1, 2, . . ..

PROOF: (Can be omitted.) See Appendix.

It is straightforward to show that v(cT+1; p
∞
T (α)) < v(cT+1; p

T+1
T (α)) for any

α < αT+1(v
BR) so that the payoff-equalizing α exists if a bimorphic NSD exists.

The Best Reply Condition is derived as follows. Notice that for any period after

T , playing D (after repeating (D,D)) is an on-path action. Hence the meaningful

deviation strategies are those that play D after the cooperation periods started (that

is, play D and keep the partnership if and only if (D,D) is observed for first T + k

periods, play C at least once, and then play D.) Using the continuation values at
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T +k +2, such one-step deviation during the cooperation periods is not better than

cT+k-strategy if and only if

g + δV (cT+k; p
∞
T (α)) ≤ c

1− δ2
+

δ(1− δ)

1− δ2
V (cT+k; p

∞
T (α))

⇐⇒ v(cT+k; p
∞
T (α)) ≤ c− (1− δ2)g

δ2
= vBR. (15)

PROPOSITION 5. For any δ > δ∗ there exists τ ∗(δ) < τ2(δ) and, for any T such that

τ ∗(δ) < T < τ(δ), there is a NSD of the form p∞T (α∗(δ)) for some α∗(δ) ∈ (0, 1).

PROOF: (Similar to Proposition 4. Can be omitted.) See Appendix.

5. CONCLUDING REMARKS

5.1. Efficiency Wage and Three Types of Sanctions

Our model describes a society where players meet a stranger to play a voluntarily

separable prisoner’s dilemma. We analyzed how continuous cooperation becomes an

equilibrium behavior when deviation from cooperation induces appropriate social

sanctions.

Sanctions consist of two parts. First, a player’s defection invokes partner’s sever-

ence decision, forcing him to start new partnership with a stranger. Second, payoff

level he expects with this stranger is less than what he expects in continued part-

nership with the current partner. We call this payoff difference as trust capital with

the ongoing partner.

In the main text, we have identified two ways by which trust is generated; posi-

tive trust-building periods and exploitation by strategies with longer trust-building

periods.

There is an additional mechanism which creates trust if we allow matching prob-

ability to be less than one: Even if trust is established with new partner immediately,

with a positive probability player fails to find a partner in the matching pool (i.e.,

player is “unemployed”). This is the logic which provides a work incentive in the

effciency wage theory as the possibility of unemployment works as a disciplinary de-

vice (see, e.g., Shapiro and Stiglitz, 1984). For completeness of the paper we briefly
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discuss how our model can be extended to derive c0-strategy as a symmetric NSD

when there is a positive unemployment probability.

Suppose, in the matching pool, only with probability 1− u ∈ (0, 1) one can find

a new partner and with probability u ∈ (0, 1) he spends the next period without a

partner and receives payoff of 0 (which may be larger or smaller than d). With this

possibility of “unemployment”, the average payoff that cT -strategy player expects

to receive in the matching pool (but before he finds a partner) is:

v0(cT ; pT ) = (1− u)v(cT ; pT ),

where v(cT ; pT ) is now interepreted as “the average payoff that cT expects to receive

when the new partnership is formed” (i.e., at the beginning of period 1 of the

partnership).

By the same logic as in Section 3, the Best Reply Condition is v0(cT ; pT ) ≤ vBR.

Clearly, if (5) is satisfied, the Best Reply condition is also satisfied. Moreover, it can

be satisfied even for c0 for sufficiently large u, and cooperation without trust-building

period becomes a self-sustaining state.5

As noted in Shapiro and Stiglitz (1984) and Okuno-Fujiwara (1989), unemploy-

ment works as a disciplinary device that deters moral hazard behavior. This obser-

vation suggests that the property of matching machanism is an important element

in creating trust. In our setup, there are four reasons to be in the matching pool:

new birth, death of the partner, separation due to the partner’s deviation, and sepa-

ration due to own deviation. In this paper we analyzed the case where no distinction

can be made among these due to the lack of information. We plan to extend our

research to investigate mechanisms with which players can distinguish at least some

reasons why newly matched partner came into the matching pool.

5.2. Alternating-Action Equilibrium

If 2c < g + `, then repeating (C, C) is not the most efficient outcome. It is most

efficient to alternate (C, D) and (D,C). By a similar logic to the monomorphic
5Carmichael and MacLeod (1997) use essentially the same logic by gift-giving instead of unem-

ployment.
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equilibrium, the following two-strategy distribution constitutes a NSD for sufficiently

long trust-building periods.

DEFINITION. For any T = 1, 2, . . ., aT -strategy is a simple strategy with the set of

acceptable paths

QaT = {(
T times︷ ︸︸ ︷

(D,D), · · · (D,D), (C, D), (D,C), . . .),

(

T times︷ ︸︸ ︷
(D,D), · · · (D,D), (C, C), (C, C), . . .)}.

DEFINITION. For any T = 1, 2, . . ., bT -strategy is a simple strategy with the set of

acceptable paths

QbT = {(
T times︷ ︸︸ ︷

(D,D), · · · (D,D), (D,C), (C, D), . . .),

(

T times︷ ︸︸ ︷
(D,D), · · · (D,D), (D,D), (C, C), (C, C) . . .), }.

If aT met aT , the play path is the same as cT meeting cT . If aT met bT , the play

path after T periods of trust-building alternates action profiles (C, D) and (D,C).

If bT met bT , the play path is the same as cT+1 meeting cT+1.

Note that there is no voluntary separation on the play path even though there

are multiple strategies in the society. Therefore the essential logic is the same as that

of a monomorphic NSD. This type of equilibrium can be interpreted as a “single-

norm” equilibrium with coordinated action profiles. The analysis will be useful for

other types of component games of voluntarily separable games such as Hawk-Dove

game, where the efficient outcome is a coordinated action profile.

