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Abstract

We compare four different estimation methods for a coefficient of a linear struc-
tural equation with instrumental variables. As the classical methods we consider
the limited information maximum likelihood (LIML) estimator and the two-stage
least squares (TSLS) estimator, and as the semi-parametric estimation methods
we consider the maximum empirical likelihood (MEL) estimator and a generalized
method of moments (GMM) (or the estimating equation) estimator. Tables and
figures are given for enough values of the parameters to cover most of interest. We
have found that the LIML estimator has good performance when the number of
instruments is large, that is, the micro-econometric models with many instruments
or many weak instruments in the terminology of recent econometric literatures.
We give a new result on the asymptotic optimality of the LIML estimator when
the number of instruments is large.
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1. Introduction

In recent microeconometric applications some econometricians have used many in-
strumental variables in estimating an important structural equation. It may be partly
because it has been possible to use a large number of cross sectional data and instru-
mental variables by the help of many computer packages. One empirical example of
this kind often cited in econometric literatures is Angrist and Krueger (1991) and there
are some discussions by Bound et. al. (1995) since then. Because the standard text
books in econometrics usually do not cover the feature that the number of instrumental
variables is large, it seems that we need to investigate the basic properties of the stan-
dard estimation methods of microeconometric models in this situation. This paper will
argue that a new light on the estimation of microeconometric models actually comes
from old wisdoms in the past econometric literatures which have been often ignored
and there is a strong message against some econometric methods commonly used in
practice.

The study of estimating a single structural equation in econometric models has led
to develop several estimation methods as the alternatives to the least squares estimation
method. The classical examples in the econometric literature are the limited informa-
tion maximum likelihood (LIML) method and the instrumental variables (IV) method
including the two-stage least squares (TSLS) method. See Anderson and Sawa (1979),
and Anderson, Kunitomo, and Sawa (1982) on the studies of their finite sample prop-
erties, for instance. As the semi-parametric estimation methods, a generalized method
of moments (GMM) estimation, originally proposed by Hansen (1982), has been often
used in recent econometric applications. The GMM estimation method is essentially the
same as the estimating equation (EE) method originally developed by Godambe (1960)
which has been mainly used in statistical applications. Also the maximum empirical
likelihood (MEL) method has been proposed and has gotten some attention recently
in the statistical and econometric literatures. For sufficiently large sample sizes the
LIML estimator and the TSLS estimator have approximately the same distribution
in the standard large sample asymptotic theory, but their exact distributions can be
quite different for the sample sizes occurring in practice. Also the GMM estimator and
the MEL estimator have approximately the same distribution under the more general
heteroscedastic disturbances in the standard large sample asymptotic theory, but their
exact distributions can be quite different for the sample sizes occurring in practice.

The main purpose of this study is to give information to determine the small sample
properties of the exact cumulative distribution functions (cdf’s) of these four different
estimators for a wide range of parameter values. Since it is quite difficult to obtain the
exact densities and cdf’s of these estimators, the numerical information makes possible
the comparison of properties of alternative estimation methods. Advice can be given
as to when one is preferred to the other. In this paper we use the classical estimation
setting of a linear structural equation when we have a set of instrumental variables
in econometric models. It is our intention to make precise comparison of alternative
estimation procedures in the possible simplest case which has many applications. It is
certainly possible to generalize the single linear structural equation with instrumental
variables into several different directions.

Another approach to the study of the finite sample properties of alternative estima-
tors is to obtain asymptotic expansions of their exact distributions in the normalized
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forms. As noted before, the leading term of their asymptotic expansions are the same,
but the higher-order terms are different. For instance, Fujikoshi et. al. (1982) and their
citations for the the LIML estimator and the TSLS estimator, and Kunitomo and Mat-
sushita (2003b) for the MEL estimator and the GMM estimator for the linear structural
equation case while Newey and Smith (2004) for the bias and the mean squared errors
of estimators in the more general cases. It should be noted, however, that the mean
and the mean squared errors of the exact distributions of estimators are not necessarily
the same as the mean and the mean squared errors of the asymptotic expansions of the
distributions of estimators. In fact the LIML estimator and the MEL estimator do not
possess any moments of positive integer order under a set of reasonable assumptions.
Although the analyses of bias and the mean squared errors of the MEL estimator based
on Monte Carlo experiments have been reported in some studies, we suspect that many
of them are not reliable. Therefore instead of moments we need to investigate the exact
cumulative distributions of the LIML and MEL estimators directly in a systematic way.
The problem of nonexistence of moments had been already discussed in the econometric
literatures under a set of reasonable assumptions. For instance, see Mariano and Sawa
(1972), Phillips (1980), and Kunitomo and Matsushita (2003a).

It may be important to notice that there had been alternative asymptotic theories
when the number of instrumental variables is large in estimating structural equations.
Recently Stock and Yogo (2003), and Hansen et. al. (2004) have mentioned some
possibilities in the context of microeconometric applications and practices. Kunitomo
(1980, 1982), Morimune (1983), and Bekker (1994) were the earlier developers of the
large K2 asymptotic theories in the literatures. There can be some interesting aspects
in these asymptotic theories in the context of microeconometric models because there
are many instrumental variables sometimes used in microeconometric applications. For
this purpose we shall give a new result on the asymptotic optimality of the LIML es-
timator when the number of instruments is large. However, the TSLS and the GMM
estimators lose even the consistency in some situations. Our result on the asymptotic
optimality gives new interpretations of the numerical information of the finite sample
properties and some guidance on the use of alternative estimation methods in simulta-
neous equations and microeconometric models.

In Section 2 we state the formulation of models and alternative estimation methods
of unknown parameters in the simultaneous equations. Then we shall explain our tables
and figures of the finite sample distributions of the estimators in Section 3 and discuss
the finite sample properties of alternative estimators in Section 4. Moreover, in Section
5 we present a new results on the asymptotic optimality of the LIML estimator when
the number of instruments is large in the simultaneous equations models and discuss
the theoretical explanations of the finite sample properties of alternative estimation
methods based on the large K2 asymptotic theory. Then some conclusions will be
given in Section 6. The proof of our theorems shall be given in Appendix A, and our
Tables and Figures are gathered in Appendix B.

2. Alternative Estimation Methods of a Structural Equation with In-
strumental Variables

Let a single linear structural equation in the econometric model be given by

y1i = (y
′
2i, z

′
1i)(

β
γ

) + ui (i = 1, · · · , n),(2.1)
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where y1i and y2i are 1 × 1 and G1 × 1 (vector of) endogenous variables, z1i is a
K1 × 1 vector of exogenous variables, θ

′
= (β

′
, γ

′
) is a 1 × p (p = G1 + K1) vector

of unknown parameters, and {ui} are mutually independent disturbance terms with
E(ui) = 0 (i = 1, · · · , n). We assume that (2.1) is the first equation in a system
of (G1 + 1) structural equations in which the vector of 1 + G1 endogenous variables
y

′
i = (y1i, y

′
2i)

′
and the vector of K (= K1 + K2) exogenous variables {zi} including

{z1i} are related linearly with the condition n > K . The set of exogenous variables {zi}
are often called the instrumental variables and we can write the orthogonal condition

E[ui zi] = 0 (i = 1, · · · , n) .(2.2)

Because we do not specify the equations except (2.1) and we only have the limited
information on the set of exogenous variables or instruments, we only consider the
limited information estimation methods. Furthermore, when all structural equations
in the econometric model are linear, the reduced form of y

′
i = (y1i, y

′
2i) is

yi = Π
′
zi + vi (i = 1, · · · , n) ,(2.3)

where v
′
i = (v1i, v

′
2i) is a 1×(1+G1) disturbance vector with E[vi] = 0 and E[viv

′
i] < ∞.

