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Abstract

This paper outlines the applications of one- and two-parameter Poisson-
Dirichlet distributions to describe stationary statistical distributions of clus-
ters of agents by types. We discuss how the notion of residudal allocation
processes in statistics and population genetics literature also arises as stick-
breaking processes in the physics literature. The phenomena of self-(non-)
averaging in the physics literature are analogous to long-run non-vanishing
of profits or variances of capital sizes in some disequilibrium economic dy-
namics. We offer an economic interpretation of the physical notion of non-
self-averaging as something that refers to the existence of long-run dise-
quilibrium phenomena in economics, rather than thermodynamic limits in
statistical physics, since both involve non-vanishing of variances as the size
or the time goes to infinity.

Introduction

In old literature on industrial market structure and economic performance,
several measures of industrial concentration have been used to design some
tests to answer questions if a given industry is monopolistic or not. See for
example Scherer (1980). One example of the index is called Herfindahl, or
Herfindahl-Hirschman index of concentration. It is defined as the sum of
squares of fractions of shares, i.e.,

H =
X
i

x2i ,

where xi is the fraction of ”share” of markets or sales by sector i or firm i.
By definition xi is positive, and X

i

xi = 1.
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This meassure of concentration is used in both domestic and foregin trade
context. It is sometimes (mistakenly) called Gini-index.1

The question of concentration is that of distribution of cluster sizes of
agents by types. A simple application of shares of market by two types
of agents, using one-parameter Poisson-Dirichlet distribution (also called
Ewens distribution, Ewens (1972, 1979, 1990)) has been made by Aoki
(2000a, 2000b).

This paper develops further the original ideas in these papers by applying
some of the results in the recent combinatorial stochastic process literature,
in particular results by Pitman (2002). It also makes connection with the
physics literature, in particular the papers by Derrida-Flyvbjerg (1987),
and Derrida (1994, 1997)2 They also deal with the questions of relative
sizes of basins of attraction in random dynamics in the former and the
question of residual allocation processes in the latter. There are other papers
in the physics literature that deal with random partitions. Mekjian and
Chase (1997)and Higgs (1995) have discussed cluster size distributions and
power laws, and mention population genetics papers by Ewens in particular.
Frontera, Goicoechea, Rafols, and Vivies (1995), and Krapivsky, Grosse, and
Ben Nadin (2002) discuss partitions and fragmentations, that is residual
allocation processes explicitly.

Physicists’ concern in the context of this paper appears to be focussed
on the presence of non-self-averaging phenomena in models. In this paper,
the question is whether variances of some economic concentration measure
asymptotically go to zero as the sizes (number of agents) goes to infinity, or
better yet in economic applications, as time goes to infinity.

In the first part of this paper we introduce the reader to some basic
notions on random partitions from the literature of combinatorial stochastic
processes, in particular the works by statisticians, J. Pitman (1996, 2002)
and M. Carlton (1999), such as invariance of distributions of agents by types
or categories under size-biased permutation, notions of frequency spectrum
and structure distribution. We describe the notions of distributions of sizes
of clusters of agents by types, in particular one- and two-parameter Poisson-
Dirichlet distributions. We then show a remarkable fact that the so-called
residual allocation models (RAM) arise in combinatorial stochastic processes
and in physics, namely, Kingman’s model of partition structures of agents by
types, Kingman (1978) and Derrida’s derivation in physics, based on power
laws.

1Sometimes it is called Gini-Simpson index of divesity. See Hirschman (1960) about
the origin and mis-attribution of this notion to Herfindahl. In the population genetics
literature H is called homozygosity. See Ewens (1972). This expression also arises in
random maps and ramdom dynamics in statistics and physics, see Aldous (1985), or
Derrida-Flyvbjerg (1987)

2Derrida has added some material on residual allocation models in his unpublished
version.
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Invariance under Size-biased Permutation

We introduce the notion of invariance under size-biazed sampling or permu-
tation in the statistics literature as a proper concepts of distribution of sizes
of types in statisstical equilibrium. Heuristically this notion may arise in
the following way:

Suppose that fractions of ”shares” are ordered in decreasing order, x1 >
x2 > · · ·. We may be interested in the question of how large is the share of
the second type, exclusive of the first, that is the largest type. This is the
fraction x2/(1− x1). Analogously, we may be interested in the i-th largest
type excluding or correcting for the effects of the first through the (i− 1)th
shares, given by xi/(1 − x1 − · · ·xi−1). Actually, this is one of the ways
economists measured the concentration of industries, even though they did
not know of the notion of the size-biased sampling or permutation. This is
precisely what is involved in size-biased sampling.

