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1 Introduction

Casual observation shows that cities differ by their size as well as by the various types

of economic activities which they carry on. In this respect, what is probably the most

striking feature of the space-economy is that cities form a hierarchical system exhibiting

some regularity in terms of both their size and the array of goods they supply (Henderson,

1988). Another empirical regularity is that cities having the same size are more or less evenly

distributed across places (Marshall, 1989). The purpose of central place theory, a major

research topic in classical economic geography, is then to explain why such a regular urban

system exists. According to Christaller (1933), Lösch (1940) and their successors, different

markets are arranged in a way such that a city in which a good is supplied also provides the

goods made available in a larger number of urban centers. Hence, all goods supplied in a

central place of order k = 1, 2, ... are also supplied in central places of higher order (l > k).

Furthermore, the same authors also argue that, in a featureless space, cities of equal sizes are

equally spaced. Accordingly, the urban system would be formed by a family of nested and

regular lattices, with one lattice per good, each vertex of a lattice accommodating a city that

supplies consumers situated in its vicinity. The urban hierarchical principle then holds when

the number of goods supplied in a city rises with its size, while the spacing of cities having

the same size is equal over a flat space.

The bulk of the research on central place theory has been directed towards identifying

geometric conditions under which a superposition of regular structures is possible (the more
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and CEPR
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complete and elaborate study of this kind can be found in Alao et al., 1977). These consid-

erations are only interesting if they are based on microeconomic foundations. If there are

no economic forces which lead firms of different types to cluster, it is hard to see why the

central place system would be more likely to emerge than any other configuration. In this

respect, the only economic contributions we are aware of are due to Eaton and Lipsey (1982),

who develop a spatial competition model of central places, and to Quinzii and Thisse (1990),

who retain the same approach to analyze its normative aspects and characterize the socially

optimal configuration of central places. Unfortunately, those papers use a partial equilibrium

setting in which consumers’ locations are exogenous.

Henderson (1974, 1988) has developed a compelling and original approach that allows him

to describe how a hierarchy of cities emerges. In each city, there is again a tension between

two forces. On the one hand, there are external economies associated with the agglomeration

of firms within a city. On the other hand, there are diseconomies generated by the need to

commute in a more or less large city. Hence, in equilibrium, each city has a well-defined

size that depends on the type of firms it accommodates. As cities vary in their industrial

mix, they have different sizes because industries differ in the external economies they are able

to create. However, in this approach, cities are like floating islands because nothing is said

about city locations.

Fujita, Krugman and Mori (1999) take a first step in this direction by introducing several

industrial and differentiated goods in an NEG-like model. As the population increases, they

show that a more or less regular hierarchical central place system emerges within the economy.

In this urban system, higher-order cities provide a larger number of groups of goods. In

addition, there is two-way trade between cities because these cities supply differentiated

goods. This leads to a more intricate pattern of trade in which horizontal relations are

superimposed onto the pyramidal structure of central place theory. As expected, higher-

order cities export a larger variety of goods than lower-order cities. However, horizontal

relations between cities of the same order may be more important than trade with lower-

order cities. The urban hierarchies that emerge can be more complex than in the simple

Christaller model of central places, and indeed, often reflect the urban systems that actually

appear in modern economies. However, their approach is numerical, whereas our model is

analytically-solvable. Another distinguishing feature is that our economic geography is of the

putty-clay type: once they exist, cities are sticky.

The purpose of this paper is precisely to show that the urban hierarchical principle may

be derived in an NEG-type model, in which the number, size, and location of cities are

determined endogenously. Our main purpose is to focus on the size and the location of
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cities (the urban aspect) as well as the spatial distribution of each industry across cities

(the industrial aspect) when consumers/workers are free to choose where to live and for

which industry to work. To achieve our objective, we build a general equilibrium model

with monopolistically competitive markets for the industrial sectors in which the locations

of firms are interdependent. Consumers are attracted by places as they are in multipurpose

shopping models but are allowed to choose their location where they compete on the local

labor market. As in Fujita, Krugman and Mori, we retain the basic ingredients of NEG to

generate the agglomeration of firms and consumers. In particular, cities are service suppliers

to all the agricultural regions as well as to the other urban centers, the reason being that

consumers have a preference for variety whereas firms produce differentiated goods.

Before proceeding, it is worth noting that a difficulty seems to be inherent to central place

theory. It is related to the integer problem encountered in club theory (Scotchmer, 2002),

but exhibits some new and additional features. Indeed, for different lattices to be nested, it

must be that the number of cities of order k is just twice the number of cities of order k − 1
and half the number of cities of order k+ 1. This explains why a central place configuration

can emerge only for power values of 2.