Let

Π = (π1 , Π2) = (
π11 Π12

π21 Π22
)(2.4)

be a (K1 + K2) × (1 + G1) (K = K1 + K2) partitioned matrix of the reduced form
coefficients. By multiplying (2.3) on the left by (1,−β

′
), we have the relation ui =

v1i − β
′
v2i (i = 1, · · · , n) and the restriction

(1,−β
′
)Π

′
= (γ

′
, 0

′
) .(2.5)

The maximum empirical likelihood (MEL) estimator for the vector of parameters θ
in (2.1) is defined by maximizing the Lagrangian form

L∗
n(λ, θ) =

n∑
i=1

log(npi)− µ(
n∑

i=1

pi − 1) − nλ
′

n∑
i=1

pi zi[y1i − β
′
y2i − γ

′
z1i] ,(2.6)

where µ and λ are a scalar and a K × 1 vector of Lagrangian multipliers, and pi (i =
1, · · · , n) are the weighted probability functions to be chosen. It has been known (see
Qin and Lawles (1994) or Owen (1990, 2001)) that the above maximization problem is
the same as to maximize

Ln(λ, θ) = −
n∑

i=1

log{1 + λ
′
zi [y1i − β

′
y2i − γ

′
z1i]} ,(2.7)

where we have the conditions µ̂ = n and [np̂i]−1 = 1 + λ
′
zi[y1i − β̂

′
y2i − γ̂

′
z1i] .

By differentiating (2.7) with respect to λ and combining the resulting equation for
p̂i (i = 1, · · · , n), we have the relation

n∑
i=1

p̂izi [y1i − β
′
y2i − γ

′
z1i] = 0(2.8)
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and

λ̂ = [
n∑

i=1

p̂iu
2
i (θ̂)ziz

′
i]
−1[

1
n

n∑
i=1

ui(θ̂)zi] ,(2.9)

where ui(θ̂) = y1i−β̂
′
y2i−γ̂

′
z1i and θ̂

′
= (β̂

′
, γ̂

′
) is the maximum empirical likelihood

(MEL) estimator for the vector of unknown parameters θ .
In the actual computation we first minimize (2.7) with respect to λ and then the MEL
estimator can be defined as the solution of constrained maximization of the criterion
function with respect to θ under the restrictions 0 < ε ≤ pi < 1 (i = 1, · · · , n), where
we take a sufficiently small (positive) ε . Alternatively, from (2.7) the MEL estimator
of θ can be written as the solution of the set of p equations

λ̂
′ n∑
i=1

p̂izi[−(y
′
2i, z

′
1i)] = 0 ,(2.10)

which implies

[
n∑

i=1

p̂i(
y2i

z1i
)z

′
i][

n∑
i=1

p̂iui(θ̂)2ziz
′
i]
−1[

1
n

n∑
i=1

zi y1i](2.11)

= [
n∑

i=1

p̂i(
y2i

z1i
)z

′
i][

n∑
i=1

p̂iui(θ̂)2ziz
′
i]
−1[

1
n

n∑
i=1

zi(y
′
2i, z

′
1i)](

β̂
γ̂

) .

On the other hand, a GMM estimator of θ
′
= (β

′
, γ

′
) can be given by the solution of

the equation 1

[
1
n

n∑
i=1

(
y2i

z1i
)z

′
i][

1
n

n∑
i=1

ui(θ̃)2ziz
′
i]
−1[

1
n

n∑
i=1

zi y1i](2.12)

= [
1
n

n∑
i=1

(
y2i

z1i
)z

′
i][

1
n

n∑
i=1

ui(θ̃)2ziz
′
i]
−1[

1
n

n∑
i=1

zi(y
′
2i, z

′
1i)](

β̂

γ̂
) ,

where θ̃ is a consistent initial estimator of θ . By this representation the GMM esti-
mator can be interpreted as the empirical likelihood estimator when we use the fixed
probability weight functions as pi = 1

n (i = 1, · · · , n). In the actual computation we use
the two-step efficient GMM procedure explained by Page 213 of Hayashi (2000), which
seems to be standard in many empirical analyses.

By using the fact that log(1 + x) ∼ x − x2/2 for small x and the expression of
the Lagrangean multiplier vector in (2.9), it is possible to approximate the criterion
function as

L1n(θ) = −1
2
[

n∑
i=1

z
′
i(y1i − β

′
y2i − γ

′
z1i)][

n∑
i=1

p̂iu
2
i (θ)ziz

′
i]
−1[

n∑
i=1

zi(y1i − β
′
y2i − γ

′
z1i)] .

If we treat the disturbance terms as if they were homoscedastic ones, it may be reason-
able to substitute 1/n for p̂i (i = 1, · · · , n) and replace σ̂2 for û2

i (i = 1, · · · , n) . Then

1 This formulation is different from the original one. See Hayashi (2000) on the details of the GMM
estimation method.
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we have (−1/2)(n − p) times the variance ratio

L2n(θ) =

[
n∑

i=1

z
′
i(y1i − β

′
y2i − γ

′
z1i)][

n∑
i=1

ziz
′
i]
−1[

n∑
i=1

zi(y1i − β
′
y2i − γ

′
z1i)]

n∑
i=1

(y1i − β
′
y2i − γ

′
z1i)2

,(2.13)

where we can interpret the estimator of the homoscedastic variance in the form of
(n − p)σ̂2 =

∑n
i=1(y1i − β

′
y2i − γ

′
z1i)2 .

It has been known in the traditional econometrics that the LIML estimator is the
minimum variance ratio estimation based on L2n(θ) and is the maximum likelihood
estimator with limited information under the normal disturbances on the disturbance
terms of {vi} (Anderson and Rubin (1949)). For this purpose, define the random
matrices (n × G1, n × K, n × K1, respectively) as Y = (y

′
i), Z = (z

′
i), and Z1 = (z

′
1i) .

Also let two (1 + G1) × (1 + G1) random matrices be

G = Y
′
(PZ − PZ1)Y(2.14)

and
H = Y

′
(In −PZ)Y ,(2.15)

where PZ and PZ1 and are the projection operators onto the space of Z and Z1,
respectively. Then the LIML estimator b̂LI (= (1,−β

′
LI)

′
) for the vector of coefficients

b0 = (1,−β
′
)
′
is given by

(G − λH)b̂LI = 0 ,(2.16)

where λ is the smallest root of
|G − lH| = 0 .(2.17)

If we set λ = 0 in (2.16) and omit the second component, we have the TSLS estimator
b̂TS (= (1,−β

′
TS)

′
) for the vector b0 = (1,−β

′
)
′
, which corresponds to minimizing the

numerator of the variance ratio in (2.13). For the LIML estimator and TSLS estimator
the coefficients of γ can be estimated by solving

γ̂ = (Z
′
1Z1)−1Z

′
1Yb̂ ,(2.18)

where b̂ is either b̂LI or b̂TS .

Let the normalized error of estimators be in the form of

ê =
√

n( β̂ − β
γ̂ − γ

) ,(2.19)

where θ̂
′
= (β̂

′
, γ̂

′
) and θ is the vector of unknown coefficient parameters. Under a set

of regularity conditions in the standard large sample asymptotic theory including the
assumption that both n and the noncentrality increase while K2 is fixed 2 , the inverse
of the asymptotic variance-covariance matrix of the asymptotically efficient estimators
is

Q−1 = D
′
MC−1MD ,(2.20)

2 See Qin and Lawles (1994) for the asymptotic covariance matrix in the i.i.d. case, which can be
extended to more general situations.
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where

D = [Π2 , (
IK1

O
)] ,(2.21)

M = plimn→∞
1
n

n∑
i=1

ziz
′
i ,(2.22)

C = plimn→∞
1
n

n∑
i=1

u2
i ziz

′
i .(2.23)

provided that the constant matrices M and C are positive definite, and the rank con-
dition

rank(D) = p (= G1 + K1) .(2.24)

From (2.20) the asymptotic variance-covariance matrix of
√

n(β̂ − β) can be written
as the inverse of

Θ∗(β) = Π
′
22(MC−1M)22.1Π22 ,(2.25)

where we use the notation of a K2 × K2 matrix J22.1 = J22 − J21J−1
11 J12 for any

(K1 + K2)× (K1 + K2) partitioned matrix

J = (
J11 J12

J21 J22
) .

