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Abstract

A random clustering distribution is useful for modeling count data. The present article
derives a new distribution of this type from the Lagrangian Poisson distribution, based on the
result that any infinitely divisible distribution over nonnegative integers produces a random
clustering distribution through conditioning and a limiting argument that is equivalent to
the law of small numbers. The resulting distribution is shown to be tractable. Its application
is also presented.
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partitioning, Species abundance

1 Introduction

Hoshino (2005) considered a general method to produce a random partitioning distribution of a
positive integer from an infinitely divisible distribution over nonnegative integers; see Steutel and
van Harn (2004) for the concept of infinite divisibility. As an instance of a random clustering
distribution produced in this way, the present article proposes a new distribution useful for
modeling count data. The adopted method reads as follows.

Let N0 and N be the sets of nonnegative integers and positive integers respectively. Let us
denote the set of all unordered partitions of a positive integer n by

Sn := {sn := (s1, s2, . . . , sn) : si ∈ N0, i = 1, 2, . . . , n,
nX

i=1

isi = n}.

We will mainly consider a random vector

Sn := (S1, S2, . . . , Sn),

where P(Sn = sn) is defined for sn ∈ Sn.
Suppose that random variables F1, F2, . . . , FJ are independently and identically distributed

(i.i.d.) over N0. Let

Si :=
JX

j=1

1(Fj = i), i ∈ N0,
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Figure 1: Hoshino’s (2005) construction of random clustering distributions

and write
S := (S1, S2, . . .).

Then P(S = s) is defined over

S∞(J) := {s := (s1, s2, . . .) : si ∈ N0, i = 1, 2, . . . ,
∞X

i=1

si ≤ J},

where S is multinomially distributed. An infinite dimensional distribution is formally defined
by the sequence of distributions; see Hoshino (2005, Appendix A) for the formal derivation of
this multinomial distribution.

Conditioning random variables on their total is a common idea to produce random parti-
tioning distributions; see Arratia et al. (2003) for a review. The total sum F1+F2 + · · ·+FJ is
denoted by

N :=
∞X

i=1

i · Si. (1)

The conditional distribution P(S = s|N = n) = P(Sn = sn|N = n) is then defined over

Sn(J) := {sn : si ∈ N0, i = 1, 2, . . . , n,
nX

i=1

isi = n,
nX

i=1

si ≤ J}.

Suppose that Fj is subject to an infinitely divisible distribution over N0. Then we can take
J → ∞, while the distribution of N remains unchanged. The limiting distribution of Sn

constitutes a random partitioning distribution of n over Sn actually.
In this construction depending on the infinite divisibility, the order of the conditioning on

N and the limiting of J → ∞ is exchangeable. That is, the multinomially distributed S over
S∞(J) converges to a proper distribution defined over N0

∞ by first taking J → ∞, where the
distribution of N remains unchanged. The limiting distribution of S is the joint distribution
of independent Poisson variables because the law of small numbers holds; see Hoshino (2005,
Theorem 2.1). The conditional distribution of the limiting distribution over N0

∞ given N = n
then coincides with the random partitioning distribution of n over Sn. Figure 1 summarizes
these arguments.

The quintessence of a random partitioning distribution of this type is the Ewens distribution
(Ewens (1972)). This instance is produced from the negative binomial distribution, which is
infinitely divisible over N0; see Hoshino and Takemura (1998). Another example derived from
the inverse Gaussian-Poisson mixture (Holla (1966)) is investigated in Hoshino (2002).
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The present article derives another from the Lagrangian Poisson distribution; see Consul
(1989) on this infinitely divisible distribution. The resulting random partitioning distribution
seems new and is applicable.