5.3. Cheap Talk

Recall that c1-strategy can invade the population of a d̃-strategy. We can inter-

pret that c1-strategy proposes to keep the partnership even after (D,D) and that

this proposal acts as a “signal” or “cheap talk” that it is not d̃-strategy and intends

to cooperate. This reminds us of papers like Robson (1990) and Matsui (1991) who
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showed that cheap talk can be used as a signal to play the Pareto efficient Nash

equilibrium in coordination games. Because there are multiple NSD with different

payoff outcomes in our model, cheap talk may work as a coordination device to

achieve efficient equilibrium in evolutionary setting. We provide a rough sketch of

what would happen if we allow cheap talk at the beginning of each match.

Assume that when two players are newly matched, they simultaneously choose

and send a message m ∈ M from a countable set M to the partner. M is common

to all players. The messages do not alter the payoff and thus are cheap-talk. The

message choice is private information, shared between the partners but not known

by any other palyers.

DEFINITION. A pure strategy sCT of VSPD with cheap talk consists of (m,σ) such

that:

1. m ∈ M specifies the message the player sends to any new partner,

2. σ : M → S specifies the VSPD strategy σ(m′) the player chooses to play for

each message m′ ∈ M he receives from the partner.

Let SCT be the set of all pure strategies of VSPD with cheap talk, which is the

extension of S defined for the original VSPD without cheap talk.

We focus on two types of strategies; babbling strategy where message choice has

no meaningful contents and neologism strategy where the message can be anything

that is different from the ones used by the incumbents.

DEFINITION. Given a strategy s ∈ S of VSPD, a strategy sB(s) = (m,σs) ∈ SCT

of the cheap talk game is an associated babbling strategy of s if σs(m′) = s for all

m′ ∈ M .

Note that there is a class of associated babbling strategies of the same s ∈
S depending on the initial message m, but, if all players use associated babbling

strategies of the same s ∈ S, then the initial message does not matter. Thus we

can focus on σs. Similarly, given a strategy distribution p ∈ P(S), an associated
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babbling strategy distribution is denoted as σp ∈ P(SCT ). As is well-known, any

babbling extension of a Nash equilibrium of the ordinary VSPD is always a Nash

equilibrium of the cheap talk model because the initial message exchange does not

matter.

LEMMA 13. For any Nash Equilibrium p ∈ P(S) of VSPD, an associated babbling

strategy distribution σp ∈ P(SCT ) is a Nash Equilibrium of the cheap talk model.

PROOF: Obvious.

However, some babbling Nash equilibria are invaded by a neologism strategy

in the cheap talk model. Suppose that the current population consists of babbling

strategies of s ∈ S. Against the strategy distribution, consider an entrant population

who uses a strategy sN = (ζ, σN) ∈ SCT such that

(a) it announces a neologism message ζ ∈ M , which is not used by the current

population,

(b) σN(m′) = s when m′ 6= ζ, and

(c) σN(ζ) = s′ 6= s.

With this neologism strategy, entrants play exactly the same way as incumbents

(i.e., play s) when they are matched with incumbents, while they play differently

(i.e., play according to s′) against fellow entrants. They can identify incumbents who

announce non-neologism messages from fellow entrants who announce neologism

message at the initial message exchange. Therefore, for example, if the incumbents

are playing associated babbling strategies of cT -strategy, entrants can play cT−1

among themselves and earn higher average payoff than the incumbents. However, if

the trust-building periods are shortened more and more, eventually the Best Reply

Condition will be violated. Hence we require that entrants must be a best reply to

the post-entry distribution, to avoid the non-existence of a stable distribution.6

6This idea is the same as Swinkels (1992).
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DEFINITION. A stationary strategy distribution p in the matching pool is a Neutrally

Stable Distribution under Equilibrium Entrants (NSDEE) if, for any s′, there exists

ε̄ ∈ (0, 1) such that, for any ε ∈ (0, ε̄), s′ is a best reply to (1 − ε)p + εps′ and s′

cannot invade p for ε.

Let s∗ ∈ S of VSPD be the most efficient NSS (i.e., the average payoff is the

highest among NSS). Let σs∗ ∈ P(SCT ) be an associated babbling strategy distri-

bution. Clearly, with cheap talk, no strategy can invade the most efficient NSS as

an equlibrium entrant. Thus, we have the following result.

PROPOSITION 6. Among associated babbling strategy distributions of monomorphic

NSDs, the most efficient σs∗ ∈ P(SCT ) is the unique NSDEE with cheap talk.

PROOF: Obvious.

5.4. Drift and Limit of Solution Concept

The concept of NSD is not sufficiently restrictive in our model, because any

strategy distribution leaves many unreached nodes. Limitation of the concept of

NSD is especially evident in view of the possibility of drift. As an example, consider

the following thought experiment with or without cheap talk. Suppose G and δ are

chosen so that c1-strategy is the most efficient NSS. Since c1 is NSDEE, once the

entire society starts to use c1 (or σB(c1) if cheap talk is allowed), no strategy can

invade as an equilibrium entrant.

However, there are numerous strategies which produce exactly the same outcome

(and hence the same average payoff) but differ in the behavior at unreached nodes.

For example, consider the following strategy ĉ1 ∈ S:

t = 1 : play D and choose k regardless of the outcome,

t ≥ 2 : play C and choose k regardless of the outcome.