The above conditions assure that the limiting variance-covariance matrix Q is non-
degenerate. The rank condition implies the order condition

K − p = K2 − G1 ≥ 0 ,(2.26)

which has been called the degree of over-identification.

3. Evaluation of Distributions and Tables

3.1 Parameterizations

The estimation method of the cdf’s of estimators we have used in this study is based
on the simulation method developed by Kunitomo and Matsushita (2003a) except the
TSLS method since the finite sample properties of alternative estimators are difficult
to be investigated analytically. The exact distribution of the TSLS estimator was
investigated by Anderson and Sawa (1979) systematically. In order to describe our
estimation methods, we need to introduce some notations which are similar to the ones
used by Anderson et. al. (1982) for the ease of comparison except the notation of
sample size n for T . We shall concentrate on the comparison of the estimators of the
coefficient parameter on the endogenous variable when G1 = 1 in Sections 3 and 4 for
presenting Figures and Tables.

Let A =
∑n

i=1 ziz
′
i and M be K × K matrices associated with (2.22), and we par-

tition the nonsingular matrices A and M into (K1 + K2) × (K1 + K2) sub-matrices
A = (Aij) and M = (Mij) (i, j = 1, 2) . When C = σ2M, that is, the distur-
bance terms are homoscedastic (σ2 = E[u2

i ] (i = 1, · · · , n)), the (1,1) element of
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the inverse of the asymptotic variance-covariance matrix Q−1 can be expressed as
Θ∗(β) = Π′

22M22.1Π22/σ2 . Let

Θn(β) =
1
σ2

Π′
22A22.1Π22(3.1)

be the noncentrality parameter; the limit of (1/n)A22.1 is M22.1 . There are some
notations which lead to the key parameters used by Anderson et. al. (1982) on the
study of the finite sample properties of the LIML and TSLS estimators in the classical
parametric framework, and Kunitomo and Matsushita (2003a) on the MEL and GMM
estimators in the semi-parametric case. In the rest of our study we shall consider the
finite sample distribution for the coefficient of the endogenous variable β because of the
simplification. We expect that we have similar results on other coefficients parameters
in the more general cases.

We shall investigate the exact finite sample distributions of the normalized estimator
as

[Θn(β)]1/2(β̂ − β) ,(3.2)

where Θn(β) is the (1,1)element of n−1 ×Q−1 . The distribution of (3.2) for the LIML
estimator and TSLS estimator depends only on the key parameters used by Anderson
et. al. (1982) which are K2,n − K,

δ2 =
Π

′
22A22.1Π22

ω22
,(3.3)

and

α =
ω22β − ω12

|Ω|1/2
=

√
ω22√
ω11.2

(β − ω12

ω22
) .(3.4)

Here ω12/ω22 is the regression coefficient of v1i on v2i and ω11.2 is the conditional vari-
ance of v1i given v2i . The parameter α can be interpreted intuitively by transforming
it into τ = −α/

√
1 + α2 . Then we can rewrite

− α√
1 + α2

=
ω12 − ω22β

σ
√

ω22
,

which is the correlation coefficient between the two random variables ui and v2i (or
y2i). It has been called the coefficient of simultaneity in the structural equation of
the simultaneous equations system. The numerator of the noncentrality parameter
δ2 represents the additional explanatory power due to y2i over z1i in the structural
equation and its denominator is the error variance of y2i . Hence the noncentrality
δ2 determines how well the equation is defined in the simultaneous equations system.
n−K is the number of degree of freedom of H which estimates Ω in the LIML method;
it is not relevant to the TSLS method.

3.2 Simulation Procedures

By using a set of Monte Carlo simulations we can obtain the empirical cdf’s of the MEL
and GMM estimators for the coefficient of the endogenous variable in the structural
equation of our interest. First, we consider the case when both the disturbances and the
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exogenous variables are normally distributed. We generate a set of random numbers
by using the two equations system

y1i = y2iβ
(0) + z1iγ

(0) + ui ,(3.5)

and
y2i = zi

′π(0)
2 + v2i ,(3.6)

where zi ∼ N (0, IK), ui ∼ N (0, 1), v2i ∼ N (0, 1) (i = 1, · · · , n), and we set the true
values 3 of parameters β(0) = γ(0) = 0 . We have controlled the values of δ2 by choosing
a real value of c and setting (1 + K2) × 1 vector π

(0)
2 = c(1, · · · , 1)

′
. The model we

have used has been restricted to the special case when K1 = 1 because in general it
takes prohibitively long computational time to estimate the empirical cdf of the MEL
estimator when the number of parameters included the structural equation is large. For
each simulation we have generated a set of random variables from the disturbance terms
and exogenous variables. In the simulation the number of repetitions were 5,000 and
we consider the representative situations including the corresponding cases of eariler
studies.

In order to investigate the effects of non-normal disturbances on the distributions
of estimators, we took two cases when the distributions of the disturbances are skewed
or fat-tailed. As the first case we have generated a set of random variables (y1i, y2i, zi)
by using (3.5), (3.6), and

ui = −χ2
i (3) − 3√

6
,(3.7)

where χ2
i (3) are χ2−random variables with 3 degrees of freedom. As the second case,

we took the t-distribution with 5 degrees of freedom for the disturbance terms.
In order to investigate the effects of heteroscedastic disturbances on the distributions

of estimators, we took one example from Hayashi (2000) as an important one that

ui = ‖zi‖u∗
i (i = 1, · · · , n)(3.8)

where u∗
i (i = 1, · · · , n) are homoscedastic disturbance terms. In this case the matrix

C of (2.20) is not necessarily the same as σ2M and the asymptotic variance-covariance
matrix for the LIML and TSLS estimators could be slightly larger than those of the
MEL and GMM estimators in the standard large sample asymptotic theory.

3.3 Tables and Figures

The empirical cdf’s of estimators are consistent for the corresponding true cdf’s. In
addition to the empirical cdf’s we have used a smoothing technique of cubic splines to
estimate the cdf’s and their percentile points. The distributions are tabulated in the
standardized terms, that is, of (3.2); this form of tabulation makes comparisons and
interpolation easier. The tables includes the three quartiles, the 5 and 95 percentiles and
the interquartile range of the distribution for each case. The estimators with which we
wish to compare (the LIML estimator with the TSLS estimator, or the MEL estimator
with the GMM estimator), have the same asymptotic distribution. Therefore, the

3 In order to examine whether our results strongly depend on the specific values of parameters
β(0) = γ(0) = 0, we have done the several simulations for the values of β(0) �= 0 and γ(0) �= 0 . These
experiments suggest that our results holds in the general situation.
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limiting distributions of (3.2) for the MEL and GMM estimators are N (0, 1) as n → ∞
in the standard large sample asymptotic theory. We have summarized our results on
the cdf’s of four estimators in Tables of Appendix B.