In the statistical literature, Si’s are called size indices (Sibuya (1993)) or frequencies of
frequencies (Good (1953)). They are used, for example, to summarize the data of numbers of
many species. In this case, Fj corresponds to the number of individuals of the j-th species,
and S1 is important because it represents the number of endangered species. Moreover, in
contingency table analysis, Fj expresses the number of individuals in the j-th cell, and S0 is
then the number of empty cells. We denote the number of nonempty cells by

U =

∞X
i=1

Si = J − S0, (2)

which may correspond to the total number of species. The estimation of U is an interesting
subject, and its vast context was surveyed by Bunge and Fitzpatrick (1993). When the total
number of individuals N is fixed at n, we write in particular

Un =
nX

i=1

Si.

The organization of the present article is as follows. Section 2 explains the Lagrangian
Poisson distribution and its derivatives. Section 3 introduces a new distribution and elucidates
its properties useful for application. Section 4 consists of the parameter estimation and an
application result, with a conclusion.

2 Relating distributions

This section briefly describes a few distributions used in the main argument.
Consul and Jain (1973) proposed a generalized Poisson distribution or the Lagrangian Pois-

son distribution defined by the probability function:

P(X = x; θ,λ) =
θ(θ + xλ)x−1

x!
exp(−θ − xλ), x ∈ N0, (3)

where θ > 0, 0 < λ < 1. This distribution (3) is referred to by LP (θ,λ) in the following. The
parameter θ is proportional to the mean. When λ = 0, LP (θ,λ) degenerates into the Poisson
distribution with mean θ; λ is an indicator of overdispersion. Negative λ, which produces an
improper distribution, is not allowed in the present article.

The Lagrangian Poisson distribution is infinitely divisible because its probability generating
function (pgf) is expressed as a compound Poisson form:

G(z) = exp(θ(g(z)− 1)),

where g(z) is the pgf of the Borel distribution:

P(X = i;λ) =
(λi)i−1

i!
exp(−λi), i ∈ N. (4)
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See Johnson et al. (1993, p.394) for more on the compound Poisson representation of the La-
grangian Poisson distribution.

The quasi-multinomial (QM) distribution was proposed by Janardan (1975). Its construction
is given below. Let Fj , j = 1, 2, . . . , J , be independently distributed as LP (θj ,λ); then N is
distributed as LP (

P
θj ,λ), and the conditional distribution of Fj ’s given N becomes

P(F1 = g1, F2 = g2, . . . , FJ = gJ |N = n; θ1, θ2, . . . , θJ ,λ)

=

µ
n

g1g2 · · · gJ

¶
1P

θj(
P

θj + nλ)n−1

JY
j=1

θj(θj + gjλ)
gj−1, (5)

where gj ∈ N0,
P
gj = n. This distribution (5) is called the QM distribution because it reduces

to the quasi-binomial distribution (type 2) proposed by Consul and Mittal (1975) when J = 2.
If λ = 0, (5) becomes the multinomial distribution. Reparameterizing as pj = θj/

P
θj makes

this fact clearer.
When θ1 = θ2 = · · · = θJ = θ, i.e. cells are exchangeable, the QM distribution can be

expressed simply in terms of size indices. Furthermore, the conditional distribution does not
depend on θ, because N is complete and sufficient for θ in the exchangeable case; see Consul
(1989, p.91). Let us adopt the reparameterization that λ = αθ, as “restricted generalized
Poisson” (Consul (1989, p.5)). Then the exchangeable QM distribution is expressed for 0 < α
as

P(Sn = sn|N = n;α)

= J !n!
1

J(J + nα)n−1

nY
i=0

µ
(1 + iα)i−1

i!

¶si 1

si!
, sn ∈ Sn(J), (6)

where 0 ≤ s0 = J −
Pn

i=1 si. Its unconditional distribution is multinomial:

P(S = s; θ,λ) = J !θJ exp(−Jθ − nλ)
∞Y

i=0

(
(θ + iλ)i−1

i!
)si
1

si!
, s ∈ S∞(J), (7)

where n =
P
isi; it should be noted that N is subject to LP (Jθ,λ).

3 Main results

This section substantiates Hoshino’s (2005) construction of a random partitioning distribution.
As stated before, a new distribution is derived from the Lagrangian Poisson distribution. Some
important properties of the derived distribution are investigated for application. All the proofs
of theorems in this section are given in Appendix.