This strategy produces exactly the same outcome as p1 as long as the society

consists only of c1 and ĉ1. Thus, strarting from p1, strategy distribution may drift to

any distribution γp1+(1−γ)p̂1 with γ ∈ [0, 1], where p̂1 is the distribution consisting

only of ĉ1.
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However, ĉ1 being an extremely permissive strategy, strategies such as c∞ can

take advantage and materialize payoff stream of (d, g, g, . . . ) during the match with

ĉ1. Note that c∞ can receive average payoff of only d in the strategy distribution p1,

which is strictly lower than that of c1. However if drifts make γ sufficiently large,

c∞ starts to drive out c1. Eventually, strategy distribution may become p∞, the

symmetric distribution consisting only of c∞.

Such a story suggests that we might consider set-theoretic solution concepts,

such as Equilibrium Evolutionary Stable Set of Swinkles (1992) or Socially Stable

Strategies of Matsui (1992). In fact, drifts may lead from p1 to p̂1, from p̂1 to p∞,

from p∞ to pd̃, and from pd̃ back to p1. However, there are many other closed paths

which are connected by drifts (through equilibrium entrants). The cardinality of set

of stragies being so large, we shall not try to identify these sets in this paper.

5.5. Related Literature

Several papers have previously analyzed the voluntarily separable games, though

not as fully as this paper does. We discuss two main points of our paper in relation to

the literature: the function of trust-building periods and the meaning of polymorphic

equilibria.

First, the trust-building periods in our equilibria serve as a mechanism for sanc-

tion against defection because they make the initial value of a new partnership small.

In the literature, the gift exchange of Carmichael and MacLeod (1997) and the grad-

ual cooperation in Datta (1996) and Kranton (1996a) have the same function. By

contrast, the gradual cooperation under incomplete information (Ghosh and Ray,

1996, and Kranton, 1996a) is to sort types out and thus has a different meaning.7

Our model is more primitive than these previous works: the game is of com-

plete information, the component game is an ordinary prisoner’s dilemma with two

actions, and there is no gift exchange prior to the partnership. We show that it

is still possible to construct a punishment mechanism. Furthermore, we consider

7The repeated games with quitting option (Watson, 2002, Blonski and Probst, 2001, and Furu-
sawa and Kawakami, 2004) also display gradual cooperation to sort types.
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evolution of behaviors within a society as a whole, rather than restricting attention

to behaviors within a single partneship given (symmetric) strategy distribution in

a society. We are also able to provide fuller characterizations of symmetric trust-

building strategy NSD, such as indentifying the condition (in terms of death rate

and payoffs of stage game) for the existence of NSD with a particular length of

trust-building periods and so on.

Second, the existence and higher efficiency of polymorphic equilibria than monomor-

phic equilibria is a totally new result. The logic that early start of long-term coop-

eration is sustained because of possible exploitation in a new partnership is similar

to the equilibrium of Rob and Yang (2005), written independently from our pa-

per. In their model, there are three types of players; bad type who always plays

D, good type who always plays C, and rationanl type who tries to maximize their

payoff. Existence of bad type players makes it valuable to (1) keep and cooperate

with either good or rational type partners, and (2) to find out bad type partners as

soon as possible. Thus, a rational player should cooperate from the beginning to be

distinguished from the bad-type.

Our result is much starker than Rob and Yang’s. Our model does not rely on

heterogeous “type” and incomplete information. Instead, bad (longer trust-buidling)

strategy emerges endogenously as a polymorphic NSD. We also show that there are

equilibria with more than two (even infinitely many) heterogenous strategies.

APPENDIX: PROOFS

PROOF OF LEMMA 3:

(a) Let s′ be a strategy that chooses e in some t after on-path history. If t < T + 1, the
average payoff of s′ under pT is d and is strictly less than v(cT ; pT ) = (1−δ2T )d+δ2T c.
If t ≥ T + 1, the average value is

L(s′, cT ) =
1− δ2t

1− δ2
,

V I(s′, cT ) = (1 + δ2 + · · ·+ δ2(T−1))d + (δ2T + · · ·+ δ2(t−1))c,

v(s′; pT ) = vI(s′, cT ) =
1− δ2

1− δ2t

[1− δ2T

1− δ2
d +

δ2T (1− δ2(t−T ))
1− δ2

c
]
.
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By computation,

{v(cT ; pT )− v(s′; pT )}(1− δ2t)
= (1− δ2t)(1− δ2T )d− (1− δ2T )d + (1− δ2t)δ2T c− δ2T (1− δ2(t−T ))c
= (1− δ2T )δ2t(c− d) > 0.

(b) If one chooses C in t < T + 1 along on-path history, then the average payoff is
less than d since the partnership ends there and hence is less than v(cT ; pT ) =
(1− δ2T )d + δ2T c.

(c) Although the text contains a proof with one-step deviation argument, we provide an
alternative proof using the average payoff itself to confirm that one-step deviation
method is necessary and sufficient. Let s be any strategy that chooses D at some
t ≥ T + 1 along on-path history.

L(s, cT ) =
1− δ2t

1− δ2
,

V I(s, cT ) = (1 + δ2 + · · ·+ δ2(T−1))d + (δ2T + · · ·+ δ2(t−2))c + δ2(t−1)g,

v(s; pT ) =
1− δ2

1− δ2t

[1− δ2T

1− δ2
d +

δ2T (1− δ2(t−T−1))
1− δ2

c + δ2(t−1)g
]
.

By computation,

{v(cT ; pT )− v(s; pT )}(1− δ2t)
= (1− δ2t)(1− δ2T )d + (1− δ2t)δ2T c

−(1− δ2T )d− (δ2T − δ2(t−1))c− (1− δ2)δ2(t−1)g,

= −δ2t(1− δ2T )d + δ2(t−1)(1− δ2T+2)c− (1− δ2)δ2(t−1)g,

= δ2(t−1)
[
−δ2(1− δ2T )d + (1− δ2 + δ2 − δ2T+2)c− (1− δ2)g

]
,

= δ2(t−1)
[
δ2(1− δ2T )(c− d)− (1− δ2)(g − c)

]
.