More formally, suppose that there are N types of agents with fractions
pi, i = 1, 2, . . . , N , with a large N . Suppose that one agent is sampled. The
probability that the first sampled agent is of type j is

Pr(p̂1 = pj |p1, p2, . . . , pN ) = pj .

This first pick is called the size-biased pick, because types of agents with
larger fraction are most likely to be sampled. This equation says that the
sample is taken in proportion to the sizes of various types. More generally,
having picked p̂1, . . . , p̂k, the next sampled agent is of type n with probability
given by

Pr(p̂k+1 = pn|p̂i, i = 1, 2, . . . , k; p1, p2, . . .) =
pn

1− p̂1 − p̂2 − · · ·− p̂k
,

provided that pn 6= p̂i, i = 1, 2, . . . , k. The expression {p̂j} is called size-
biased permutation, abbreviated as SBP.

Since distributions of agents by types are more useful when they are
in statistical equilibrium, at least for models with infinitely many types, we
define the fractions are invariant under size biased permutation (abbreviated
as ISBP) when

{p̂n} =d {pn},
where =d means equality in distribution.

Pitman (1996) considered {pn}, pn > 0, a.s., for all n,
P
n pn = 1, such

that {pn} are distributed as RAM (residual allocation model) for indepen-
dent random variables Wi, i = 1, 2, . . ., that is ps are generated by the
following formula

p1 =W1, p2 =W2(1−W1), · · · pn =Wn(1−W1)(1−W2) · · · (1−Wn−1).

Note that p1 =W1, p2/(1− p1) =W2, · · · , pn/(1− p1− · · ·− pn−1) =Wn

are independent.
Let α and θ be such that 0 � α < 1, and θ + α > 0. Let Wi be Beta

distriuted random variable, Be(1−α, θ+iα), where we say a random variable
X has density Be(a, b) when the density is given by
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fX(x) =
1

B(a, b)
xa−1(1− x)b−1,

for 0 < x < 1, where B(a, b) = Γ(a)Γ(b)/Γ(a+ b).
Then {pn} is said to have a GEM(α, θ) distribution.3 With α = 0, the

above reduces to the one-parameter Poisson-Dirichlet distribution, due to
Kingman (1978), which formalizes what Ewens conjectured (1972).

Then he showed that {pn} is ISBP if and only if {pn} is distributed as
GEM(α, θ) .

Next, order samples by order statistics, i.e., we reorder p̂i, i = 1, 2, . . . as

p(1) > p(2) > · · · .

When {pn} is distributed as GEM(α, θ), then the ranked sequence {p(n)}
is said to have the two-parameter Poisson Dirichlet distribution, PD(α, θ).

To summarize, if fractions of agents of type n is given by {pn}, pn > 0,
a.s., and

P
n pn = 1, the size-biased permutation of PD(α, θ) is aGEM(α, θ),

and the ranked sequence of a GEM(α, θ) is a PD(α, θ). Furthermore,
GEM(α, θ) is ISBP, Carlton (1999).

With α = 0, PD(α, θ) reduces to the Ewens distribution, denoted from
now on by PD(0, θ) or by PD(θ).

Frequency Spectrum

In population genetics literature, there is a measure of cluster size distri-
bution called frequency spectrum. See Ewens (1979). Aoki (2002, p.173,
2002a) has some elementary economic applications of this notion. In words,
the frequency spectrum is the expected number of types with fraction in the
interval (x, x+ dx).