Our main theorem below derives a random partitioning distribution from (7) by first condi-
tioning on N and second a limiting argument. The resulting distribution (8) is referred to by
the Limiting Quasi-Multinomial (LQM) distribution.

Theorem 1 If J/α→ ρ (> 0) as J →∞, the limiting distribution of (6) is

P(Sn = sn|N = n; ρ) = n! ρu−1(ρ+ n)1−n
nY

i=1

µ
ii−1

i!

¶si 1

si!
, sn ∈ Sn, (8)
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where u =
Pn

i=1 si.

The limiting argument used in Theorem 1 implies that the number of cells goes to infinity
while the distribution of N is unchanged: Jθ is fixed at a positive constant (ρλ). In practice,
the number of cells J tends to be very large. Thus this limiting has a sound basis.

To clarify the difference of the random partitioning distribution from similar one of Pitman
(2003), let us mention the concept of partition structure proposed by Kingman (1978). A
distribution that has the partition structure satisfies, for all n ∈ N,

P(S1 = s1, S2 = s2, . . . |N = n)

= P(S1 = s1 + 1, S2 = s2, . . . |N = n+ 1)
s1 + 1

n+ 1

+
n+1X
r=2

P(S1 = s1, . . . , Sr−1 = sr−1 − 1, Sr = sr + 1, . . . |N = n+ 1)
r(sr + 1)

n+ 1
,

which implies that a given partition of n elements results from the deletion of one element
uniformly at random from a partition of n + 1 elements. The Ewens distribution has this
partition structure, and Pitman (2003) discusses its generalized distributions that have the
partition structure. The following fact, which is easily verified, shows that our construction is
another generalization.

Remark 1 The LQM distribution does not have Kingman’s partition structure.

Next we exchange the order of the conditioning and the limiting argument in the derivation
of the LQM distribution (8). We apply first the limiting argument (Theorem 2) and second
conditioning (Theorem 3).

Theorem 2 Let Jθ be fixed at finite and positive µ. If size indices are distributed as (7), then
Si, i ∈ N, becomes independently Poisson distributed with mean

E(Si) =
µ(λi)i−1

i!
exp(−λi), (9)

as J →∞. Namely, the limiting distribution is

P(S = s;µ,λ) = µu exp(−µ− nλ)λn−u
∞Y

i=1

(
ii−1

i!
)si
1

si!
, s ∈ N0

∞, (10)

where u =
P∞

i=1 si, n =
P∞

i=1 isi.

Theorem 3 The conditional distribution of (10) given N = n is (8) when µ = ρλ.

In view of Theorem 2 and 3, the LQM distribution is the result of introducing dependence
into independent Poisson variables by conditioning. Hence the dependence naturally diminishes
when n → ∞. The following theorem is an analogue of Sibuya (1993, Proposition 2.2), who
dealt with the Ewens distribution. It is noteworthy that (11) equals (9) when λ = 1.
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Figure 2: Relationships among 5 types of models

Theorem 4 Let m be a finite fixed positive integer. As n → ∞, the joint distribution of the
first m components (S1, S2, . . . , Sm) of the argument of (8) converges to the joint distribution of
independent Poisson variables with means

ρii−1

i!
exp(−i), i = 1, 2, . . . ,m. (11)

The expectation (9) is proportional to the Borel distribution’s probability function (4), as it
has to be; see Hoshino (2005, Theorem 2.1). This use of the Borel distribution is different from
the orthodox use of independently and identically Borel distributed variables. The relationship
between these uses, stated below, is evident when we note that U is Poisson distributed with
mean µ under (10).

Theorem 5 The conditional distribution of (10) given U = u is multinomially distributed as

P(S = s|U = u;λ) = u!
∞Y

i=1

µ
exp(−λi)(λi)i−1

i!