Therefore v(cT ; pT )− v(s; pT ) ≥ 0 if and only if δ2 1−δ2T

1−δ2 (c− d) ≥ g − c. Q.E.D.

PROOF OF LEMMA 4: Let q := (1− ε)p + εps′ . From (1), for any s ∈ supp(p),

v(s′; q) = (1− ε)
L(s′; p)
L(s′; q)

v(s′; p) + ε
L(s′, s′)
L(s′; q)

vI(s′, s′),

v(s; q) = (1− ε)
L(s; p)
L(s; q)

v(s; p) + ε
L(s, s′)
L(s; q)

vI(s, s′).

If s′ invades p for some ε > 0, then for any s ∈ supp(p),

(1− ε)
L(s′; p)
L(s′; q)

v(s′; p) + ε
L(s′, s′)
L(s′; q)

vI(s′, s′) ≥ (1− ε)
L(s; p)
L(s; q)

v(s; p) + ε
L(s, s′)
L(s; q)

vI(s, s′),

and for some s ∈ supp(p),

(1− ε)
L(s′; p)
L(s′; q)

v(s′; p) + ε
L(s′, s′)
L(s′; q)

vI(s′, s′) > (1− ε)
L(s; p)
L(s; q)

v(s; p) + ε
L(s, s′)
L(s; q)

vI(s, s′).
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By letting ε → 0, we obtain
v(s′; p) ≥ v(s; p),

for any s ∈ supp(p). Since p is a Nash equilibrium, we have that s′ ∈ BR(p). Q.E.D.

PROOF OF LEMMA 5: Let us rearrange v(cT ; pT+1
T (α)) to highlight the effect of α.

v(cT ; pT+1
T (α))

=
αL(cT , cT )vI(cT , cT ) + (1− α)L(cT , cT+1)vI(cT , cT+1)

αL(cT , cT ) + (1− α)L(cT , cT+1)

=
αL(cT , cT )vI(cT , cT )

αL(cT , cT ) + (1− α)L(cT , cT+1)
+

(1− α)L(cT , cT+1)vI(cT , cT+1)
αL(cT , cT ) + (1− α)L(cT , cT+1)

=
αL(cT , cT )

αL(cT , cT ) + (1− α)L(cT , cT+1)
vI(cT , cT )

+
[
1− αL(cT , cT )

αL(cT , cT ) + (1− α)L(cT , cT+1)

]
vI(cT , cT+1)

= vI(cT , cT+1) +
αL(cT , cT )

L(cT , cT+1) + α{L(cT , cT )− L(cT , cT+1)}{v
I(cT , cT )− vI(cT , cT+1)}.

Let
µ(cT , pT+1

T (α)) :=
αL(cT , cT )

L(cT , cT+1) + α{L(cT , cT )− L(cT , cT+1)} .

This is the only part that α is involved in v(cT ; pT+1
T (α)). We can simplfy as

v(cT ; pT+1
T (α)) = vI(cT , cT+1) + µ(cT , pT+1

T (α)){vI(cT , cT )− vI(cT , cT+1)}. (16)

By differentiation,

∂µ(cT , pT+1
T (α))

∂α
=

L(cT , cT )L(cT , cT+1)
[L(cT , cT+1) + α{L(cT , cT )− L(cT , cT+1)}]2 > 0,

and, since L(cT , cT ) − L(cT , cT+1) = 1
1−δ2 − 1−δ2(T+1)

1−δ2 > 0, the derivative is decreasing in
α. Note also that

vI(cT , cT )− vI(cT , cT+1)

= (1− δ2T )d + δ2T c− (1− δ2T )d + δ2T (1− δ2)`
1− δ2(T+1)

=
(1− δ2T ){1− δ2(T+1) − 1}d + δ2T {(1− δ2(T+1))c− (1− δ2)`}

1− δ2(T+1)

=
δ2T {(1− δ2)(c− `) + δ2(1− δ2T )(c− d)}

1− δ2(T+1)
> 0.

Hence v(cT , pT+1
T (α)) is strictly increasing and concave in α. Q.E.D

PROOF OF LEMMA 6:

v(cT+1; pT+1
T (α))

=
αL(cT+1, cT )vI(cT+1, cT ) + (1− α)L(cT+1, cT+1)vI(cT+1, cT+1)

αL(cT+1, cT ) + (1− α)L(cT+1, cT+1)

= vI(cT+1, cT+1)

+
αL(cT+1, cT )

L(cT+1, cT+1) + α{L(cT+1, cT )− L(cT+1, cT+1)}{v
I(cT+1, cT )− vI(cT+1, cT+1)}.
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Let
µ(cT+1, p

T+1
T (α)) :=

αL(cT+1, cT )
L(cT+1, cT+1) + α{L(cT+1, cT )− L(cT+1, cT+1)} .

Then

v(cT+1; pT+1
T (α)) = vI(cT+1, cT+1) + µ(cT+1, p

T+1
T (α)){vI(cT+1, cT )− vI(cT+1, cT+1)}.

(17)
Note that

vI(cT+1, cT )− vI(cT+1, cT+1)
= {vI(cT+1, cT )− vI(cT , cT )}+ {vI(cT , cT )− vI(cT+1, cT+1)} > 0,

since T ≤ τ(δ) (thus the first bracket is nonnegative) and cT starts cooperation earlier
than cT+1 (thus the second bracket is positive).

By differentiation,

∂µ(cT+1, p
T+1
T (α))

∂α
=

L(cT+1, cT )L(cT+1, cT+1)
[L(cT+1, cT+1) + α{L(cT+1, cT )− L(cT+1, cT+1)}]2 > 0.