Given order statistics of cluster sizes governed by PD(θ), x1 > x2 > · · ·,
the largest size x1 has the density

f(x1) = θx−11 (1− x1)θ−1,

for x1 in the range 1/2 < x1 < 1, that is when the largest cluster is more
than 1/2 of the whole.4 This density behaves like x−11 for small x. This
indicates that there are many types with small fractions and f(x) is not
normalizable. However, g(x) = xf(x) = θ(1 − x)θ−1 is normalizable. This
function is interpreted as the probability that a randomly selected sample
is of the type with fraction in (x, x+ dx).

The two largest fractions, x1 and x2 have the joint density

f(x1, x2) = θ2(x1x2)
−1(1− x1 − x2)θ−1,

3The name GEM was given by Ewens to honor the pioneers, Griffiths, Engen, and
McCloskey.

4The expression is more complicated when x1 is less than 1/2. See Watterson and
Guess (1977).
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when the two sizes are such that 0 < x1 + x2 < 1, and more importantly
when

x2
1− x1

>
1

2
.

Note that similar inequalities arise in size-biased permutation. See Aoki
(2002, Sec. 10.6) for heuristic derivations based on Watterson and Guess
(1977). 5

In economic applications we are more interested in a few types with large
shares, such as the ones discussed in Aoki (2000a).

For the one-parameter Poisson-Dirichlet process, the expected sizes of
the three largest clusters are shown in the next table (see Griffiths (2005))

θ largest second third

0.1 0.935 .059 .005

0.5 .758 .171 .049

1.0 .624 .210 .088

For example, with θ = 0.1, the expected size of the largest and the second
largest clusters sum to 99 per cent of the whole agents. With θ = 1/2, the
sum is about 93 per cent.

When {pn} is distriubted as a two parameter Poisson-Dirichlet distribu-
tion PD(α, θ), let W be distributed as Be(1−α, θ+α) (Beta distribution).
Then, the first size-biased pick is p̂1 = W as we have shown above. Then,
we have a result due to Pitman and Yor (1997):

Lemma For any positive measureable function g(t) ∼ O(t) as t goes to
zero,

E[g(W )/W ] = E[g(p̂1/p̂1]

= E{E
X
i

g(pn)

pn
Pr(p̂1 = pn|p1, p2, . . .)}

= E(
X g(pn)

pn
pn) = E[

X
g(pn)].

Structural Distribution

The structural distribution, F , of {pn}, is defined by Engen to be the dis-
tribution on (0, 1] of the first term of a size-biased permutation of the dis-
tribution of agents by type, {pn}, denoted as p̂1.

Pitman (1996) pointed out that v−1F (dv) is the frequency spectrum. By
lemma above, the expected value of any positive measurable function g is
expressible in terms of the structural distribution as

E(
X
n

g(pn)) =

Z 1

0

g(v)

v
F (dv).

5Karlin (1967) focussed on the situation with many types of small probabilities such
that β(x) = x−γL(x), with 0 < γ < 1, and where β(x) =

P∞
i
I(pn ≥ x), and where L(.)

is some slowly varying function.
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If one takes g to be I(a < v < b), this expression gives the average number
of n such that a < pn < b, hence v−1F (dv) is the same as the frequency
spectrum.

Let Kn be the number of types of clusters in this random population
of [n] := {1, 2, . . . , n}. In other words, Kn is the number of distinct values
observed in the sequence of random partitions of [n], {A1, A2, · · · , An}, where
Aj is the number of types in the sample with exactly j agents of the same
type. Clearly, Ai is non-negative, and sums to Kn.

We note that

Pr(Kn = 1) =

Z 1

0
vn−1F (dv).

Engen derived that E(Kn) is a polynomial moment of F of degree n− 1

EKn =

Z 1

0

(1− (1− v)n)
v

F (dv).

Number of Clusters in two-parameter Poisson-Dirichlet

Distribution

The probabilities of new types entering models in PD(θ), and the number
of clusters have been applied for example in Aoki (2002, p.176, App. A.5).
In the two-parameter Poisson-Dirichlet distribution the entries and exits are
given by

Pr(Kn+1 = k + 1|K1, . . . ,Kn = k) =
kα+ θ

n+ θ
, (1)

and

Pr(Kn+1 = k|K1, . . . ,Kn = k) =
n− kα
n+ θ

. (2)

Pitman (2002) shows that the probability for Kn = k, q(n, k), can be recur-
sively computed from the forward equation

q(n+ 1, k) =
(n− kα)
(n+ θ)

q(n, k) +
θ + (k − 1)α

n+ θ
q(n, k − 1), (3)

for 1 � k � n, given the boundary formula

q(n, 1) =
(1− α)(2− α) · · · (n− α)
(θ + 1)(θ + 2) · · · (θ + n) ,

and

q(n, n) =
(θ + α)(θ + 2α) · · · (θ + nα)

(θ + 1)(θ + 1 + α) · · · (θ + 1 + α(n− 1)) .