3.4 Accuracy of the Procedures

To evaluate the accuracy of our estimates based on the Monte Carlo experiments,
we compared the empirical and exact cdf’s of the Two-Stage Least Squares (TSLS)
estimator, which corresponds to the GMM estimator given by (2.12) when û2

i is replaced
by a constant (namely σ2), that is, the variance-covariance matrix is homoscedastic
and known. (See (2.16) with λ = 0 for the TSLS estimator.) The exact distribution
of the TSLS estimator has been studied and tabulated extensively by Anderson and
Sawa (1979). We do not report the details of our results, but we have found that the
differences are less than 0.005 in most cases and the maximum difference between the
exact cdf and its estimates is about 0.008 (see Kunitomo and Matsushita (2003a) for
the details). Hence our estimates of the cdf’s are quite accurate and we have enough
accuracy with two digits at least. This does not necessarily mean that the simulated
moments such as the mean and the mean squared error in simulations are reliable as
indicated in Introduction.

4. Discussions on Distributions

4.1 Distributions of the MEL and LIML Estimators

The distributions are tabulated in standardized terms, that is, of (3.2). When we
have the homoscedastic disturbance terms, the asymptotic standard deviation (ASD)
of β̂ is given by

σ

δ
√

ω22
=

√
1 + α2

√|Ω|
δω22

.(4.1)

The spread of the distribution of the unstandardized estimator increases with |α| and
decreases with δ . The other estimators with which we wish to compare the MEL
estimator have the same asymptotic standard deviation and in the remainder of the
discussion we consider the normalized distributions. For α = 0, the densities are close
to symmetric. As α increases there is some slight asymmetry, but the median is very
close to zero. For given α, K2, and n, the lack of symmetry decreases as δ2 increases.
For given α, δ2, and n, the asymmetry increases with K2 .

A main finding from tables is that the distributions of the MEL and LIML estimators
are roughly symmetric around the true parameter value and they are almost median-
unbiased. This finite sample property holds even when K2 is faily large. On the other
hand, the distributions of the MEL and LIML estimators have relatively long tails.
As δ2 → ∞, the distributions approach N (0, 1); however, for small values of δ2 there
is an appreciable probability outside of 3 or 4 ASD’s. As δ2 increases, the spread
of the normalized distribution decreases. The distribution of the LIML estimator has
slightly tigher tails than that of the MEL estimator. For given α,K2, and δ2, the spread
decreases as n increases and it tends to increase with K2 and decrease with α .
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4.2 Distributions of the GMM and TSLS Estimators

We have given tables of the distributions of the GMM and TSLS estimators. Since
they are quite similar in most cases, however, we often have given the distribution of
the GMM estimator only in the figures.

The most striking feature of the distributions of the GMM and TSLS estimators
is that they are skewed towards the left for α > 0 (and towards the right for α < 0),
and the distortion increases with α and K2 . The MEL and LIML estimators are close
to median-unbiased in each case while the GMM and TSLS estimators are biased. As
K2 increases, this bias becomes more serious; for K2 = 10 and K2 = 30 , the median
is less than -1.0 ASD’s. If K2 is large, the GMM and TSLS estimators substantially
underestimate the true parameter. This fact definitely favors the MEL and LIML
estimators over the GMM and TSLS estimators. However, when K2 is as small as 3,
the GMM and TSLS estimators are very similar to the MEL and its distribution has
tighter tails.

The distributions of the MEL and LIML estimators approach normality faster than
the distribution of the GMM and TSLS estimators, due primarily to the bias of the
latter. In particular when α �= 0 and K2 = 10, 30, the actual 95 percentiles of the
GMM estimator are substantially different from 1.96 of the standard normal. This
implies that the conventional hypothesis testing about a structural coefficient based on
the normal approximation to the distribution is very likely to seriously underestimate
the actual significance. The 5 and 95 percentiles of the MEL and LIML estimators are
much closer to those of the standard normal distribution even when K2 is large.

We should note that these observations on the distributions of the MEL estimator
and the GMM estimator are anologous to the earlier findings on the distributions of
the LIML estimator and the TSLS estimator by Anderson et. al. (1982) and Morimune
(1983) under the normal disturbances in the same setting of the linear simultaneous
equations system.

4.3 Effects of Normality and Heteroscedasticity

Because the distributions of estimators depend on the distributions of the distur-
bance terms, we have investigated the effects of nonnormality and heteroscedasticity
of disturbances. We calculated a large number of distributions for disturbance terms
including the χ2 distribution and t(5) distribution. The former represents the skewed
distribution while the latter represents the distributions with longer tails. From these
tables the comparison of the distributions of four estimators are approximately valid
even if the distributions of disturbances are different from normal and they are het-
eroscedasitic in the sense we have specified above. We have found that the effects of
heteroscedastic disturbances on the exact distributions of alternative estimators are not
large in our setting, but we need some further investigations on this issue.

5 Many Instruments in Simultaneous Equations Models

and an Asymptotic Optimality of the LIML Estimator

In the recent microeconometric models several important questions on their estimation
methods for practical purposes have been raised. First, Staiger and Stock (1997) has
introduced the notation of weak instruments. One interpretation for weak instruments
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may be the case that we have a structural equation but the noncentrality parameter is
not large in comparison with the sample size. Second, Bekker (1994) and others have
pointed out that the standard asymptotic theory in econometrics may not be appro-
priate for practice when the number of instruments is large and the large K2 theory
would be suited better to applications by referring to the eariler studies of Kunitomo
(1980) and Morimune (1983). The point was that there have been some microecono-
metric applications when many instruments have been used, but the applications of
the GMM method give large biases in important estimates empirically. Third, Hansen
et. al. (2004) have considered the situation when there are many weak instruments
and discussed several important issues. These problems have been formulated as the
situation when the number of excluded instruments is large (K2 or L is large in our
notation) and it could be comparable to the size of noncentrality parameter. We should
note that it is exactly the situation which Kunitomo (1982, 1987) investigated under a
set of limited assumptions (which could have been removed).

In this section we consider a sequence of integers K2 as K2(n) which can be depen-
dent on the sample size n and z2i(n) (i = 1, · · · , n) are a sequence of K2(n)×1 vectors.
We take the case when both K1 and G1 are fixed integers and G1 ≥ 1. Then we need
to use the notations of the number of instruments K(n) (= K1 + K2(n)) for K, the
coefficients π21(n) for π21 and Π22(n) for Π22. We rewrite (2.3) as

Y = ZΠ(n) + V ,(5.1)

where Z = (z
′
i(n)) is the n×K(n) matrix of (K1 +K2(n)) instrument vectors zi(n) (=

(z
′
1i, z

′
2i(n))

′
) and Π(n) = (π

′
1, Π

′
2(n))

′
is the (K1 + K2(n))× (1 + G1) matrix of coeffi-

cients. The restrictions on the coefficients can be expressed as (1,−β
′
)Π

′
(n) = (γ

′
, 0

′
)

and π21(n) = Π22(n)β.
We first state the asymptotic distribution of the LIML estimator under a set of simpli-
fied assumptions when K2(n) can be dependent on n and n → +∞ . The proof will be
given in Appendix A.