2 The model

The economy involves agricultural and industrial activities. In the agricultural sector, a

homogenous good is produced under constant returns, perfect competition and zero transport

cost; this good is taken as the numéraire. There are I(≥ 1) industrial sectors, each producing a
differentiated good under increasing returns, monopolistic competition and positive transport

costs. The economy has C(≥ 1) cities - or central places - c = 1, 2, . . . , C located at xc ∈ (0, 1]
on a circumference of length 1. The location and size of cities are endogenous. Throughout

the paper, cities are described by subscripts and industries by superscripts.

There are two production factors, farmers and workers. Each farmer and worker is en-

dowed with one unit of labor. The exogenously given masses of farmers and workers are

given by 1− µ > 0 and µ > 0, respectively. Farmers are immobile and uniformly distributed
along the circumference with a density equal to 1 − µ. Workers can migrate freely across
cities c = 1, 2, . . . , C and industries i = 1, 2, . . . , I. Let λic be the endogenous number of

workers in city c and industry i with
PI
i=1

PC
c=1 λ

i
c = µ. Whereas the number of industries

I is exogenous, the number of cities C as well as the distribution of workers across cities and

industries λic are endogenous.

The technologies are as follows. In order to produce one unit of the homogenous good, one
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farmer is needed. As the technology exhibits constant returns, the equilibrium wage equals

1 in the agricultural sector. To produce one unit of a variety of the differentiated good i, a

firm needs a fixed requirement of f i > 0 workers and a marginal requirement of mi > 0 units

of the numéraire. Hence, it must be that

f inic = λic for all c and i (1)

Because we allow for both spatial and sectoral mobility, there is no obvious and natural

way to model the choice process of workers. As workers show very little spatial mobility

in most industrialized countries, we assume that they, first, choose where to live and, then,

which job to take. Given this assumption, our setting involves three stages. In the first

one, a worker chooses a city where to live; in the second stage, she selects an industry in

which to work; in the third stage, each firm chooses prices and each consumer (= worker or

farmer) chooses her consumption of the differentiated goods, made available in each city c

by industry i, as well as her consumption of the homogenous good. As usual, we solve the

subgame-perfect Nash equilibria by backward induction.

(i) In the last stage, firms select prices so as to maximize profits conditional upon con-

sumers’ demands. The distribution of workers, and then the distribution of firms, across cities

and sectors being given, consumers maximize their utility given by

U =
IX
i=1

αi logQi +H (2)

where

Qi ≡
"Z ni

0
qi(v)

σi−1
σi dv

# σi
σi−1

with αi > 0.1 In this expression, H is the consumption of the homogenous good, Qi the

composite good associated with industry i, qic(v) the consumption of variety v produced by a

firm belonging to industry i and located in city c, whereas ni is the mass of varieties supplied

by industry i. The parameter σi > 1 measures both the own- and cross-price elasticities of

demand for any variety of good i.

The budget constraint of a consumer living at x ∈ (0, 1] is as follows:
CX
c=1

IX
i=1

Z nic

0
pic(v;x)q

i
c(v) dv +H = w(x)

1This is the multi-industry extension of the utility used by Martin and Rogers (1995) and Pflüger (2004).

It slightly differs from Krugman’s (1991) utility in that the homogenous good H is multiplicative in Krugman,

whereas it is additive here. This vastly simplifies the overall analysis.
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where pic(v;x) is the delivered price at x of variety v of good i produced in city c, and w(x)

the income she earns at location x. By symmetry, all i-firms set up in the same city choose

the same price so that we may drop the variable v in what follows.

The maximization of utility (2) yields the following individual demand in location x for

a variety of good i produced in location xc:

qic (x) = αi
pic (x)

−σi

P i(x)1−σi
(3)

where pic (x) is the common delivered price of a variety of good i produced in city c and

consumed at x and where

P i (x) =

"
CX
c=1

nicp
i
c (x)

1−σi
# 1
1−σi

(4)

is the price index of good i that prevails at x. Accordingly, the indirect utility of a consumer

working for industry i in city c is as follows:

V ic =
IX
j=1

αj
¡
logαj − 1− logP jc

¢
+ wc

where P jc is the price index of good j in city c and wc the income of a consumer residing in

city c. Because of the intersectoral mobility of workers, wages are the same across industries

within each city but they may vary across cities.

Let |xc − x| be the shortest distance between city c and location x along the circumference.
Then, τ ic (x) ≡ miτ |xc−x| > 1 is the number of units of the numéraire that a firm producing

good i and located in city c has to bear to produce and ship one unit of its output to location

x. Without loss of generality, we choose the unit of good i for mi to be equal to 1 In this case,

the parameter τ , which we call the transport rate, is a measure of the impediments to trade

any differentiated good across locations. It is assumed to be the same for all differentiated

goods.