¶si 1

si!
, s ∈ N0

∞(
X

si = u), (12)

where Fj , j = 1, 2, . . . , u, is independently and identically subject to the Borel distribution (4).

The conditional distribution (12) does not depend on µ, and thus U is sufficient for µ in
(10). We realize that the uncertainty of U is conveniently modeled in (10), compared with the
standard way (12) where u is fixed. This difference is especially significant when n varies subject
to model’s interpretation. For example, suppose that we estimate the total number of species in
a population consisting of n0(> n) individuals from n samples. Then the total number of species
in the population should be larger than observed u, but the standard model (12) can not describe
this situation. On the contrary in (10), the parameter µ0 corresponding to the population may
be set as µ× n0/n, which should result in a reasonable estimate of the total number of species.
This ability is a common advantage of models such as (8), where Un is random.

Figure 2 illustrates relationships stated in Theorem 1 to 5. It is comparable with Figure
1, which is the basic structure we exploited. The “i.i.d. Borel” part (12) was not mentioned
in Section 1, but conditioning S on U to derive this part is possible for any proper infinitely
divisible distribution of Fj . Hoshino (2004) introduced those 5 types of count data modeling.
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ρ E(S1) E(S2) E(S3) E(S4) E(S5)

1 0.368 0.136 0.075 0.049 0.035
10 3.684 1.357 0.750 0.491 0.353
100 36.678 13.453 7.401 4.826 3.457
300 107.064 38.207 20.451 12.973 9.041
500 171.329 58.701 30.165 18.370 12.288
700 228.885 74.828 36.688 21.316 13.604
900 280.098 87.153 40.667 22.485 13.655

10000 830.239 68.873 8.563 1.261 0.204

Table 1: The expectation of a size index (LQM, n = 1000)

The following investigation focuses upon some properties of the LQM distribution (8) useful
for applications. The moments of size indices are of the first importance; see Section 4.2 for an
application.

Theorem 6 Suppose that size indices are subject to (8). For ri ∈ N0, let us denote r :=P
ri, l :=

P
iri. Then, for l ≤ n,

E(
nY

i=1

Si
(ri)) =

n!ρr(ρ+ n)1−n

(n− l)!(ρ+ (n− l))1−n+l

nY
i=1

µ
ii−1

i!

¶ri

, (13)

where n(r) = n(n− 1) · · · (n− r + 1), n(0) = 1.

In particular, for i = 1, 2, . . . , n,

E(Si) =
n!

(n− i)!
ρ(ρ+ n)1−n

(ρ+ n− i)1−n+i

ii−1

i!
, (14)

and

E(Un) =
nX

i=1

E(Si) = 1 +
(n− 1)ρ
ρ+ n

. (15)

This expectation (15) is an easy consequence of Theorem 7 given later. Table 1 summarizes the
numerical values of E(S1) to E(S5) for various ρ when n = 1000. We observe that individuals
tend to be unique as ρ increases.

Next we rewrite (8) as

P(Sn = sn|N = n; ρ) = exp((u− 1) log ρ+ (1− n) log(ρ+ n))n!
nY

i=1

µ
ii−1

i!

¶si 1

si!
,

which implies the following fact. See Lehmann (1991, p.46) for the completeness of a sufficient
statistic of an exponential family.

Remark 2 The LQM distribution (8) belongs to an exponential family, and Un is complete and
sufficient for ρ.
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It is thus important to elucidate the behavior of Un. Also we should remember that an
applied research often finds practical meaning in Un, whose distribution is given below.

Theorem 7 Suppose that size indices are distributed as (8). Then Un is shifted binomial dis-
tributed as

P(Un = u|N = n; ρ) =

µ
n− 1
u− 1

¶
(

ρ

ρ+ n
)u−1(

n

ρ+ n
)n−u, u = 1, 2, . . . , n. (16)

Theorem 8 Suppose that Un is subject to (16). Then, as n→∞, Un converges in distribution
to X + 1 where X is Poisson distributed with mean ρ.