Theorem 5.1 : Assume that (2.1) and (2.3) hold with v1, · · · , vn independently
distributed each according to N (0, Ω). Suppose further that z1(n), · · · , zn(n) are in-
dependent of vi (i = 1, · · · , n). Define q(n) = n − (K1 + K2(n)) and let a(n) −→ ∞.
Suppose

(I)
K2(n)
a(n)

−→ c1 (0 ≤ c1 < ∞),

(II)
1
n
A11

p−→ Φ11 ,

(III)
1

a(n)
Π

′
22(n)A22.1Π22(n) p−→ Φ22.1 ,

(IV)
K2(n)
q(n)

−→ c2 (0 ≤ c2 < ∞),

where Φ11 and Φ22.1 are nonsingular constant matrices.
Then [

Π
′
22(n)A22.1Π22(n)

]1/2
(β̂LI − β) d−→ N (0, Ψ∗) ,(5.2)

where
Ψ∗ = σ2IG1 + c1(1 + c2)Φ

−1/2
22.1

[
Ωσ2 − Ωb0b

′
0Ω
]
22

Φ−1/2
22.1(5.3)
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and σ2 = b
′
0Ωb0. Alternatively[

Π
′
22(n)A22.1Π22(n)

a(n)

]√
a(n)(β̂LI − β) d−→ N (0, Ψ∗∗) ,(5.4)

where
Ψ∗∗ = σ2Φ22.1 + c1(1 + c2)

[
Ωσ2 − Ωb0b

′
0Ω
]
22

.(5.5)

Alternatively √
a(n)(β̂LI − β) d−→ N (0, Ψ∗∗∗) ,(5.6)

where
Ψ∗∗∗ = σ2Φ−1

22.1 + c1(1 + c2)Φ−1
22.1

[
Ωσ2 − Ωb0b

′
0Ω
]
22

Φ−1
22.1 .(5.7)

If G1 = 1, we have [Ωσ2 − Ωb0b
′
0Ω]22 = ω11ω22 − ω2

12 = |Ω| .

In order to compare our results in Theorem 5.1 with the standard asymptotic theory,
suppose K2(n) is fixed and (1/n)A22.1

p−→ M22.1 (nonsingular) as n → ∞. Then

√
n(β̂LI − β) d−→ N (0, σ2(Π

′
22M22.1Π22)−1) .(5.8)

We note that in this case q(n)/n → 1 and K2(n)/n → 0 .

For the estimation problem of the vector of structural parameters β, it may be
natural to consider a set of statistics of two (1+G1)× (1+G1) random matrices G and
H . Then we shall consider a class of estimators which are some functions of these two
random matrices in this section and we have a new result on the asymptotic optimality
of the LIML estimator under a set of simplified assumptions. The proof will be also
given in Appendix A.

Theorem 5.2 : Assume that (2.1) and (2.3) hold and define the class of consistent
estimators for β by

β̂ = φ(
1

a(n)
G,

1
q(n)

H) ,(5.9)

where φ is continuously differentiable and its derivatives are bounded at the probabil-
ity limits of random matrices in (5.9) as a(n) → ∞, q(n) → ∞ (n → ∞). We also define

the normalized form of consistent estimators for β by ê(β) =
[
Π

′
22(n)A22.1Π22(n)

]1/2
(β̂−

β) . Then under the assumptions of Theorem 5.1

ê(β) d−→ N (0, Ψ) ,(5.10)

where
Ψ ≥ Ψ∗(5.11)

in the sense of positive definiteness and Ψ∗ is given by (5.3).

The above theorems are the generalized versions of the results given by Kunit-
omo (1982) or Theorem 3.1 of Kunitomo (1987). Although we have assumed that the
disturbances are normally distributed and they are homoscedastic, it is certainly possi-
ble to replace the normality assumption by some moments conditions on disturbances
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and certain type of heteroscedasticity assumptions. Then we need lengthy discussions
on the technical details of derivations for the asymptotic normality of a sequence of
G1 × (1 + G1) random matrix

1√
a(n)

Π
′
22(n)Z

′
2(In −PZ1)V(5.12)

and G1 × (1 + G1) random matrix
√

q(n)[
1

q(n)
Y

′
(In − PZ)Y − Ω](5.13)

for a sequence of normalized constants a(n) and q(n) (a(n), q(n) → ∞ as n → ∞). Also
the assumption of independence between vi and zi(n) (i = 1, · · · , n) can be relaxed.
By using different notations, Stock and Yogo (2003), and Hansen et. al. (2004) have
discussed a set of assumptions for the asymptotic normality of similar quantities.

The results for the simplest case when K2(n) is fixed and we take a(n) = n as
the normalization factor had been known over several decades since Anderson and
Rubin (1950) and the more general results have been even in econometrics textbooks
under the name of the standard large sample asymptotic theory for the estimation
of simultaneous equations. However, it seems that the second case, called the large
K2−asymptotic theory, has not been treated in formal ways. The LIML estimator is
asymptotically efficient and attains the lower bound of the variance-covariance matrix,
which is strictly larger than the information matrix and the asymptotic Cramér-Rao
lower bound, while both the TSLS estimator and the GMM estimator are inconsistent
when c1 > 0 and c2 ≥ 0. This is a non-regular situation because the number of
incidental parameters increases as K2(n) increases in the simultaneous equation models.
The statsitical reasons will be clearer if we formulate the simultaneous equation models
as the linear functional relationship model in the statistical literature or the errors-in-
variables model which we shall explore at the end of this section. We also have the
asymptotic optimality results of the LIML estimator for the cases even when K2(n)
increases as n → ∞ while K2(n)/trΘn(β) → 0 in probability. In this case we have
c1 = 0 and the asymptotic lower bound of the covariance matrix is the same as the case
of the large sample asymptotic theory. It may be also possible to show that the MEL
estimator can attain the lower bound with some stronger conditions.

Furthermore, Kunitomo (1982) has already investigated the higher order efficiency
property of the LIML estimation method under a set of restrictive assumptions when
G1 = 1, c1 > 0 and c2 = 0 . These considerations of this section shall give some new
light on the practical use of estimation methods in microeconometric models with weak
instruments or many instruments. Since the LIML estimator has asymptotic optimal
properties when the number of instruments is large, our results in this section give the
explanations of the finite sample properties of the LIML and MEL estimators we have
discussed in the previous sections.

Let p21 and P22 be K2(n)×1 and K2(n)×G1 matrices which are the least squares
estimators of the corresponding parameters in π21(n) and Π22(n), respectively. Then
we define K2(n) × 1 vector x1 = (x1i) and K2(n)× G1 matrix X2 = (x

′
2i) by

x1 = A1/2
22.1p21 , X2 = A1/2

22.1P22 ,(5.14)
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where x
′
2i (i = 1, · · · , K2(n)) are 1 × G1 vectors, and we have 1 × K(n) (K(n) =

K1 + K2(n)) partitioned vectors z
′
i = (z

′
1i, z

′
2i) (i = 1, · · · , n). Also we define K2(n)× 1

vector η = (ηi) and K2(n)× G1 matrix Ξ = (ξij) by

η = A1/2
22.1π21(n) , Ξ = A1/2

22.1Π22(n) .(5.15)

The information matrix for β (or the noncentrality parameter in the structural equa-
tion estimation) under the assumption of the homoscedasticity and normality for the
disturbance terms can be rewritten 4 as

Θn(β) =
1
σ2

K2(n)∑
i=1

ξiξ
′
i ,(5.16)

where ξ
′
i (i = 1, · · · , K2(n)) is the i-th row vector of Ξ, E(viv

′
i) = Ω (i = 1, · · · , n), and

σ2 = b
′
0Ωb0. Then we have the representation of the linear functional relationships

model in the statistical literatures as

(x1, X2) = (η, Ξ) + (w1, W2) ,(5.17)

where we have defined a K2(n) × (1 + G1) random matrix W = (w1, W2) and the
variance-covariance matrix of the i-th row vector w

′
i (i = 1, · · · , K2(n)) of W is given by

Ω . This model has been called the errors-in-variables model in econometric literatures
and the linear functional relationships model in the statistical literatures because we
have the statistical relation

η = Ξβ(5.18)

and the number of incidental parameters of Ξ = (ξij) can be large when K2(n), which
is the sample size in a sense, is large. The relation between the estimation problem of
structural equations in econometrics and the linear functional relationships model in-
cluding statistical factor analysis have been investigated by Anderson (1976, 1984). (See
Sections 12 and 13 of Anderson (2003) for the details.) In the econometric literatures
there have been several eariler studies including Kunitomo (1980, 1982), Morimune
(1983), and Bekker (1994).