The profit of a firm belonging to industry i and located in city c is then given by

πic =
CX
d=1

£
pic (xd)− τ c (xd)

¤
qic (xd)

IX
j=1

λjd

+(1− µ)
Z 1

0

£
pic (x)− τ c (x)

¤
qic (x) dx− f iwc (5)

where λjd is the number of consumers working for industry j in city d. The maximization of

(5) yields

pic (x) =
σi

σi − 1τ c (x) for all c and i (6)
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Hence, the equilibrium price index (4) becomes

P i (x) =

"
σi

σi − 1
CX
c=1

nicφ
i
c (x)

# 1
1−σi

for all i (7)

where φic (x) ≡ τ c (x)
1−σi is to be interpreted as a measure of the accessibility of a consumer

at x to any variety of good i produced in city c. Hence, the sum in (7) may be interpreted

as the market accessibility of a consumer at x to the whole array of varieties provided in all

cities. This sum rises as more firms are set up close to the consumer, which in turn leads to

more competition and, therefore, to a lower price index through lower transport costs.

Workers’ wage is determined through a bidding process in which firms belonging to indus-

try i compete to hire them. As a result, the wage bill of a firm is less than (λic = 0) or equal

to its gross profits (λic ≥ 0). These I equations together with the total number of workers
who have chosen to live in c allows for the determination of the shares λic ≥ 0 and of the
wage wc ≥ 0.

As workers have already chosen where to live, the population

Λc ≡
IX
j=1

λjc for all c

of each city c is given. Plugging (6) into (5) and using the zero-profit condition together with

the labor market equilibrium condition (1), we get

wc =
αi

σi

"
CX
e=1

Λeφ
i
c (xe)PC

d=1 φ
i
d (xe)λ

i
d

+

Z 1

0

(1− µ)φic (x)PC
d=1 φ

i
d (x)λ

i
d

dx

#
for all i

Then, the indirect utility of a consumer working in industry i and city c becomes:

V ic =
IX
j=1

CX
d=1

αj

σj − 1 log
³
φjc (xd)λ

j
d

´

+
αi

σi

"
CX
e=1

Λeφ
i
c (xe)PC

d=1 φ
i
d (xe)λ

i
d

+

Z 1

0

(1− µ)φic (x)PC
d=1 φ

i
d (x)λ

i
d

dx

#
(8)

The first term of (8) plays the role of an agglomeration force because it expresses the

access of a worker living in c to the whole array of goods and varieties. By contrast, the

second and third terms have the nature of a dispersion force. Indeed, a more concentrated

pattern of firms, which allows for a better access, leads to more competition among firms,

thus yielding lower gross profits, whence a lower wage for that worker.
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(ii) In the second stage, a worker has to choose the industry that gives her the highest

utility level, anticipating her consumption of all goods. A sectoral equilibrium in city c is

such that

V ic ≤ V c and
¡
V ic − V c

¢
λic = 0 for all i (9)

Thus, when λic > 0, it must be that all workers living in c reach the same utility level. The

existence and uniqueness of such an equilibrium are analyzed in section ??.
(iii) In the first stage, each worker selects the city that gives her the highest utility level in

each industry, anticipating the industry for which she will work as well as her consumption.

A spatial equilibrium for industry i’s workers is then such that

V i (x) ≤ V i and [V i (x)− V i]λic = 0 for all x ∈ (0, 1] (10)

because workers are free to establish a new city founded at x. As usual in NEG models, the

stability analysis is conducted by means of the replicator dynamics of the C variables for

each industry i:
·
λic = λic

Ã
V ic −

CX
d=1

λid
Λi
V id

!
≡ Jc for all c (11)

where · denotes the time derivative of λic. The existence and stability of equilibrium are

analyzed in section ??.

3 Symmetric and asymmetric equilibria

In this section, because of the integer problem discussed in the introduction, we focus on

equilibria involving nested patterns of cities in the case where the number C of cities is a

power of 2.

Given the outcome of the third stage, we show below that the second stage has a single

equilibrium.

Proposition 1 In each city, there exists a unique sectoral equilibrium.

The proof is given in Appendix A.

Since the equilibrium outcome of the second and third stages is unique, we may move

directly to the first stage. As in most NEG models, this equilibrium need not be symmetric,

unique or stable, thus making the analysis much more involved than in the other two stages.
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3.1 The city-doubling point

A symmetric equilibrium with C = 2k cities, k being an integer larger than or equal to 1,

implies that all cities are located equidistantly and have the same population size. It remains

to show that the share of each industrial sector is the same across cities. By solving the

sectoral equilibrium condition V i = V for all i, the equilibrium share is uniquely determined

by

λic = λi ≡ ai µ
C

for all c and i (12)

where

ai ≡
αi

σiP
j
αj

σj

Thus, the share of industry i depends on the elasticity of substitution (σi) and the salience

coefficient of its output in individual preferences (αi). Because cities are identical, we may

delete the subscript c.

For (12) to be a symmetric spatial equilibrium with C cities, it must be that V i ≥ V i (x)
holds for all i and all x ∈ (0, 1].