These expressions generalize the recurrence relations for the case of
PD(θ). In this one-parameter Poisson-Dirichlet case, we have that θ/(θ+n)
is a probability that the (n+1)th agent that enter the model is a new type,
and n/(θ + n) is the probability that the next agent is one of the types
already in the model.

In this case, qn,i := P (Kn = i) is governed by the recurrence relation

qn+1,i =
n

n+ θ
qn,i +

θ

θ + n
qn,i−1.
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The solution of this recurrence equation is expressible as

qn,i =
c(n, i)θi

θ[n]
,

where θ[n] := θ(θ + 1) · · · (θ + n − 1) = Γ(θ+n)
Γ(θ) , and c(n, i) is the unsigned

(signless) Sterling number of the first kind. It satisfies the relation

θ[n] =
nX
i=1

c(n, i)θi.

See Aoki (2002, p.208) for example.

Markov Chains

We can construct Markov chains using the transition probabilities of (1)
and (2). Some special cases of these equations for the case α = 0 have been
simulated by Aoki (2002, Sec. 8.6). We give some details later in this paper
as Example 2. More extensive examples are to be found in the forthcoming
book by Aoki and Yoshikawa (2006).

Asymptotic Behavior of Cluster Sizes

We collect some known facts about cluster sizes as n → ∞ in this section.
The number of clusters is given by

Kn =
∞X
j=1

I(type j is in our sample of size n).

Usinf the one-parameter distribution Ewens obtained

EKn =

Z 1

0
[1− (1− x)n]θx−1(1− x)θ−1dx =

n−1X
0

θ

θ + n− j ,

which is about 1+ θ[γ+ ln(n− 1)] for a small positive value of θ, where γ is
the Euler’s constant, Aoki (2002, p.185). Conditional on {pn} ∼ PD(α, θ),
we have

E(Kn|{pn}) =
X
j

[1− (1− pj)n],

from which

E(Kn) = E
X
j

1− (1− w)n
w

=
Γ(θ + 1)

Γ(1− α)Γ(θ + α)

Z 1

0

1− (1− w)n
w

w−α(1−w)θ+α−1dw.

Carrying out the integral successively for large n

EKn ∼
Γ(θ + 1)

αΓ(θ + α)nα
,

by using Stirling’s formula, Carlton (1999, p.69).
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Pitman (2002, Sec. 3) has a stronger result

Kn/n
α → Sα, a.s.,

where the expression Sα has the density

d

ds
Pα,θ(Sα ∈ ds) = gα,θ

where letting γ = θ
α we define

gα,θ :=
Γ(θ + 1)

Γ(γ + 1)
sγgα(s),

where s > 0, and where gα = gα,0 is the Mittag-Leffler density

gα =
1

π

∞X
k=1

[
Γ(kα)

Γ(k)
sin(kπα)(−s)k−1].

Denote by Aj = aj(n) the number of clusters of size j when there are n
agents in the model. We note that

Pn
j=1 jaj(n) = n, and Kn :=

Pn
j aj(n) is

the total number of clusters formed by the total of n agents. Pitman (2002)
shows also that

aj(n)

Kn
→ Pα,j

for every j = 1, 2, . . . a.s. as n goes to infinity. and that aj(n) ∼ Pα,jSαnα
in a two-parameter Poisson-Dirichlet case, where Sα is a random variable
with the Mittag-Leffler density, and

Pαj =
Γ(j − α)
Γ(1− α) .