Another law of small numbers holds in Theorem 8; Un becomes shifted Poisson distributed.
Observing these results, we realize that the LQM distribution behaves very simply.

4 Application

4.1 Parameter estimation

Since the distribution of the sufficient statistic Un is simple, it may seem that there is not much to
discuss. However, it is important to point out here that the increment of n does not necessarily
improve the parameter estimation of the LQM distribution. To see this, we first obtain the
Maximum Likelihood Estimator (MLE) of the LQM distribution. The Fisher information is
also given in this section.

We denote the log likelihood of (8) by

L = (u− 1) log ρ+ (1− n) log(ρ+ n) + Const.
Then

dL

dρ
= (u− 1)1

ρ
+ (1− n) 1

ρ+ n
.

The MLE (ρ̂) is the solution of dL/dρ = 0:

ρ̂ =
u− 1
1− u/n,

which equals the moment estimator based on (15).
Moreover

d2L

dρ2
= (u− 1)−1

ρ2
+ (1− n) −1

(ρ+ n)2
.

Then, using (15), the Fisher information is

I(ρ) = E

µ
−d

2L

dρ2

¶
=
(n− 1)n
ρ(ρ+ n)2

.

lim
n→∞ I(ρ)

−1 = ρ. (17)

Hence due to the information inequality, the variance of an unbiased estimator of ρ remains to
be strictly positive when n → ∞. Consequently, any unbiased estimator does not converge in
probability to ρ. There appears the following remark.
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Remark 3 Concerning the LQM distribution (8), no estimator of ρ is consistent as n→∞.

Let us view this result in a different way. As n→∞, the MLE ρ̂ is asymptotically equivalent
to Un − 1, whose variance converges to ρ according to Theorem 8. This limit equals the lower
bound (17).

We have to repeat taking n samples to enjoy the reduction of an estimation error by the
increase of observations.

4.2 An example of application

Very many zero counts (i.e. s0) tend to be observed in practice. To describe this type of data
set, a common model mixes a distribution with a point mass at frequency zero. Namely, when
X is originally distributed over N0, the adjusted variable Y is distributed as

P(Y = 0) = ∆+ (1−∆)P(X = 0),

P(Y = j) = (1−∆)P(X = j),

where ∆ ≤ 1 and negative ∆ deflates zeros. For example, Aitchison and Brown (1957) called
this adjustment a ∆-distribution. See Johnson et al. (1993, p.312) for other literatures. The
same idea is also called a Zero Inflated distribution; see Lambert (1992) for the Zero Inflated
Poisson (ZIP) distribution. If X is subject to the Lagrangian Poisson distribution (3), Y should
be called ZI Lagrangian Poisson (ZILP) distributed.

The LQM distribution adjusts the proportion of zero counts by tacitly assuming infinitely
many zeros; the general method used to derive this distribution can be regarded as an alterna-
tive approach to many (or infrequent) zeros. Hence this section compares the fit of the LQM
distribution with that of the ZILP distribution.

Leroux and Puterman (1992) recorded the number of movements by a fetal lamb in 240
consecutive 5-s intervals. These data can be briefly described with size indices; si expresses the
number of intervals where i movements were observed. The number of movements n was 86,
and the number of intervals u in which at least one movement was observed was 58. The total
number of intervals J was 240. These size indices and the fits of the ZILP distribution and the
LQM distribution are tabulated in Table 2.

Gupta et al. (1992, Table 1) fitted the ZILP distribution to the data set and gave the ML
estimates as

∆̂ = −0.3143, α̂ = 1.1254, θ̂ = 0.2032,
where λ = αθ. The author calculated the fit for si by J×P(Y = i), where Y is ZILP distributed
under these estimates. The fits are slightly different from those given in Gupta et al. (1992, Table
2), but the author does not know the reason other than rounding errors. The ML estimate of
the LQM distribution for the data set was ρ̂ = 175, under which the fit was the expectation of
si given in (14).