However, notice that L(cT+1, cT ) − L(cT+1, cT+1) = 1−δ2(T+1)

1−δ2 − 1
1−δ2 < 0 so that the

derivative is increasing in α. Therefore v(cT+1; pT+1
T (α)) is strictly increasing but convex

in α. Q.E.D

PROOF OF LEMMA 7: Let µT (α) = αL(cT ,cT )

L(cT ;pT+1
T (α))

and µT+1(α) = αL(cT+1,cT )

L(cT+1;pT+1
T (α))

. Then

v(cT ; pT+1
T (α)) = µT (α)vI(cT , cT ) + {1− µT (α)}vI(cT , cT+1),

v(cT+1; pT+1
T (α)) = µT+1(α)vI(cT+1, cT ) + {1− µT+1(α)}vI(cT+1, cT+1).

By differentiation,

∂v(cT ; pT+1
T (α))

∂α
= µ′T (α){vI(cT , cT )− vI(cT , cT+1)},

∂v(cT+1; pT+1
T (α))

∂α
= µ′T+1(α){vI(cT+1, cT )− vI(cT+1, cT+1)}.

As α → 1,

µ′T (α) =
L(cT , cT )L(cT , cT+1)

[αL(cT , cT ) + (1− α)L(cT , cT+1))]2
→ L(cT , cT+1))

L(cT , cT )
= 1− δ2(T+1),

µ′T+1(α) =
L(cT+1, cT )L(cT , cT+1)

[αL(cT+1, cT ) + (1− α)L(cT+1, cT+1))]2

→ L(cT+1, cT+1)
L(cT+1, cT )

=
L(cT , cT )

L(cT , cT+1)
=

1
1− δ2(T+1)

.

At δ = δ(T ),

v(cT ; pT+1
T (1)) = vI(cT , cT ) = v(cT+1; pT+1

T (1)) = vI(cT+1, cT ).
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Therefore, at δ = δ(T ),

∂v(cT ; pT+1
T (α))

∂α

∣∣∣
α=1

− ∂v(cT+1; pT+1
T (α))

∂α

∣∣∣
α=1

=
L(cT , cT+1))
L(cT , cT )

{vI(cT , cT )− vI(cT , cT+1)}

− L(cT , cT )
L(cT , cT+1)

{vI(cT+1, cT )− vI(cT+1, cT+1)},

= (1− δ2(T+1))
δ2T (1− δ2)(g − `)

1− δ2(T+1)
− 1

1− δ2(T+1)
δ2T (1− δ2)(c− d)

= δ2T (1− δ2)
{

(g − `)− c− d

1− δ2(T+1)

}
.

Q.E.D.

PROOF OF LEMMA 9: We consider the continuation average values of the incumbent
strategies (cT and cT+1) and one-step deviant strategies. It suffices to check two kinds of
one-step deviations during the cooperation periods of either cT or cT+1. (Note that unlike
the monomorphic case, you cannot guarantee to get g at T + 1 by playing D. Therefore
we cannot use the computation in the monomorphic case directly.)

1. Imitate cT in the first T periods. For t ≥ T + 1, play D and keep the partnership
regardless of the outcome, until your partner ends the partnership.

Using the continuation values, this type of deviation is not better than cT+1-strategy
if and only if

α{g + δV (cT ; pT+1
T (α))}

+(1− α){d + δ(1− δ)V (cT ; pT+1
T (α)) + δ2g + δ3V (cT ; pT+1

T (α))}

≤ α{g + δV (cT ; pT+1
T (α))}+ (1− α){d +

δ(1− δ)
1− δ2

V (cT ; pT+1
T (α)) +

δ2c

1− δ2
}

⇐⇒ v(cT ; pT+1
T (α)) = (1− δ)V (cT ; pT+1

T (α)) ≤ c− (1− δ2)g
δ2

= vBR

2. Imitate cT in the first T periods. For t = T + 1, play C and keep the partnership
regardless of the outcome. At t = T +2, play D and keep the partnership regardless
of the outcome. Denote a strategy in this class by sT .

This type of deviation is not better than cT -strategy if and only if

α{c + δ(1− δ)V (cT ; pT+1
T (α)) + δ2g + δ3V (cT ; pT+1

T (α))}
+(1− α){` + δV (cT ; pT+1

T (α))}
≤ α{ c

1− δ2
+

δ(1− δ)
1− δ2

V (cT ; pT+1
T (α))}+ (1− α){` + δV (cT ; pT+1

T (α))}

⇐⇒ v(cT ; pT+1
T (α)) = (1− δ)V (cT ; pT+1

T (α)) ≤ c− (1− δ2)g
δ2

= vBR.

Q.E.D.
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PROOF OF PROPOSITION 3: We prove some useful lemmas first. For any T, T ′ ∈ N,
define

Γ(cT , cT ′) := L(cT , cT ′){vI(cT , cT ′)− vBR}.
Then the following lemma is immediate.

LEMMA 14. For any T, T ′ ∈ N, if T, T ′ ≥ 1, then:

Γ(cT , cT ′) = d− vBR + δ2Γ(cT−1, cT ′−1). (18)

Proof of Lemma 14: By definitions of Γ, L and V I :

Γ(cT , cT ′) = L(cT , cT ′)vI(cT , cT ′)− L(cT , cT ′)vBR

= V I(cT , cT ′)− L(cT , cT ′)vBR

= d + δ2V I(cT−1, cT ′−1)− {1 + δ2L(cT−1, cT ′−1)}vBR

= d− vBR + δ2Γ(cT−1, cT ′−1).

LEMMA 15. For any T ∈ N and for any v ∈ R:

L(cT+1, cT ){vI(cT+1, cT )− v} R L(cT , cT ){vI(cT , cT )− v} ⇐⇒ v R vBR. (19)

Proof of Lemma 15: We prove this by induction. The definition of vBR is equivalent to

vBR

[
1

1− δ2
− 1

]
=

c

1− δ2
− g.