It is shown in Appendix B that V i (x) has at most three local maxima arising at x = 0,

x = 1/2C and x = 1/C over the interval [0, 1/C], where 1/C is the distance between two

adjacent cities in the symmetric configuration with C cities. Therefore, for (12) to be a

spatial equilibrium, it must be that V i (0) ≥ V i (1/2C) holds for all i.
In order to work with tractable expressions, we rewrite the equilibrium condition V i (0) ≥

V i (1/2C) as follows:

g
¡
ϕi
¢ ≥ 0 for all i

where

g
¡
ϕi
¢ ≡ ¡

σi − 1¢ ¡1− ϕi
¢ h
µ
³
1 + 3

¡
ϕi
¢2´¡

1 + ϕi
¢− ¡1 + 3ϕi¢ ³1 + ¡ϕi¢2´i logϕi

+
h
2aiµσiϕi − (1− µ) ¡σi − 1¢ ³1− ¡ϕi¢2´ logϕii ³1 + ¡ϕi¢2´ log 2

ϕi + (ϕi)
3

+4aiµσiϕi
³
1 +

¡
ϕi
¢2´ ¡

logϕi
¢2

and where ϕi ≡ ¡φi¢ 1C = τ
1−σi
C ∈ (0, 1) involves the transport rate τ and the elasticity of

substitution σi, as in φi, but the number C of cities too.

It is readily verified that limϕi→0+ g
¡
ϕi
¢
< 0 and g (1) = g0 (1) = g00 (1) = 0 > g000 (1).

Hence, for any given value of C and for each i, the equation g
¡
ϕi
¢
= 0 has at least one

positive solution. Let τ i2(C) be the largest of these solutions for each i = 1, ..., I, and τ2(C) ≡
mini τ

i
2(C), which we call the city-doubling point for a reason that will become clear below.
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Thus, as long as τ < τ2(C), we have V i (0) > V i (1/2C) so that there is no city at

x = 1/2C, x = 3/2C, . . . , x = (2C − 1)/2C. Conversely, when τ > τ2, the configuration

with C cities is not an equilibrium because new cities emerge at x = 1/2C, x = 3/2C,. . .,

x = (2C − 1)/2C.
Thus, we have:

Proposition 2 Let C be any even number. Then, there exists a unique threshold τ2(C) > 0

such that the equilibrium number of cities at the symmetric configuration is equal to C when

the transport rate is slightly below τ2(C). Furthermore, the number of cities jumps to 2C

when the transport rate is slightly above τ2(C).

Thus, if the initial number of cities is 2k, the number of cities is successively divided

by 2 as transport costs steadily decline. In other words, decreasing transport costs leads to

a greater spatial concentration of the industrial sectors within a smaller number of central

places. Eventually, when transport costs are sufficiently low, one city accommodates the whole

industry. This explains why τ2(C) is called a city-doubling point.

3.2 The symmetry-breaking point

Our next task is to study the conditions under which the symmetric outcome is stable. It is

shown below that the symmetric equilibrium (12) with C cities is stable if all the real parts

of the eigenvalues of the Jacobian matrix of (11) are negative. Using (18) given in Appendix

C, this condition can be rewritten as follows:

h
¡
ϕi
¢ ≥ 0 for i = 1, 2, ..., I (13)

where

h
¡
ϕi
¢ ≡ h¡

σi − 1¢ ³1 + 2 (1− µ)ϕi + ¡ϕi¢2´− aiµ ¡2σi − 1¢ ¡1 + ϕi
¢2i

logϕi

+2 (1− µ) ¡σi − 1¢ ³1− ¡ϕi¢2´ (14)

Because ∂2h
¡
ϕi
¢
/∂τ2 < 0, h is strictly concave. Furthermore, as limτ→1 h (τ) = 0 and

limτ→∞ h
¡
ϕi
¢
< 0, it must be that, for each i, there exists a single positive solution τ = τ i1

to the equation h
¡
ϕi
¢
= 0. Let τ1 ≡ maxi τ i1, which we call the symmetry-breaking point.

The following result is then proven in Appendix C.

Proposition 3 Let C be any even number. Then, there exists a unique threshold τ1(C) >

0 such that the symmetric configuration with C cities is stable (resp., unstable) when the

transport rate is slightly below (resp., above) τ1(C).
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From Propositions 2 and 3, we may conclude that there exists a symmetric stable equilib-

rium with C cities as long as τ belongs to (τ1(C), τ2(C)). However, for such an equilibrium to

arise, it must be that τ1(C) < τ2(C), for otherwise the symmetric configuration with C cities

is never a stable equilibrium. Furthermore, as both τ1 and τ2 increase with C, it should be

clear that the economy involves a decreasing number of cities when transport costs steadily

decline.

3.3 When do city sizes differ?

In order to describe the evolution of the economy with respect to transport costs, we consider

a steadily decrease in the parameter τ . When τ reaches the break point τ1, the symmetric

equilibrium ceases to be stable. Two cases may then arise: either the equilibrium involves

a smaller number of cities or it retains the same number of cities but their size changes

continuously.