Although the ZILP distribution has more parameters than the LQM distribution, the fits
are similar in Table 2. It is so because θ̂ is close to zero; we took θ → 0 in the derivation of the
LQM distribution. Hence, seemingly, the LQM distribution can be used for the approximation
to the (ZI)LP distribution when θ nearly equals zero. The Borel distribution too appears from
the (zero-truncated) LP distribution when θ → 0, and thus the LQM distribution should be
rather compared with the Borel distribution.
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i si ZILP LQM

0 182 182.00 -
1 41 41.62 41.77
2 12 10.94 9.92
3 2 3.47 3.51
4 2 1.22 1.47
5 0 0.46 0.67
6 0 0.18 0.32
7+ 1 0.12 0.33

Table 2: Fetal movements (Leroux and Puterman (1992))

A characteristic difference between these distributions lies in their upper tails. The support
of the Borel distribution is unbounded, but under the LQM distribution, si = 0 if i > n. The
Borel distribution has a very heavy tail, and sometimes the upper tail is truncated to obtain
a better fit on the surface. This expedient of truncation seemingly lacks a reasonable basis.
Conditioning is a less arbitrary treatment than the truncation of a tail.

In summary, the LQM distribution seems to be an advantageous substitute for the Borel dis-
tribution (or the (ZI)LP distribution at θ

.
= 0) especially because (a) Un is random as discussed

in Section 3 and (b) it is free from an arbitrary truncation, despite of its tractable behavior.
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Appendix

Proof of Theorem 1 By putting α = J/ρ, the right hand side of (6) is rewritten as

J !n!ρn−1

Jn(ρ+ n)n−1

nY
i=0

µ
J i−1(1/J + i/ρ)i−1

i!

¶si 1

si!

=
J !n!ρn−1

Ju(J − u)!(ρ+ n)n−1

nY
i=1

µ
(1/J + i/ρ)i−1

i!

¶si 1

si!
.

Since J !/((J − u)!Ju)→ 1 and

nY
i=1

µ
(1/J + i/ρ)i−1

i!

¶si

→ ρu−n
nY

i=1

µ
ii−1

i!

¶si

as J →∞, the probability function converges to (8). Q.E.D.
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Proof of Theorem 2 When Jθ = µ, we can rewrite the right hand side of (7) as

J !

(J − u)!Ju

JuθJ

θJ−u
exp(−µ− nλ)

∞Y
i=1

(
(θ + iλ)i−1

i!
)si
1

si!

→ µu exp(−µ− nλ)
∞Y

i=1

(
(iλ)i−1

i!
)si
1

si!

by taking J →∞, θ → 0. The last expression is tantamount to (10). Q.E.D.

Proof of Theorem 3 Under (7), N is subject to LP (Jθ,λ). This distribution is unchanged
by the limiting argument taken, since Jθ is fixed at µ. Hence N is subject to LP (µ,λ) under
(10). Then a simple division results in (8). Q.E.D.

Proof of Theorem 4 Following Sibuya (1993), we adopt the method of moments to show
the convergence in distribution. This proof depends on the joint factorial moments (13), which
will be shown later. Assuming that (13) is correct, the components’ joint factorial moments is
expressed for nonnegative integer ri as

E(
mY

i=1

Si
(ri)) =

n!ρr(ρ+ n)1−n

(n− l)!(ρ+ (n− l))1−n+l

mY
i=1

µ
ii−1

i!

¶ri

,

where r =
P
ri, l =

P
iri. Hence

lim
n→∞E(

mY
i=1

Si
(ri)) = ρr exp(−l)

mY
i=1

µ
ii−1

i!

¶ri

=
mY

i=1

µ
exp(−i)ρii−1

i!

¶ri

The right hand side equals the joint factorial moments of Poisson variables with means (11).
Because the convergence holds for all combinations of (r1, r2, . . . , rm), the theorem holds. Q.E.D.