See also Blumenfeld and Mandelbrot (1997) who credit Feller (1949) as
the original source. Calculating its characteristic function we derive the
p-th moment of gα to be Γ(p + 1)/Γ(pα + 1). For example, Eα,θ(Sα) =
Γ(θ + 1)/Γ(θ + α+ 1), and Eα,θ(S

2
α) = Γ(θ + 1)(θ + α)/α2Γ(θ + α).

Yamato and Sibuya (2000) has shown that the cluster sizes asymptoti-
cally approaches Sibuya distribution.

Mekjian and Chase (1997) connect their work to those by Ewens and its
two-parameter extensio by Pitman.

Derrida sketched a derivation that the expected values of Yk =
P
i x
k
i , k =

2, 3, . . . can be calculated for mean field spin glass models using the Parisi
replica approach, and remarkably the formula is the same as the GEM model
described above.

Examples

Example 1 Instead of treating all possible configurations equi-probably, we
weight them by Poisson-Dirichlet distributions in this example. Consider a
firm composed of total of n basic units. These units are organized into
divisions or sections. The total number of divisions is Kn. The number of
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divisions of size j is denoted by aj(n). We observe that
P
j aj(n) = Kn, andP

j jaj(n) = n.
The parameter (θ+(k−1)α)/(n+θ) is the probability that a new division

(new product) is being introduced, as shown in the recursion equation (1).
We note that, using his notation

{a1(n)
nα

,
a2(n)

nα
, . . . ,

an(n)

nα
}→d Sα{α, (1− α)[1]/2!,

· · · , (1− α)[n−1]/n!}.
Pitman shows that the largest division has fraction P(1) of agents, P(1) ∼

Z, the second largest division has fraction P(2) ∼ Z/2α, and so on. The
random variable Z may be expressed as Z−α = Γ(1− α)Sα.

We note that the number of divisions of size j is a decreasing function
of j

Example 2 Markov chains with transition rates of (1) and (2) for the
case with α = 0 have been simulated. The model in Sec. 8.6 of Aoki (2002)
was constructed to examine the effects of demand managements. In this
example, we strip the model of this aspect and merely show the effects of
parameter θ which control the rates by which new sectors are created in
the model. We can alternatively interpret θ as parameter which controls of
sector size or introduction of new goods by a given firm or sector.

In the model, sectors want to respond to excess deman signals they
receive. Sectors interpret positive excess demans as opportunities to expand
their production, and negative excess demands as signals to contract their
production. The model is constructed in such a way each sector is impacted
by the changes in production by any other sector through externality of
excess demands. Thus, production change by any single sector will impact
the excess demand signals they observe. For this reason, only one sector
which acts first realizes its desire to change its production, and the pattern
starts all over again.

In short, only the sector with the shortest holding (sojourn) time acts
according with the sign of excess demand. Parameter θ controls the rate
of entries of new sectors. With larger values of θ, the model is expected to
grow faster. Because of the construction of the model cyclical variations of
output (GDP) is superimposed on the growth path. This is indeed what
simulations show. See Aoki (2002, p.113-117).

Example 3 Scaling of GDP growth rates was considered by Canning,
Amaral, Lee, Meyer, and Stanley (1998). They showed that the standard
deviation of the GDP growth rate may sclae as Y −β, with β about 0.15.
Here, we heuristically explain how their finding may be explained using a
random partition framework.

We modify the model of Huang and Solomon (2001) and apply the same
procedures to estimate the growth rate of real GDP.6 View the real economy
as composed of K sectors of various sizes. Stochastically one or more of the
sectors experience what we call elementary events, the aggregate of which
yields the real growth of the economy, leading to its random growth rates. To

6Their focus is on financial sector, not real sector.
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be simple one may assume that the individual elementary growth of sectors
is random λ = 1+g, where g = ±γ randomly with some positive γ. Further,
we adopt the mechanism of Huang and Solomon that a random number τ
of this type of elementary events are experienced in a unit of calendar time.
The random growth rate is the composite effects of these random elementary
events.

We refer the detail of the mechanism to their paper, and mention only
that the growth rate will be exponential only if the number of changes τ is
less than some critical value τc, and change in GDP has a power law density
with index −(1 + α).

The value of α is defined to be the ratio of minimum and average real
consumption in the model q = cmin/caverage, and is tied to α by

α ≈ 1/(1− q),

when K is sufficiently larger that e1/q, due to inherent normalization condi-
tions of densities involved.