In the former case, it appears to be very hard, if not impossible, to characterize the

number and size of cities because we do not know how to select an equilibrium when there

are multiple equilibria. By contrast, in the latter case, the original configuration can be

shown to become an alternating symmetric equilibrium, which is defined as follows:

λi2c = λ and λi2c−1 = 2λ
i∗ − λ for λ ∈ £0, 2λi∗¤ and c = 1, 2, . . . , C/2 (15)

where λi∗ is given by (12). At such a configuration, cities with different sizes and different
industrial mixes coexist, one small city alternating with one large city.

This configuration (15) is a pitchfork bifurcation, and is stable, whereas the symmetric

configuration is unstable. Following Rasband (1990), the conditions for such a bifurcation to

occur at the symmetry-breaking point τ = τ1 are as follows:

dV i
¡
λi∗ − λ

¢
= −dV i ¡λi∗ + λ

¢
∂dV i (λ)

∂λ

¯̄̄̄
λ=λi∗, τ=τ1

= 0

∂2dV i (λ)

∂λ∂τ

¯̄̄̄
λ=λi∗, τ=τ1

> 0

∂3dV i (λ)

∂λ3

¯̄̄̄
λ=λi∗, τ=τ1

< 0 (16)

for all i. Alternating symmetry implies that the first three conditions are always met. How-

ever, whether or not the last condition (16) holds depends on the parameter values. In other
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words, (16) appears to be the critical condition for the existence of an alternating symmetric

equilibrium. This is the topic covered in the section below.

4 The urban hierarchy principle

4.1 The one-industry case

We first consider the case of one industry (I = 1) in which large and small cities may coexist.

Hence, we may drop the superscript i. We know that the symmetric equilibrium bifurcates

when the two conditions g (ϕ) = 0 and ∂3dV (λ) /∂λ3
¯̄
λ=µ/C

< 0 hold. Therefore, we must

construct the boundary of the domain for which the bifurcation is a pitchfork (see (ii) in

Figure 1).

Consider the two equations ∂3dV (λ) /∂λ3
¯̄
λ=µ/C

= 0 and g (ϕ) = 0 for which there is

or there is no bifurcation. They have no explicit solutions, but we can define the implicit

functions σ = σ12 (µ) and σ = σ1 (µ). Indeed, when C = 2 we have µ = µ12 (ϕ) and

σ = σ12 (ϕ), whereas µ = µ1 (ϕ) and σ = σ1 (ϕ) when C = 22, 23, . . . As µ and σ are uniquely

determined for all relevant values of ϕ (see Appendix D), we may define the implicit functions

σ = σ12 (µ) and σ = σ1 (µ), which leads to the following.

Lemma 1 A symmetric equilibrium bifurcates (resp., breaks) at τ = τ1 if σ < σ12 (µ) (resp.

σ > σ12 (µ)) for C = 2, and if σ < σ1 (µ) (resp. σ > σ1 (µ)) for C = 22, 23, . . .

We now come to the second section of the boundary and the two equations g (ϕ) = 0 and

h (ϕ) = 0 for which the symmetric equilibrium exists or not. We first get µ = µ2 (ϕ) and

σ = σ2 (ϕ). It can be shown that (??) with ai = 1 is always satisfied whenever σ > σ2 (µ)

holds. Hence, we have:

Lemma 2 Assume τ1 < τ < τ2. A stable symmetric equilibrium exists (resp., does not

exist) if σ > σ2 (µ) (resp., σ < σ2 (µ)).

Based on these two lemmas together with the fact that σ2 (µ) < σ12 (µ) < σ1 (µ), we have

proven the following. For a steadily decreasing transport cost τ , four cases may arise. (i) If

σ < σ2 (µ), a stable symmetric equilibrium never exists. (ii) If σ2 (µ) < σ < σ12 (µ), there

exists a stable symmetric equilibrium for τ1 < τ < τ2, which bifurcates at τ = τ1. (iii) If

σ12 (µ) < σ < σ1 (µ), there exists a stable symmetric equilibrium for τ1 < τ < τ2, which

breaks at τ = τ1 when C = 2 and bifurcates at τ = τ1 when C = 22, 23, . . . (iv) If σ > σ2 (µ),
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there exists a stable symmetric equilibrium for τ1 < τ < τ2, which breaks at τ = τ1. The

four cases are depicted in Figure 1.

Case (ii) is especially relevant to us because it provides a foundation for the urban hier-

archical principle.

Proposition 4 Consider case (ii) in which the economy has C = 2K+1 cities located equidis-
tantly on the circumference, K being an integer. Then, for k = K,K − 1, . . . , 1, the evo-
lutionary process associated with a steadily falling transport rate τ is given by the repeti-

tion of the following two types of equilibria: (a) 2k+1-alternating symmetric equilibrium for

τ2
¡
2k
¢
< τ < τ1

¡
2k+1

¢
; (b) 2k-symmetric equilibrium for τ1

¡
2k
¢
< τ < τ2

¡
2k
¢
; (c) partially

agglomerated equilibrium for τ2 (1) < τ < τ1 (2); and (d) fully agglomerated equilibrium for

0 < τ < τ2 (1).