Anderson (1976, 1984) showed that the TSLS estimation in the simultaneous equa-
tion models is mathematically equivalent to the least squares method in the linear
functional relationship models given by (5.17) and (5.18). This observation gives the
persuasive reason why we have finite sample properties of the TSLS and GMM estima-
tors discussed in the previous sections.

6. Conclusions

First, the distributions of the MEL and GMM estimators are asymptotically equiv-
alent in the sense of the limiting distribution in the standard large sample asymptotic
theory, but their exact distributions are substantially different in finite samples. The
relation of their distributions are quite similar to the distributions of the LIML and
TSLS estimators. The MEL and LIML estimators are to be preferred to the GMM and
TSLS estimators estimator if K2 is large. In some microeconometric models and models

4 It is another expression of (3.1) when G1 ≥ 1 in the form of the linear functional relationship model
or the errors-in-variables model.
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on panel data, it is often a common feature that K2 is fairly large. In such situations
the LIML estimator has asymptotically optimal property in the large K2−asymptotics
and the finite sample properties of the MEL estimator is very similar.

Second, the large-sample normal approximation is relatively accurate for the MEL
and LIML estimators. Hence the usual methods with asymptotic standard deviations
give reasonable inferences. On the other hand, for the GMM and TSLS estimators the
sample size should be very large to justify the use of procedures based on the normality
when K2 is large, in particular.

Third, it is recommended to use the probability of concentration as a criterion of
comparisons because the MEL and LIML estimators do not posses any moments of
positive integer orders and hence we expect to have some large absolute values of their
bias and mean squared errors of estimators in the Monte Carlo simulations unless we
impose some restrictions on the parameter space which make it a compact set. In order
to make fair comparisons of alternative estimators in a linear structural equation we
need to use their culumative distribution functions and the concentration of probability.
This is the reason why we directly considered the finite sample distribution functions
of alternative estimation methods.

To summarize the most important conclusion from the study of small sample dis-
tributions of four alternative estimators is that the GMM and TSLS estimators can be
badly biased in some cases and in that sense their use is risky. The MEL and LIML
estimator, on the other hand, may have a little more variability with some chance of
extreme values, but its distribution is centered at the true parameter value. The LIML
estimator has tighter tails than those of the MEL estimator and in this sense the for-
mer would be attractive to the latter. Besides the computational burden for the LIML
estimation is not heavy.

It is interesting that the LIML estimation was initially invented by Anderson and
Rubin (1949). Other estimation methods including the TSLS, GMM, MEL estimation
methods have been developed with several different motivations and purposes. Now we
have some practical situations in econometric applications where the LIML estimation
has clear advantage over other estimation methods. It may be fair to say that a new
light has come from old wisdoms in econometrics.
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APPENDIX A : PROOF OF THEOREMS

In this Appendix A we give the proofs of Theorem 5.1 and Theorem 5.2. We freely use
the notations of vec(A) for stacking column vectors of any matrix A and the transpose
of A as A

′
.

Proof of Theorem 5.1 :
By substituting (5.1) into (2.14), we have

G = (Π
′
(n)Z

′
+ V

′
)(PZ −PZ1)(ZΠ(n) + V)

= Π
′
2(n)Z

′
2P̄Z1Z2Π2(n) + V

′
(PZ − PZ1)V + Π

′
2(n)Z

′
2P̄Z1V + V

′
P̄Z1Z2Π2(n) .

Then by using the similar arguments for partitioned matrices as Theorem A.3.3 of
Anderson (2003), we have

V
′
(PZ −PZ1)V = V

′
Z(

−A−1
11 A12

IK2(n)
)A−1

22.1(−A21A−1
11 , IK2(n))Z

′
V(6.1)

= V
′
P̄Z1Z2A−1

22.1Z
′
2P̄Z1V ,

where A11 =
∑n

i=1 z1iz
′
1i, A12 =

∑n
i=1 z1iz

′
2i(n) and A22.1 =

∑n
i=1 z2i(n)z

′
2i(n) −

A21A−1
11 A12 . Then we rewrite

G− [Π
′
2(n)A

′
22.1Π2(n) + K2(n)Ω](6.2)

= Π
′
2(n)Z

′
2P̄Z1V + V

′
Z

′
2P̄Z1Π2 + (V

′
P̄Z1Z2A−1

22.1Z
′
2P̄Z1V − K2(n)Ω) .

We note that conditional on the instrumental variables Z two random matrices
V

′
P̄Z1Z2A−1

22.1Z
′
2P̄Z1V and V

′
P̄ZV (= H) have the distributions of

∑K(n)
i=K1+1 wiw

′
i

and
∑n

i=K(n)+1 wiw
′
i, respectively, when wi (i = K1 + 1, · · · , n) have the distribution

of N (0, Ω) with K2(n) = K(n) − K1 and q(n) = n − K(n). Since they do not de-
pend on the conditions Z, they are unconditionally the central Whishart distributions
W1+G1(Ω, K2(n)) and W1+G1(Ω, q(n)), respectively. As a(n) → ∞, we have the con-
vergence in probability as

1
a(n)

G
p−→ G0 = ( β

′

IG1

)Φ22.1(β, IG1) + c1Ω(6.3)

and
1

q(n)
H

p−→ Ω .(6.4)

For the LIML estimation we set the smallest characteristic root and its associated
vector as |(1/a(n))G− λ(n)(1/q(n))H| = 0 and

[
1

a(n)
G− λ(n)

1
q(n)

H]b̂LI = 0 .(6.5)

Then it is straightforward to show that the probability limit of the LIML estimator
b̂LI = (1, β̂

′

LI)
′
is b0 = (1,−β

′
)
′
as n → +∞ and λ(n)

p→ λ0, where

λ0b
′
0Ωb0 = b

′
0G0b0 .(6.6)
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Let Ĝ1 =
√

a(n)[(1/a(n))G −G0], λ1 =
√

a(n)[λ − λ0], b̂1 =
√

a(n)[b̂LI − b0] , Ĥ1 =√
q(n)[(1/q(n))H−Ω]. Then by using the (1 + G1)× G1 choice matrix J2 = (0, IG1)

′
,

we can write b̂1 = (−1)J2

√
a(n)[β̂LI − β] . By substituing the random variables Ĝ1,

Ĥ1, and λ1 into (6.4), the resulting relation becomes

[G0 − λ0Ω]b0 +
1√
a(n)

[Ĝ1 − λ1Ω]b0 +
1√
a(n)

[G0 − λ0Ω]b̂1 +
1√
q(n)

[−λ0Ĥ1]b0

= op(
1√
a(n)

) .

Then by ignoring the higher order terms and using the fact λ0 = c1, we shall consider
the modified estimator e∗LI(β) which satisfies

[G0 − λ0Ω]J2e∗LI(β) = [Ĝ1 − λ1Ω]b0 −√
c1c2Ĥ1b0 .(6.7)

By defining the normarized (LIML) random vector êLI(β) =
√

a(n)[β̂LI − β], we can
show that e∗LI(β) = êLI(β) + op(1). By multiplying J

′
2 and b

′
0 from the left-hand-side

of (6.6), we have the relations

J
′
2(G0 − λ0Ω)J2e∗LI(β) = J

′
2(Ĝ1 − λ1Ω −√

c1c2Ĥ1)b0 ,(6.8)

and
b

′
0(G0 − λ0Ω)J2e∗LI(β) = b

′
0(Ĝ1 − λ1Ω −√

c1c2λ0Ĥ1)b0 .(6.9)

Since (G0 − λ0Ω)b0 = 0 and J
′
2(G0 − λ0Ω)J2 = Φ22.1, we can simplify these relations

as

λ1 =
b

′
0(Ĝ1 −√

c1c2Ĥ1)b0

b′
0Ωb0

,

and then

e∗LI(β) = [J
′
2(G0 − λ0Ω)J2]−1[J

′
2(Ĝ1 − λ1Ω −√

c1c2Ĥ1)b0](6.10)

= Φ−1
22.1J

′
2[IG1+1 − Ωb0b

′
0

b′Ωb0
](Ĝ1 −√

c1c2Ĥ1)b0 .