Hence we have that

[L(c0, c0)− L(c1, c0)]vBR = L(c0, c0)vI(c0, c0)− vI(c1, c0)L(c1, c0).

It can be rewritten as

L(c1, c0){vI(c1, c0)− vBR} = L(c0, c0){vI(c0, c0)− vBR}.
Because L(c1, c0) = 1 < L(c0, c0) = 1

1−δ2 ,

L(c1, c0){vI(c1, c0)− v} R L(c0, c0){vI(c0, c0)− v} ⇐⇒ v R vBR,

and the assertion holds when T = 0.
Next suppose that the assertion holds for T − 1. We rewrite LHS inequalities for T as

L(cT+1, cT ){vI(cT+1, cT )− v} R L(cT , cT ){vI(cT , cT )− v},
⇐⇒ L(cT+1, cT ){vI(cT+1, cT )− vBR − (v − vBR)}

R L(cT , cT ){vI(cT , cT )− vBR − (v − vBR)},
⇐⇒ Γ(cT+1, cT )− L(cT+1, cT ){v − vBR} R Γ(cT , cT )− L(cT , cT ){v − vBR}.

By Lemma 14,

⇐⇒ d− vBR + δ2Γ(cT , cT−1)− {1 + δ2L(cT , cT−1)}{v − vBR}
R d− vBR + δ2Γ(cT−1, cT−1)− {1 + δ2L(cT−1, cT−1)}{v − vBR}

⇐⇒ L(cT , cT−1){vI(cT , cT−1)− v} R L(cT−1, cT−1){vI(cT−1, cT−1)− v},
and the last inequalities hold by the induction assumption.
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COROLLARY 1. For any T, T ′ ∈ N,

Γ(cT , cT ) = Γ(cT+1, cT ).

COROLLARY 2. vI(cT+1, cT )− vI(cT , cT ) is strictly decreasing in T .

Proof of Corollary 2: In view of Corollary 1,

vI(cT+1, cT )− vI(cT , cT ) =
Γ(cT+1, cT )
L(cT+1, cT )

− Γ(cT , cT )
L(cT , cT )

=
Γ(cT+1, cT )
L(cT+1, cT )

{
1− L(cT+1, cT )

L(cT , cT )
}

= [vI(cT+1, cT )− vBR]
L(cT , cT )− L(cT+1, cT )

L(cT , cT )

= [vI(cT+1, cT )− vBR]δ2(T+1),

which is strictly decreasing in T .

Because of the concavity of v(cT ; pT+1
T (α)) and convexity of v(cT+1; pT+1

T (α)), thanks
to Corollary 2 and continuity of average values with respect to T , the next lemma is
immediate. (See Figure 3.)

LEMMA 16. For any δ > δ∗, there exists 0 ≤ τ2(δ) < τ(δ) such that, if τ2(δ) < T < τ(δ),

(a) there exist αT+1
T (δ) ∈ (0, 1) and αT+1

T (δ) ∈ (0, 1) with αT+1
T (δ) < αT+1

T (δ),

(b) v(cT ; pT+1
T (α)) > v(cT+1; pT+1

T (α)) ⇔ α ∈ (αT+1
T (δ), αT+1

T (δ)).

Therefore, for sufficiently large T such that τ2(δ) < T < τ(δ), there is a unique payoff-
equalizing αT+1

T (δ). Let α∗T (vBR) and α∗T+1(v
BR) be the fractions of cT -strategy which

solve v(cT ; pT+1
T (α)) = vBR and v(cT+1; pT+1

T (α)) = vBR respectively. To show that the
Best Reply Condition is satisfied at αT+1

T (δ), it suffices to prove

α∗T+1(v
BR) < α∗T (vBR).

By computation, v(cT ; pT+1
T (α)) = vBR is equivalent to

vI(cT , cT )− {1− α∗T (vBR)}L(cT , cT+1)
α∗T (vBR)L(cT , cT ) + {1− α∗T (vBR)}L(cT , cT+1)

{
vI(cT , cT )−vI(cT , cT+1)

}
= vBR

⇐⇒ [
α∗T (vBR)L(cT , cT ) + {1− α∗T (vBR)}L(cT , cT+1)

]{
vI(cT , cT )− vBR

}

= {1− α∗T (vBR)}L(cT , cT+1)
{
vI(cT , cT )− vI(cT , cT+1)

}

⇐⇒ α∗T (vBR) = − Γ(cT , cT+1)
Γ(cT , cT )− Γ(cT , cT+1)

.

Similarly, v(cT+1; pT+1
T (α)) = vBR is equivalent to

α∗T+1(v
BR) = − Γ(cT+1, cT+1)

Γ(cT+1, cT )− Γ(cT+1, cT+1)
.
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Corollary 1 implies that

{α∗T (vBR)− α∗T+1(v
BR)}{Γ(cT , cT )− Γ(cT , cT+1)}{Γ(cT , cT )− Γ(cT+1, cT+1)}

= Γ(cT , cT ){Γ(cT+1, cT+1)− Γ(cT , cT+1)}.

Since Γ(cT , cT ) > 0 for T < τ(δ), it suffices to prove that Γ(cT+1, cT+1) > Γ(cT , cT+1). In
parameters,

Γ(cT+1, cT+1) =
1

1− δ2

{
(1− δ2(T+1))d + δ2(T+1)c− vBR

}

Γ(cT , cT+1) =
1− δ2T

1− δ2
d + δ2T `− 1− δ2(T+1)

1− δ2
vBR.