For example, setting q = 0.25 leads to α = 1.33, and K must be such
that K >> e4 > 55. The value of τc is defined by (N/2q)

α. With τ less than
τc, the growth rate r can be shown to have the density

p(r) = Cexp(−a|r − rm|),

for r > rm, with a different constant for the case r < rm.
The deviation of r is then related to variability ofK and τ , among others.

From this one can deduce that the average deviation in the growth rates is
basically determined by percentage changes of the size of the largest cluster
which can be related to the GDP when the productivity is assumed not to
vary too much, and the conclusion follows that the standard deviation of
the growth rate is Y −μ with μ less than 1. See Aoki and Yoshikawa (2006)
for detail.

Local Limit Theorem

Suppose N independent positive random variables Xi, i = 1, 2, . . . N are
normalized by their sum SN = X1 + · · ·+XN

xi = Xi/SN , i = 1, . . . N,

so that
Y1 :=

X
i

xi = 1.

Suppose that the probability density of Xi is such that it has a power-law
tail,

ρ(x) ∼ Ax−1−μ,
with 0 < μ < 1. Then, SN/N

1/μ has a stable distribution (called Lévy
distribution).

10



Pitman (2002) shows that the number of clusters with n agents, Kn with
0 < α < 1, is such that Kn/n

α converges a.s to Sα which is distributed with
Mittag-Leffler desnity

gα,θ(s) =
Γ(θ + 1)

Γ(θ/α+ 1)
sθ/αgα(s), s > 0.

His formula for the probability of Kn = k, with k ∼ snα indicates that the
power law nα which is 2α < 2 or 2α = 1 + μ with 0 < μ < 1, the case in
Derrida.

With the 2-parameter PD distribution satisfying the power law condi-
tion, Derrida’s conclusion that the Y s are non-self averaging applies to this
case as well.

Estimating the Parameters

Carlton is the only systematic source on estimating the parameters of two-
parameter Poisson-Dirichlet distributions.

With α = 0, Ewens had shown that Kn is the sufficient statistics for θ.
Carlton discusses the case where α is known and θ unknown. He derives the
asymptotic distribution of the maximum likelihood estimate of θ, given n
samples. Here the Mittag-Leffler random variable S makes its appearance
again.

Lemma
Given α in (0,1), the maximum-likelihood estimate of θ, θ̂n is given by

ψ(1 + θ̂n/α)− αψ(1 + θ̂n)→ logS, as.

Here ψ is the digamma function.
With θ known, and α unknown, Carlton proves Lemma
Let {A1, . . . , An} is distributed according to the two-parameter Ewens

distribution of size n. (His Eq. (4.2) on page 55.) Then,

α̂n =
logKn
logn

→ α a.s.

When both parameters are unknown, the estimation problem is appar-
ently unsolved.

Non-Self Averaging

In the physics literature, a random variable Xn, where n indicates the size
of a model is said to be non-self averaging when its variance does not vanish
as n goes to infinity. This means that variability or fluctuations of samples
persist even in the so-called thermodynamic limit of n going to infinity.
Derrida has shown that models with power law where x are all positive and
has density which behaves as

ρ(x) ∼ Ax−1−μ,
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with 0 < μ < 1 for large x, the variance does not go to zero as n approaches
infinity, i.e., non-self averaging effects exist. With the Herfindahl index,
using the notion of spectrum density with α = 0, moments can be easily
calculated. This notion is also found in Aldous (1985) for random maps,
which has θ = 1/2. Given the spectral density f(x) = θx−1(1 − x)θ−1, we
obtain

E(Y1) =
1

1 + θ
,

E(Y 21 ) =
6

(1 + θ)(2 + θ)(3 + θ)
,

and

V ar(Y1) =
2θ

(1 + θ)2(2 + θ)(3 + θ)
> 0.

Since we can calculate the moments of the Mittag-Leffler density we can
calculate the variance. The result is that as n goes to infinity

limnV ar(
Kn
nα
) =

Γ(θ + 1)

α2
[

θ + α

Γ(θ + 2α)
− Γ(θ + 1)

Γ(θ + α)2(1 + θ/α)2
].