We notice that

(Ĝ1 −√
c1c2Ĥ1)b0 =

1√
a(n)

Π
′
2(n)Z

′
2P̄Z1Vb0(6.11)

+

√
K2(n)
a(n)

1√
K2(n)

K(n)∑
i=K1+1

(wiw
′
i −Ω)b0 −√

c1c2
1√
q(n)

n∑
i=K(n)+1

(wiw
′
i −Ω)b0,

where K(n) + q(n) = n. Then the asymptotic distributions of each terms on the right-
hand side are normal. In order to obtain the asymptotic covariance matrix of (6.10),
we use the conditional expectation given Z as

E
[
Π

′
2(n)Z

′
2P̄Z1Vb0b

′
0V

′
P̄Z1Z2Π2(n)|Z

]
= b

′
0Ωb0Π

′
22(n)A22.1Π22(n) .

Then by using Condition (III) in Theorem 5.1, we find that the covariance matrix of
the first term of (6.11) is given by σ2Φ22.1. For the second and third terms of (6.11)
we can use the relation

E[
1

K2(n)

K(n)∑
i=K1+1

(wiw
′
i − Ω)b0b

′
0

K(n)∑
i=K1+1

(wiw
′
i − Ω)] = Ωb

′
0Ωb0 + Ωbb

′
0Ω
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because wi (i = K1 + 1, · · · , n) are normally distributed as N (0, Ω). Then by using
direct calculations as

J
′
2[IG1+1 − Ωb0b

′
0

b′Ωb0
]Π

′
2(n) = Π

′
22(n)

and

J
′
2[IG1+1 − Ωb0b

′
0

b′Ωb0
][σ2Ω − Ωb0b

′
0Ω][IG1+1 − Ωb0b

′
0

b′Ωb0
]J2 = J

′
2[σ

2Ω −Ωb0b
′
0Ω]J2 ,

we find that the asymptotic covariance matrix of the normalized LIML estimator is
given by Ψ∗ .
When G1 = 1, we can use the relation σ2 = ω11−2βω12 +β2ω22 for Ω = (ωij) to obtain
σ2ω22 − (ω12 − βω22)2 = |Ω| .

(Q.E.D)

Proof of Theorem 5.2 :
We use a (1 + G1)× (1 + G1) nonsingular matrix B = (b0, B2) with b0 = (1,−β

′
)
′
for

the transformation such that B
′
ΩB = Σ, which is the block-diagonal matrix given by

Σ = ( σ2 0
′

0 Σ22
)(6.12)

and Σ22 = B
′
2ΩB2. (Actually by choosing some B2, we can have Σ22 = IG1 . See

Theorem A.2.2 of Anderson (2003).) Then we define (1 + G1) × (1 + G1) random
matrices G∗ = Σ−1/2B

′
GBΣ−1/2 and H∗ = Σ−1/2B

′
HBΣ−1/2.

By using the assumptions of Theorem 5.1, we have the convergence in probability
as a(n) goes to +∞ that

1
a(n)

G∗ p−→ G∗
0 = (

0 0
′

0 E
′
Φ22.1E

) + c1I1+G1 ,(6.13)

where G1 × G1 (positive definite) matrix Φ22.1 is given by Condition (III) and E
′

=
B

′
2(β, IG1)

′
. We note that by solving B−1B = I1+G1 with B = (b0, B2), we have the

relation
E−1 = [(β, IG1)B2]−1 = J

′
2B

−1J2.

We notice that the first (1+G1) elements of the random vector vec[
√

a(n)( 1
a(n)G−G0)]

can be written as

g1(n) = Σ−1/2B
′ 1√

a(n)
[

1
a(n)

G−G0]b0σ
−1

= Σ−1/2B
′
[

1√
a(n)

Π
′
2(n)Z

′
2P̄Z1V +

√
K2(n)
a(n)

1√
K2(n)

K(n)∑
i=K1+1

(wiw
′
i − Ω)]b0σ

−1 .

Then we rewrite

g1(n) =

[
0

E
′
Φ1/2

22.1w21(n)

]
+

√
c1

[
x11(n)
x21(n)

]
,(6.14)
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where the G1 × 1 vector w21(n) follows N (0, IG1) and x21(n) is an asymptotically
normal random vector as N (0, IG1) and x11(n) is an asymptotically normal random
variable as N (0, 2).

Similarly, we consider the first (1 + G1) elements of the random vector
vec[

√
q(n)( 1

q(n)
H∗ − I1+G1)] can represented as

h1(n) = Σ−1/2B
′√

q(n)[
1

q(n)

n∑
i=K(n)+1

(wiw
′
i −Ω)]b0 =

[
h11(n)
h21(n)

]
,(6.15)

where the G1×1 vector h21(n) is an asymptotically normal random vector as N (0, IG1)
and h11(n) is an asymptotically normal random variable as N (0, 2).

As the second step we shall derive the lower bound of the asymptotic variance-
covariance matrices. For this purpose, we write a G1 × 1 random vector φ = (φi) and
φi = β̂i (i = 1, · · · , G1). Then the conditions for consistency of the class of estimators
for β = (βi) can be summarized by

φi((
β

′

IG1

)Φ22.1(β, IG1) + c1Ω, Ω) = βi (i = 1, · · · , G1) .(6.16)

For the (1 + G1) × (1 + G1) random matrix G = (gij) we define (1 + G1)2 × 1 vectors
of derivatives

φ(k) = vec[(
∂φk

∂gij
)] (k = 1, · · · , G1)(6.17)

which are evaluated at the probability limits of (1/a(n))G and (1/q(n))H as G0 =
B

′−1Σ1/2G∗
0Σ

1/2B−1 and Ω, respectively, when a(n) → ∞ as n → ∞.
By differentiating (6.16) with respect to each elements of β = (βi) and Φ22.1 (=
(Φ22.1ij)) (i, j = 1, · · · , G1), the resulting relations can be written as the form of

A
′
(φ(1), · · · , φ(G1)) = e1 ⊗ e1(φ

(1)
11 , · · · , φ(G1)

11 ) + (e1 ⊗ e2, · · · , e1 ⊗ e1+G1) ,(6.18)

where φ
(k)
11 are the first element of vectors φ(k) (k = 1, · · · , G1) and A is a (1 + G1)2 ×

(1 + G1)2 matrix consisting of vectors :
e1 ⊗ e1,
∂vec
∂βi

[(β, IG1)
′
Φ22.1(β, IG1)] (i = 1, · · · , G1),

ei ⊗ ej − ej ⊗ ei (i < j; i, j = 1, · · · , 1 + G1),
∂vec

∂Φ22.1ij
[(β, IG1)

′
Φ22.1(β, IG1)] (i < j; i, j = 1, · · · , G1).

In the above expression (6.18) we have used the restrictions that the random matrix G
and a matrix Φ22.1 are symmetric, and adopted the notation that ei (i = 1, · · · , 1+G1)
are unit vectors with 1 in the i-th element and zeros in other elements. (There are
1 + [G1] + [(G1 + 1)G1/2] + [G1(G1 + 1)/2] = (1 + G1)2 elements in A 5 .)