Hence by computation,
{

Γ(cT+1, cT+1)− Γ(cT , cT+1)
}

(1− δ2)

= δ2T (1− δ2)(d− `) + δ2(T+1)(c− vBR) = δ2T (1− δ2)(d− ` + g − c) > 0.

Therefore the Best Reply Condition is satisfied. Q.E.D.

PROOF OF LEMMA 10: By the definition of α∗T+1(v
BR),

v(cT+1; pT+1
T (α∗T+1(v

BR)) = vBR,

⇐⇒ α∗T+1(v
BR)L(cT+1, cT )vI(cT+1, cT ) + {1− α∗T+1(v

BR)}L(cT+1, cT+1)vI(cT+1, cT+1)
= α∗T+1(v

BR)L(cT+1, cT )vBR + {1− α∗T+1(v
BR)}L(cT+1, cT+1)vBR,

⇐⇒ α∗T+1(v
BR)Γ(cT+1, cT ) + {1− α∗T+1(v

BR)}Γ(cT+1, cT+1) = 0.

By Corollary 1

⇐⇒ α∗T+1(v
BR)Γ(cT+1, cT ) + {1− α∗T+1(v

BR)}Γ(cT+1, cT+1) = 0,

⇐⇒ v(cT+2; pT+2
T (α∗T+1(v

BR), 1)) = vBR,

⇐⇒ v(cT+1; pT+2
T (α∗T+1(v

BR), 1)) = vBR.

Next, we prove that for any α < α∗T+1(v
BR),

v(cT+1; pT+2
T (α, β∗(α))) < v(cT+1; pT+1

T (α)).

For any (α, v), define

Φ∗T+1(α, v) := L(cT+1; pT+1
T (α)){v(cT+1; pT+1

T (α))− v}
= αΓ(cT+1, cT ) + (1− α)Γ(cT+1, cT+1)

{αL(cT+1, cT ) + (1− α)L(cT+1, cT+1)}(vBR − v),
Φ∗∗T+1(α, v) := L(cT+1; pT+2

T (α, β∗(α))){v(cT+1; pT+2
T (α, β∗(α)))− v}

= αΓ(cT+1, cT ) + (1− α){β∗(α)Γ(cT+1, cT+1) + (1− β∗(α))Γ(cT+1, cT+2)
+[αL(cT+1, cT ) + (1− α){β∗(α)L(cT+1, cT+1)

+(1− β∗(α))L(cT+1, cT+2)}](vBR − v).
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Then

Φ∗T+1(α, v)− Φ∗∗T+1(α, v)
= (1− α)(1− β∗(α))[{Γ(cT+1, cT+1)− Γ(cT+1, cT+2)}

+{L(cT+1, cT+1)− L(cT+1, cT+2)}(vBR − v)].

By computation

{Γ(cT+1, cT+1)− Γ(cT+1, cT+2)}(1− δ2) = δ2(T+1){δ2(c− vBR) + (1− δ2)(c− `)} > 0.

Hence, Φ∗T+1(α, v) > Φ∗∗T+1(α, v) if v ≤ vBR. Now,

L(cT+1; pT+2
T (α, β∗(α))[{v(cT+1; pT+1

T (α))− v} − {v(cT+1; pT+2
T (α))− v}]

= Φ∗T+1(α, v)− Φ∗∗T+1(α, v)

−(1− α)(1− β∗(α)){L(cT+1, cT+1)− L(cT+1, cT+2)}{v(cT+1; pT+1
T (α))− v}.

Let v = v(cT+1; pT+1
T (α)), then the above implies that

v(cT+1; pT+2
T (α, β∗(α))) < v(cT+1; pT+1

T (α))

if v(cT+1; pT+1
T (α)) < vBR. Q.E.D.

PROOF OF LEMMA 11: Consider ct-strategy for an arbitrary t ∈ {T, T +1, T +2, . . .} and
the beginning of period t+1 in a match, when ct-strategy is about to start cooperation. Let
αt be the conditional probability that the partner is the same strategy. The conditional
probability is 1−αt that the partner has a longer trust-building period. The (non-averaged)
continuation payoff of ct-strategy at the beginning of t + 1 is

V (ct; p, t + 1) = αt{ c

1− δ2
+

δ(1− δ)
1− δ2

V (ct; p)}+ (1− αt){` + δV (ct; p)}. (20)

On the other hand, the continuation payoff of ct+1-strategy is

V (ct+1; p, t + 1) = αt{g + δV (ct+1; p)}
+(1− αt){d + δ(1− δ)V (ct+1; p) + δ2V (ct+1; p, t + 2)}. (21)

Notice that the payoff structure for ct+1-strategy at the beginning of period t+2 when
it just finished the trust building is the same as that of ct-strategy at t + 1, i.e.,

V (ct+1; p, t + 2) = V (ct; p, t + 1).

Therefore (21) becomes

V (ct+1; p, t + 1) = αt{g + δV (ct+1; p)}
+(1− αt){d + δ(1− δ)V (ct+1; p) + δ2V (ct; p, t + 1)}

⇐⇒ V (ct+1; p, t + 1) =
1

1− (1− αt)δ2

[
αt{g + δV (ct+1; p)}

+(1− αt){d + δ(1− δ)V (ct+1; p)}]. (22)

From the assumption that the average payoffs of ct and ct+1 are the same,

V (ct; p) = V (ct+1; p). (23)
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Then, since the payoff until t is the same for both ct and ct+1, we also have

V (ct; p, t + 1) = V (ct+1; p, t + 1). (24)

(24) implies that the RHS of (20) and (22) must be the same. Using (23) and letting
V ∗(p) = V (ct; p) = V (ct+1; p), αt must satisfy

αt{ c

1− δ2
+

δ(1− δ)
1− δ2

V ∗(p)}+ (1− αt){` + δV ∗(p)}

=
αt{g + δV ∗(p)}+ (1− αt){d + δ(1− δ)V ∗(p)}

1− (1− αt)δ2
.