Proof of Theorem 5 To deal with the distribution of U =
P∞

i=1 Si, first let us consider
Um =

Pm
i=1 Si. Since Si is independently Poisson distributed under (10), the pgf of Um is

mY
i=1

exp

µ
µ(λi)i−1

i!
exp(−λi)(z − 1)

¶
= exp

Ã
mX

i=1

µ(λi)i−1

i!
exp(−λi)(z − 1)

!
.

The logarithm of the right hand side is rewritten as

mX
i=1

µ(λi)i−1

i!
exp(−λi) = µ

mX
i=1

P(X = i),

where X is subject to the Borel distribution (4). Therefore, since µ is assumed to be finite andPm
i=1 P(X = i) converges monotonically to unity as m→∞,

lim
m→∞E(z

Um) = exp(µ(z − 1)) = E(zU ),
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for an appropriate interval of z. The last equation implies that U is Poisson distributed with
mean µ.

Thus the conditional distribution (12) is the result of dividing (10) by the probability function
of the Poisson distribution with mean µ. The infinite dimensional multinomial distribution (12)
is that of the size indices where Fj , j = 1, 2, . . . , u, are independently and identically Borel
distributed, by the same reason that S is multinomially distributed in (7). Q.E.D.

Proof of Theorem 6 The moments are calculated using the fact that
P

sn
P(Sn = sn|N =

n) = 1 for all n.

E(
nY

i=1

Si
(ri)) =

X
sn∈Sn

n!ρu−1(ρ+ n)1−n
nY

i=1

µ
ii−1

i!

¶si 1

(si − ri)!

=
X

sn∈Sn

n!ρr(ρ+ n)1−n ρ
u−r−1(ρ+ n− l)1−n+l(n− l)!
(ρ+ n− l)1−n+l(n− l)!

×
nY

i=1

µ
ii−1

i!

¶si−ri
µ
ii−1

i!

¶ri 1

(si − ri)!

=
n!ρr(ρ+ n)1−n

(n− l)!(ρ+ (n− l))1−n+l

nY
i=1

µ
ii−1

i!

¶ri

.

Q.E.D.

Proof of Theorem 7 We would like to simplify

P(Un = u|N = n) = n! ρu−1(ρ+ n)1−n
X

sn∈Sn

1(
X

si = u)
nY

i=1

µ
ii−1

i!

¶si 1

si!
.

To evaluate X
sn∈Sn

1(
X

si = u)
nY

i=1

µ
ii−1

i!

¶si 1

si!
, (18)

we use the fact that the sum of probability is unity:

1 =
X

sn∈Sn

n! ρu−1(ρ+ n)1−n
nY

i=1

µ
ii−1

i!

¶si 1

si!
,

which is equivalent to

(ρ+ n)n−1 = n!
nX

u=1

ρu−1
X

sn∈Sn

1(
X

si = u)
nY

i=1

µ
ii−1

i!

¶si 1

si!
. (19)

Using a binomial expansion, we also obtain

(ρ+ n)n−1 =
n−1X
l=0

µ
n− 1
l

¶
ρlnn−1−l. (20)
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By comparing the coefficients of ρ between (19) and (20), we see that (18) has to equalµ
n− 1
u− 1

¶
nn−u.

Consequently, (16) is proved. Q.E.D.

Remark 4 Equation (18) is a (partial) Bell polynomial usually denoted by Bn,u(1
0, 21, 32, . . .).

The combinatorial interpretation of Hoshino’s (2005) construction will be investigated in the
author’s subsequent paper.

Proof of Theorem 8 We show the fact by the convergence of the pgf:

lim
n→∞E(z

Un) = z exp(ρ(z − 1)). (21)

The right hand side is the pgf of X + 1.
The pgf of (16) is evaluated as

E(zUn) =
nX

u=1

(ρ+ n)1−nρu−1zu

µ
n− 1
u− 1

¶
nn−u

= z

µ
ρz + n

ρ+ n

¶n−1

= z

µ
1 +

ρ(z − 1)
ρ+ n

¶n−1

,

which converges to the right hand side of (21). Q.E.D.
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