The variance of Kn/n
α does not go to zero as n goes to infinity. We return

to this point in the last section of this paper.
Derrida’s development in our notation is α = −n which is between 0

and 1. His random numbers zk is distributed as Be(α, kα+ α) or using the
parameter μ in the power law density expression , Be(1−μ, kμ+α). Derrida’s
construction of weights Wα ( in his notation) generates GEM distribution.

Economic interpretation

In economics, the notion of thermodynamic limits may not be too appropri-
ate, even though in growth context, long-run in the time scale may corre-
sponds to the number of agents going to infinity.

We propose, instead, that we define or intepret this term as the existence
of long-run disequilibrium distributions, and consequently, non-vanishing of
variances of economic variables such as long-run profits, effects of innovations
or immitations and the like, that is, existence of their non-degenerate long-
run distributions. In this section we sketch two models as examples. The
first is a Schumperterian dynamics of a model with innovation and imitation,
Aoki, Nakano, and Yoshida (2004). The second example is the model by Iwai
(2001), which is also a Schumperterian dynamics of long-run profits.

Example 4: Long-run effects of innovation and imitation This
is based on a two-sector model discussed in Aoki (2002, Sec. 7.4). There
are two types of firms, innovators and imitators. The state vector is (n1, n2)
where the size of the technically advanced sector is n1, and n2 is the size of
the sector of imitators. We specify transition rates for growth or entry as

w{(n1, n2), (n1 + 1, n2)} = c1n1 + f,

and
w{(n1, n2), (n1, n2 + 1)} = c2n2,
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where f is exogenous innovation that hits sector 1. Firms exit or die at the
rate

w{(n1, n2), (n1 − 1, n2)} = d1n1,
and

w{(n1, n2), (n1, n2 − 1))} = d2n2.
The next two transition rates specify how firms change their types, that is,
an imitating firm may succeed in upgrading the technical level to the level
of innovator, or an innovator may drop down in its technical level to that of
type 2 firms

w{(n1, n2, (n1 + 1, n2 − 1)} = μg1g2(n1 + h),

and
w{(n1, n2, (n1 − 1, n2 + 1)} = μg2n1n2,

where g2 = c2/d2, and h = f/c1, and μ = λg2d− 1d2.
With these transition rates, we write the master equation. We compute

the probability generating function, and then convert it into the cumulant
generating function, since we are interested in calculating only the first and
second order moments, k1, k2, k1,1, k1,2, and k2,2. Fortunately, this model is
specified in such a way that the equations for the moment are closed at the
second moments, that is no higher order moments appear in the equations
for the first and second moments. We derive a coupled ordinary differential
equations for these moments. With the help of Mathematica we calculate
the stationary state values of these moments for varioous parameter values,
and verify the positive definiteness of the second moment matrix.

To the knowledge of the author this is the first example of Schumpert-
erian dynamics with innovations and immitation effects for which the first
two moments have been analytically derived and numerically evaluated. The
model allows us to examine parametrically the relative importance of net
death rate and innovation rate, and draw conclusions about qualitative be-
havior of interacting two sectors. We show also that the means of stationary
locally stable equilibria scale with parameters of the innovation rate, and
death rate.

Example 5: Disequilibrium theory of long run profits. Iwai’s
model has more than two sectors with different productivity coefficients.
His paper is too long and involved to give a thumb-nail sketch here. Instead
we offer three quotes from his paper to explain what he does.

...while both the differential growth rates among different efficiency
firms and the diffusion of better technologies through imitations push
the state of technology towards uniformity, the punctuated appearance
of technological innovations disrupts this equilibrating tendency.

... over a long passsage of time these conflicting microscopic forces
will balance each other in a statistical sense and give rise to a long-run
distribution of relative efficiencies across firms. This long-run distribu-
tion will in turn allow us to deduce an upward-sloping long-run supply
curves...
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This paper has challenged this long-held tradition in economics. It
has introduced a simple evolutionary model which is capable of analyz-
ing the development of the industry’s state of technology as a dynamic
interplay among many a firm’s growth, imitation and innovation activ-
ities. And it has demonstrated that what the industry will approach
over a long passage of time is not a classical or neoclassical equilib-
rium of uniform technology but a statistical equilibrium of technolog-
ical disequilibria which maintains a relative dispersion of efficiencies
in a statistically balanced form. Positive profits willl never disappear
from the economy nomatter how long it is run. ’Disequilibrium’ theory
of ’long-run profits’ is by no means a condtradition in terms.