Since this equation does not depend on t, we have established that αt = α for all t =
T, T + 1, . . ., i.e., the fraction of cT+τ -strategy is of the form α(1− α)τ . Q.E.D.

PROOF OF LEMMA 12: For any strategy pair (s, s′) and any stationary distribution p
in the matching pool, let V (s, s′; p) be the (non-averaged) payoff of strategy s when it is
newly matched with s′, i.e.,

V (s, s′; p) = V I(s, s′) + {1− (1− δ)L(s, s′)}V (s; p),

where the first term of the RHS is the in-match payoff and the second term is the expected
payoff when s-strategy looses the partner either by the death or because they reached
the ending date T (s, s′). (See Section 2.3.) Then the long-run payoff of cT -strategy is
decomposed as

V (cT ; p∞T (α)) = αV (cT , cT ; p∞T (α))
+(1− α)V (cT , cT+1; p∞T (α)). (25)

The long-run payoff of cT+1-strategy is decomposed as

V (cT+1; p∞T (α)) = αV (cT+1, cT ; p∞T (α))
+(1− α)[α{d + δ2V (cT , cT ; p∞T (α)) + δ(1− δ)V (cT+1; p∞T (α))}

(1− α){d + δ2V (cT , cT+1; p∞T (α)) + δ(1− δ)V (cT+1; p∞T (α))}]
= αV (cT+1, cT ; p∞T (α))

+(1− α)[d + δ2V (cT ; p∞T (α)) + δ(1− δ)V (cT+1; p∞T (α))], (26)

where the last equality uses (25). The intuition is easily understood from Table II(b). The
equality (26) is equivalent to

[1− (1− α)δ(1− δ)]V (cT+1; p∞T (α)) = αV (cT+1, cT ; p∞T (α)) + (1− α)d
+(1− α)δ2V (cT ; p∞T (α)). (27)

Similarly from Table II(b) and II(c),

V (cT+2; p∞T (α)) = αV (cT+2, cT ; p∞T (α))
(1− α)[d + δ2V (cT+1; p∞T (α)) + δ(1− δ)V (cT+2; p∞T (α))].

42



TABLE II
(a): Payoff sequence of cT -strategy under p∞T (α) within a match

prob. partner \ time 1 2 · · · T T + 1 T + 2 T + 3 T + 4
α cT d d · · · d c c c · · ·

(1− α) cT+1 and up d d · · · d `

(b): Payoff sequence of cT+1-strategy under p∞T (α) within a match

prob. partner \ time 1 2 · · · T T + 1 T + 2 T + 3 T + 4
α cT d d · · · d g

(1− α)α cT+1 d d · · · d d c c · · ·
(1− α)2 cT+2 and up d d · · · d d `

(c) : Payoff sequence of cT+2-strategy under p∞T (α) within a match

prob. partner \ time 1 2 · · · T T + 1 T + 2 T + 3 T + 4
α cT d d · · · d g

(1− α)α cT+1 d d · · · d d g

(1− α)2α cT+2 d d · · · d d d c · · ·
(1− α)3 cT+3 and up d d · · · d d d `

Note that cT+1 and cT+2 earn the same payoff against cT and thus V (cT+2, cT ; p∞T (α)) =
V (cT+1, cT ; p∞T (α)). Therefore the long-run payoff of cT+2-strategy solves

V (cT+2; p∞T (α)) = αV (cT+1, cT ; p∞T (α))
+(1− α)[[d + δ2V (cT+1; p∞T (α)) + δ(1− δ)V (cT+2; p∞T (α))].

This is equivalent to

[1− (1− α)δ(1− δ)]V (cT+2; p∞T (α)) = αV (cT+1, cT ; p∞T (α)) + (1− α)d
+(1− α)δ2V (cT+1; p∞T (α)). (28)

If V (cT ; p∞T (α)) = V (cT+1; p∞T (α)), then the last term of the right hand sides of (27)
and (28) are the same and therefore

V (cT+1; p∞T (α)) = V (cT+2; p∞T (α)).

We can continue this argument for any t > T . Q.E.D.

PROOF OF PROPOSITION 5: We use the same logic as the proof of Proposition 4. Let

Φ∞T+1(α, v) := L(cT+1; p∞T (α)){v(cT+1; p∞T (α))− v}
= αΓ(cT+1, cT ) + (1− α)αΓ(cT+1, cT+1) + (1− α)2Γ(cT+1, cT+2)

+{αL(cT+1, cT ) + (1− α)αL(cT+1, cT+1) + (1− α)2L(cT+1, cT+2)}(vBR − v).
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Therefore

Φ∗T+1(α, v)− Φ∞T+1(α, v)
= (1− α)2[Γ(cT+1, cT+1)− Γ(cT+1, cT+2)

+{L(cT+1, cT+1)− L(cT+1, cT+2)}(vBR − v) > 0,

if v ≤ vBR. Now,

L(cT+1; pT+2
T (α, β∗(α))[{v(cT+1; pT+1

T (α))− v} − {v(cT+1; p∞T (α))− v}]
= Φ∗T+1(α, v)− Φ∞T+1(α, v)

−(1− α)2{L(cT+1, cT+1)− L(cT+1, cT+2)}{v(cT+1; pT+1
T (α))− v}.

Let v = v(cT+1; pT+1
T (α)), then the above implies that

v(cT+1; p∞T (α, β∗(α))) < v(cT+1; pT+1
T (α))

if v(cT+1; pT+1
T (α)) < vBR. Hence if v(cT+1; pT+1

T (α)) intersects with v(cT ; pT+1
T (α)) below

vBR, then so does v(cT+1; p∞T (α)). Q.E.D.
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