This pattern corresponds to the one investigated in central place theory à la Christaller-

Lösch. What distinguishes our approach from the existing contributions is the fact that firms’

and workers’ locations are related here through a full-fledged micro-economic model.

Case (i) resembles to what is called the ‘no-black-hole’ condition in NEG: the manufactur-

ing share µ is large and the elasticity of substitution σ low. However, there is no-black-hole

condition here because, in our setting, the farming population is uniformly distributed along

the circumference. It can readily be verified that full agglomeration (i.e. the black hole) is

never a stable equilibrium for sufficiently large τ even though µ is large and close to 1 and/or

σ is small and close to 1. The no-black-hole condition holds only if the population of farmers

is atomistically distributed across cities. Note that the largest possible number of cities, as

well as their locations, is predetermined in the case of an atomistic distribution of farmers in

Krugman (1993), whereas it is endogenously determined in our case. Since case (i) does not

satisfy the symmetric equilibrium condition, a stable equilibrium is necessarily asymmetric,

involving some large and small cities. Unfortunately, such asymmetric equilibria are analyt-

ically intractable and do not agree with the urban hierarchical principle of equally-spaced,

equal-size cities.

Case (iv) is the opposite to case (i) in that the manufacturing share µ is small and the

elasticity of substitution σ is high, so that the symmetric equilibrium is likely to be stable.

When the transport cost τ falls below the threshold τ1, the symmetric equilibrium breaks

and multiple equilibria may emerge. There is a tomahawk bifurcation, which also appears

in Krugman (1991).2 The multiplicity of equilibria prevents us to determine which stable

2When µ = µ2 (σ) or µ = µ22 (σ), the symmetric equilibrium also breaks but there is no multiplicity of

equilibria (Ottaviano et al., 2002).
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equilibrium is selected after the symmetry breaks. For those reasons, we do not further

investigate this case.

Finally, case (iii) lies between cases (ii) and (iv), we focus only on case (ii) and assume

σ2 (µ) < σ < σ12 (µ) (17)

which is the shaded area in Figure 1. Denote τ1 and τ2 by τ1 (C) and τ2 (C) respectively

when the number of cities is C. It can be readily shown that

∂τh (C)

∂σ
< 0

∂τh (C)

∂µ
> 0 for h = 1, 2

for all relevant ranges of σ, µ and C. This confirms standard results in NEG for which

symmetry is a stable outcome once τ is large, σ is large, or µ is small.

4.2 The multi-industry case

Consider the case of I > 1 industries. As in the foregoing section, for a symmetric equilibrium

to exist, we assume

σ1 (µ) < σi < σ12 (µ)

When C = 2K+1 cities are located equidistantly on the circumference, Proposition 2 may

be easily extended to describe the impact of a falling transport cost τ on the way the urban

system is organized.

The equilibrium path starts from iteration 0 and involves the repetition of I+1 types of
equilibria.

(0) 2K+1-symmetric equilibrium for τ1
¡
2K
¢
< τ < τ2

¡
2K+1

¢
, where all 2K+1 cities have

all industries: all industries are dispersed through the largest possible number of cities because

transport costs are very large.

For k = K,K − 1, . . . , 1,
(1) 2k+1-alternating symmetric equilibrium for τ < τ1

¡
2k+1

¢
, where all 2k+1 cities have

all industries;

(2) 2k+1-alternating symmetric equilibrium with an agglomeration of order 1, where 2k

cities have all industries and whereas 2k cities have I − 1 industries;
(3) 2k+1-alternating symmetric equilibrium with an agglomeration of order 2, where 2k

cities have all industries and whereas 2k cities have I − 2 industries;
...

(I) 2k+1-alternating symmetric equilibrium with an agglomeration of order I − 1 for τ >
τ2
¡
2k
¢
, where 2k cities have all industries and another 2k cities have 1 industry: as the

13



transport cost decreases, half of the cities accommodate a number of industries that steadily

decreases to one;

(I+1) 2k-symmetric equilibrium for τ1
¡
2k
¢
< τ < τ2

¡
2k
¢
, where the number of cities is

divided by two but all 2k cities have all industries: as the transport cost falls sufficiently, half

the cities have disappeared.

Repeating this process from (1) to (I+1) K times, we must end up with an urban configu-

ration in which at most two cities are active:

(IK+K+1) for τ < τ1 (2), the equilibrium involves one city having all industries as well

as a second city has I − 1 industries;
(IK+K+2) the equilibrium involves one city accommodating all industries whereas a

second city has I − 2 industries;
...