We see that our random partiton framework along the line of Aoki,
Nakano, and Yoshida (2004) can be applied to at least three types of firms,
and their tail distribution may satisfy power laws to substantiate Iwai’s
claim by using long-run in time rather than the thermodynamic limits.

Concluding Remarks

In physics non-self-averaging phenomena abound. In traditional microe-
conomic foundations of economics, one deals almost exclusively with well-
posed optimization problems for the representative agents with well defined
peaks and valleys of the cost functions. It is also taken for granted that
as the number of agents goes to infinity, any unpleasant fluctuations vanish
and well defined deterministic macroeconomic relations prevail. In other
words, non-self-averaging phenomena are not in the mental pictures of av-
erage macro- or microeconomists.

However, we know that as we go to problems which require agents to
solve some combinatorial optimization problems, this nice picture may dis-
appear. In the limit of the number of agents going to infinity some results
are sample-dependent and deterministic results will not follow. Some of this
type of phenomena have been reported in Aoki (1996, Sec. 7.1.7) and also in
Aoki (1996, p. 225) where Derrida’s random energy model was introduced to
the economic audience. Unfortunately it did not catch the attention of the
economic audiences. See Mertens (2000) for a simple example, or Krpisvsky
et al (2000). This paper is another attempt at exposing non-self-averaging
phenomena in economics, in particular in problems involving combinatorial
optimization. We also have mentioned a possibility of extending the phrase
to cover existence of non-degenerate distributions with time going to infinity.
What are the implications if some economic models have non-self averaging
property? For one thing, it means that we cannot blindly try for larger size
samples in the hope that we obtain better estimates.

The example above is just an indication of the potential of this approach
of using exchangeable random partition methods. It is the opinion of this
author that subjects such as in the papers by Fabritiis, Pammolli, and Ric-
caboni (2003), or by Amaral et al (1998) could be re-examined from the
random combinatorial partition approach with profit. Another example is
Sutton (2002). He modeled independent business in which the business sizes
vary by partitions of integers to discuss the dependence of variances of firm
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growth rates. He assumed each partition is equally likely, however. Use
of random partitions discussed in this paper may provide more realistic or
flexible framework for the question he examined. It would be an interest-
ing application of the random partition theory and see if non-self-averaging
phenomena exist in the sense of physics literture in this area.

References

Aldous, D.J., (1985), ”Exchangeability and related topics” in Lecture notes
in mathemaatics, No.1117, Springer-Verlarg, Berlin

Amaral, Luis A. Nunes, S. V. Buldyrev, S. Havlin, M.A. Salinger and
H.E. Stanley,(1998) ”Power law scaling for a system of interacting units with
complex internal structure, Phys. Rev. Lett,80, 1385—1388.

Aoki, M., ( 2000a), ”Open models of share markets with two dominant
types of participants, ”, J.Econ. Behav. Org.49 199-216.

–-, (2000b), ”Cluster size distributions of economic agents of many types
in a market”, J. Math Anal. Appl, 249,32-52.

––, (2002)Modeling Aggregate Behavior and Fluctuations in Economics:
Stochastic Views of Interacting Agents , Cambridge Univ. Press, New York.

Aoki, M., T. Nakano, and G. Yoshida, (2004), ”Two sector Schumpert-
erian model of Industry” Mimeo, Dept. Physics, Chuo University, Tokyo.

–—, H. Yoshikawa (2006), Reconstructing Macroeconomics: A Perspec-
tive from Statistical Physics and Combinatorial Stochastic Processes , forth-
coming from Cambridge University Press, New York.

–— , and–-, (2006),”Stock prices and real economy: Exponentila and
Power-Law Distributions”, forthcoming invited paper Journal of Interac-
tion and Coordination of Heterogeneous Agents, No.1, Volume 1. Springer-
Verlag, New York.
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