(IK+K+I) the equilibrium has one city with all industries and a second city with a

single industry;

(IK+K+I+1) for 0 < τ < τ2(1), all industries are agglomerated within a single city: as

transport costs sufficiently fall, the number of cities steadily declines and full agglomeration

arises in a single city as in standard two-region NEG models .

In sum, we have identified four types of equilibria: alternating symmetry (1), alternating
symmetry that obey the urban hierarchical principle (2)-(I) and (IK+K+1)-(IK+2K),
full symmetry (0) and (I+1), and full agglomeration (IK+2K+1). In steps (2)-(I) and
(IK+K+1)-(IK+2K), industries get concentrated within a smaller number of cities. More
precisely, the number of industries decreases, first, in half of the cities and, then, the number

of cities decreases by one half. Eventually, the number of cities fall and, when transport costs

are sufficiently low, all industries are agglomerated in a single city, thus confirming one of the

main results of NEG. Such equilibria with three industries are represented in Figure 3: full

symmetry (I, IV and VII), the urban hierarchical principle (II, III, V, VI, VIII and XI) and

full agglomeration (X). What makes our analysis new and original is the result that central

places are endogenous and arise when transport costs take intermediate values. In addition,

the transition from full dispersion to full agglomeration is progressive in our setting.

5 Conclusion

We have considered a general equilibrium model with monopolistically competitive markets,

in which urban centers are service suppliers to all the agricultural regions as well as to the
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other urban centers. We have retained the forward and backward linkages of NEG to generate

the agglomeration of firms and workers in cities. Our main result is that central places arise

endogenously when transport costs take intermediate values.

Appendices

A Proof of Proposition 1

Without loss of generality, we may assume that all industries are active in city c; otherwise

we restrict ourselves to set of active industries.

Differentiation of V ic in (8) yields

∂V ic
∂λic

= −αi

σi

∙PC
e=1

Λe(φic(xe))
2

( C
d=1 φ

i
d(xe)λ

i
d)
2 +

R 1
0

(1−µ)(φic(x))
2

( C
d=1 φ

i
d(x)λ

i
d)
2dx

¸
< 0

∂V ic
∂λjc

= 0 ∀ i 6= j

which means that the Jacobian matrix of the utility is negative definite. It then follows from

Rosen (1965, Theorem 8) that (??) always has a unique sectoral equilibrium in each city c.

B Proof outline of argmaxV i (x) = 0 or 1/2C

In symmetric equilibrium λic = aiµ/C for all c and i, the indirect utility of a worker in

industry i at location x is given by

V i (x) =
αiaiA1

2µσ (σ − 1) (1 + ϕi) logϕi
¡
φi
¢x + constant

where

A1 ≡ 2aiµσ
¡
1 + ϕi

¢ ¡
φi
¢x
log

µ
³
1− ¡ϕi¢C/2´³¡φi¢2x + ϕi

´
(1− ϕi)

¡
φi
¢x

− (1− µ) (σ − 1)
³
1− ¡ϕi¢2´"2 logφix ¡φi¢2x + ³¡φi¢2x + ϕi

´
log

1 + ϕi¡
φi
¢2x

+ ϕi

#
−ϕi logφix

h
(σ − 1)

³
1 +

¡
φi
¢2x − µ+ ¡φi¢2x µ+ ³1 + ¡φi¢2x + µ− ¡φi¢2x µ´φi´i

Since V i (x) = V i (1/C − x) holds for all x, we focus on the interval of x ∈ [0, 1/2C].
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We have

d4V i (x)

dx4
= A2

h
(z − 1) ¡z4 + 28z3 + 38z2 + 28z + 1¢− 12z (z + 1)3 log zi

where A2 > 0 and z ≡
¡
φi
¢2x−1/C

. Examining d4V i (x) /dx4, we can show that d3V i (x) /dx3

is minimized at x = 0 or 1/2C for x ∈ [0, 1/2C]. We can then show d3V i (0) /dx3 > 0 and
d3V i (1/2C) /dx3 > 0, and hence d3V i (x) /dx3 > 0 for x ∈ [0, 1/2C]. We can also show
d2V i (0) /dx2 < 0, dV i (0) /dx < 0, and sgn

¡
d2V i (1/2C) /dx2

¢
= sgn

¡
dV i (1/2C) /dx

¢
. It

follows that V i (x) is convex in the interval of [0, 1/2C].

C Proof of Lemma 3

(i) From Bellman (1970, pp.242-243), the real parts of eigenvalues of the circulant Jacobian

matrix are given by

zic =
CX
d=1

∂Jd

∂λiC
cos

2πcd

C
for c = 1, 2, . . . , C

Since the Jacobian at symmetric equilibrium is

∂Jd

∂λiC
=
µ

C

Ã
∂V i (d/C)

∂λiC
− V i (1)−

X
e

∂V i (e/C)

∂λiC

!¯̄̄̄
¯
λic=λ

i∗

we have

zic =
µ

C

X
d

∂V i (d/C)

∂λiC
cos

2πcd

C

¯̄̄̄
λic=λ

i∗
(18)

The C-symmetric equilibrium in industry i is stable if (18) is negative for all c = 1, 2, . . . , C.

It is straightforward that

∂V i (c/C)

∂λC

¯̄̄̄
λic=λ

i∗
=

αi

σiλi∗

"¡
2σi − 1¢φi (xc, 1)
(σi − 1)Φi − µ

C (Φi)2 λi∗
X
d

φi (xc, xd)φ
i (xd, 1)

−1− µ
λi∗

Z 1

0

φi (xc, x)φ
i (x, 1)¡P

d φ
i (x, xd)

¢2 dx
#

Thus, zic in (18) is evaluated by plugging the RHS of this expression. It is readily shown

that the denominator of zic is positive, the numerators of z
i
2c and z

i
2c−1 are increasing (resp.

decreasing) in c for all 1 ≤ c ≤ C/4 (resp. C/4+1 ≤ c ≤ C/2), and ziC/2 > ziC/2±1 holds. That
is, ziC/2 the largest, and hence the symmetry breaking condition is reduced to maxi z

i
C/2 = 0,

or equivalently, τ = τ1 (C). Hence, the stability condition is given by τ > τ1 (C), and the

instability condition is given by τ < τ1 (C).
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D Implicit functions of the boundaries

Straightforward calculations yield the boundaries between bifurcation and symmetry break-

ing: ⎧⎨⎩ µ = eµ12 (ϕ) = (1+ϕ)2[3−3ϕ2+(1+4ϕ+ϕ2) logϕ]
3(1−ϕ2)(1+ϕ)2+(1+8ϕ+4ϕ2+12ϕ3−ϕ4) logϕ

σ = eσ12 (ϕ) = 2ϕ[(1−ϕ)(1+10ϕ+ϕ2)+6ϕ(1+ϕ) logϕ]
(1−ϕ)(3+11ϕ+29ϕ2+5ϕ3)+(1+ϕ)(1+5ϕ+17ϕ2+ϕ3) logϕ

for C = 2 and⎧⎨⎩ µ = eµ1 (ϕ) = (1+ϕ)2[3−3ϕ2+(1+4ϕ+ϕ2) logϕ]
3(1−ϕ2)(1+ϕ)2+(1+ϕ2)(1+10ϕ+ϕ2) logϕ

σ = eσ1 (ϕ) = 4ϕ[(1−ϕ)(1+10ϕ+ϕ2)+6ϕ(1+ϕ) logϕ]
(1−ϕ)(3+16ϕ+58ϕ2+16ϕ3+3ϕ4)+(1+ϕ)(1+6ϕ+34ϕ2+6ϕ3+ϕ4) logϕ

for C = 22, 23, . . . , 2k. The boundary between existence and nonexistence of symmetric

equilibrium is:⎧⎪⎪⎨⎪⎪⎩
µ = eµ2 (ϕ) = ϕ

1
2 (1+ϕ)logϕ (1+ϕ)logϕ+2 log 2

1+ϕ
+2 1−ϕ 1

2
2

ϕ log 2ϕ
1+ϕ

−log 2
1+ϕ

2ϕ
1
2 (1+6ϕ+ϕ2)logϕ log 2ϕ

1
2

1+ϕ
+2 1−ϕ 1

2 (1−ϕ2) ϕ
1
2 log 2ϕ

1+ϕ
−log 2

1+ϕ

σ = eσ2 (ϕ) = B1
B2

for C = 21, 22, . . . , 2k, where

B1 ≡ 2ϕ 1
2

n
2 (1− ϕ)

h
4ϕ log(1 + ϕ)− 1− ϕ+ 2 (1− log 2)ϕ 1

2

i
−
³
1− ϕ

1
2

´³
1− ϕ

1
2 + 5ϕ− ϕ

3
2

´
logϕ

o
B2 ≡ ϕ

1
2 logϕ

h
2 (2 + ϕ)ϕ log 2− 2

³
1− ϕ

1
2

´³
1− 2ϕ 1

2 + 6ϕ− 2ϕ 3
2 + ϕ2

´
+ 2 log 2 + (1 + ϕ)

2
logϕ

i
+2 log(1 + ϕ)− (1− ϕ)

h
4ϕ

1
2

³
1− 2ϕ 1

2 + ϕ− (1 + ϕ) log 2
´
+ 2

¡
1 + 6ϕ+ ϕ2

¢
log 2

i
−2ϕ 1

2

h
2− 5ϕ 1

2 + 5ϕ
3
2 − 2ϕ2 + ϕ

5
2 + (1 + ϕ)

2
logϕ

i
log(1 + ϕ)
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Figure 1:  Bifurcation domain (ii) in Proposition 2
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Figure 2:  Evolutionary process for transport cost changes
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Figure 3:  Evolution of three industries
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