5 For an illustration when G1 = 1, we set a 4× 1 vector �(1) = (φ
(1)
11 , φ

(1)
21 , φ

(1)
12 , φ

(1)
22 )

′
and ρ = Φ22.1.

Then the restrictions for consistency can be represented by a 4 × 4 matrix

A =

[
(

1
0

) ⊗ (
1
0

), ρ(
1
0

) ⊗ (
β
1

) + ρ(
β
1

) ⊗ (
1
0

), (
1
0

) ⊗ (
0
1

) − (
0
1

) ⊗ (
1
0

), (
β
1

) ⊗ (
β
1

)

]
.
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Now we utilize the relation vec(A1A2A3) = (A
′
3 ⊗ A1)vec(A2) for any conformable

matrices Ai (i = 1, 2, 3) . Then we notice that the product of (1 + G1)2 × (1 + G1)2

matrices
(B

′ ⊗B
′
)A

has special structures in the first (1 + G1) rows due to the statistical relations on the
coefficients in the simultaneous equations such that

[B
′
e1 ⊗B

′
e1]1+G1 = [

1
B

′
2e1

] ,

[(B
′ ⊗B

′
)
∂vec
∂βi

(
(β, IG1)

′
Φ22.1(β, IG1)

)
]1+G1

=

⎡
⎣
⎛
⎝B

′
( β

′

IG1

) ⊗B
′
(

∂β
′

∂βi

O
)

⎞
⎠vec(Φ22.1) +

⎛
⎝B

′
(

∂β
′

∂βi

O
) ⊗B

′
( β

′

IG1

)

⎞
⎠vec(Φ22.1)

⎤
⎦

1+G1

=

[
0 0′

0 E
′
Φ22.1

]
ei+1 ,

[(B
′ ⊗B

′
)

∂vec
∂Φ22.1ij

(
(β, IG1)

′
Φ22.1(β, IG1)

)
]1+G1 = 0 (i, j = 1, · · · , G1),

where we have used the notation [ · ]1+G1 as the first 1 + G1 elements of the corre-
sponding vectors.
For the effects of H, we differentiate (6.16) with respect to each elements of Ω =
(ωlm) (l, m = 1, · · · , 1 + G1) and evaluated at the probability limits as q(n) (and n)
→ ∞, we have the conditions

1+G1∑
i,j=1

[
c1

∂φk

∂gij

∂gij

∂ωlm
+

∂φk

∂hij

∂hij

∂ωlm

]
= 0 .(6.19)

They imply the conditions c1
∂φk
∂glm

+ ∂φk
∂hlm

= 0 (k = 1, · · · , G1; l, m = 1, · · · , 1 + G1) and
hence the coefficients of the random matrix H on the asymptotic covariance bound
have effects only through the effects of the coefficients of the random matrix G .

Next we shall investigate the asymptotic distributions of the linearized version of
estimators in the class given by (5.9). Because we only consider the asymptotic distru-
bitons, we replace c1

√
a(n) =

√
c1c2

√
q(n) without loss of generality. Then

⎡
⎢⎢⎣

(φ(1))
′

...
(φ(G1))

′

⎤
⎥⎥⎦vec[

√
a(n)(

1
a(n)

G− G0)−√
c1c2

√
q(n)(

1
q(n)

H −Ω)]

=

⎡
⎢⎢⎣
⎛
⎜⎜⎝

φ
(1)
11
...

φ
(G1)
11

⎞
⎟⎟⎠ (e

′
1 ⊗ e

′
1) + e

′
1 ⊗

⎛
⎜⎜⎝

e
′
2
...

e
′
1+G1

⎞
⎟⎟⎠
⎤
⎥⎥⎦A−1(B

′ ⊗ B
′
)−1

×[vec[
√

a(n)Σ1/2(
1

a(n)
G∗ − G∗

0)Σ
1/2 −√

c1c2

√
q(n)Σ1/2(

1
q(n)

H∗ − I1+G1)Σ
1/2]
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=

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

φ
(1)
11
...

φ
(G1)
11

⎞
⎟⎟⎠ (e

′
1 ⊗ e

′
1)[(B

′ ⊗ B
′
)A]−1 +

⎡
⎢⎢⎣e′

1 ⊗

⎛
⎜⎜⎝

e
′
2
...

e
′
1+G1

⎞
⎟⎟⎠
⎤
⎥⎥⎦ [(B

′ ⊗B
′
)A]−1

⎫⎪⎪⎬
⎪⎪⎭

×vec[
√

a(n)Σ1/2(
1

a(n)
G∗ −G∗

0)Σ
1/2 −√

c1c2

√
q(n)Σ1/2(

1
q(n)

H∗ − I1+G1)Σ
1/2] .

By using the fact that the matrices G∗, G∗
0 and H∗ are symmetric, we rearrange the

row vectors of (B
′ ⊗ B

′
)A except the first 1 + G1 rows such that the i(G1 + 1) +

1 (i = 1, · · · , G1)th row vectors become the (G1 + 1) + ith rows, respectively, after the
transformation R1. Then it can be written as

R−1
1

⎡
⎢⎢⎢⎢⎢⎣

1 0 · · ·0 0
′

0
′

B
′
2e1 E

′
Φ22.1 F O

B
′
2e1 E

′
Φ22.1 −F O

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎦ ,

where F is a G1×[ 12G1(G1+1)] constant matrix and the (1+G1)2×(1+G1)2 matrix R1

has 1 and 0 in its elements. By applying the fundamental transformations of matrices
to the (1 + 2G1) row vector of the upper-left-corner matrix from the right, it can be
expressed as⎡

⎢⎣ 1 0 · · ·0 0
′

0
′

B
′
2e1 E

′
Φ22.1 F O

B
′
2e1 E

′
Φ22.1 −F O

⎤
⎥⎦ = R−1

2

⎡
⎢⎣ 1 0 · · ·0 0

′
0

′

2B
′
2e1 2E

′
Φ22.1 O O

B
′
2e1 E

′
Φ22.1 −F O

⎤
⎥⎦ ,

where the (1 + 2G1)× (1 + 2G1) matrix R2 has 1 and 0 in its elements. Then by using
the representations of the random variables in (6.14) and (6.15), the linearized version
of consistent estimators is asymptotically equivalent to

e∗(β) =

⎡
⎢⎢⎣

φ
(1)
11
...

φ
(G1)
11

⎤
⎥⎥⎦σ2[

√
c1x11(n) −√

c1c2h11(n)](6.20)

+(0, IG1)

[
1 0 · · ·0

B
′
2e1 E

′
Φ22.1

]−1

Σ1/2[g1(n) −√
c1c2h1(n)]

= σ2[
√

c1x11(n)−√
c1c2h11(n)]

⎡
⎢⎢⎣
⎛
⎜⎜⎝

φ
(1)
11
...

φ
(G1)
11

⎞
⎟⎟⎠− [E

′
Φ22.1]−1B

′
2e1

⎤
⎥⎥⎦

+[E
′
Φ22.1]−1[E

′
Φ1/2

22.1w21(n) +
√

c1x21(n) −√
c1c2h21(n)]σ .

We notice that each elements of x11(n), h11(n), w21(n), x21(n), and h21(n) are asymp-
totically independent normal variables. Hence we have the covariance matrix

E[e∗(β)e∗(β)
′
](6.21)

= 2σ4c1(1 + c2)aa
′
+ σ2[Φ−1

22.1 + c1(1 + c2)Φ−1
22.1E

′−1E−1Φ−1
22.1],
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where

a =

⎛
⎜⎜⎝

φ
(1)
11
...

φ
(G1)
11

⎞
⎟⎟⎠ − [E

′
Φ22.1]−1B

′
2e1

Then by minimizing (6.21) with respect to φ
(k)
11 (k = 1, · · · , G1), that is by a, we

establish the next proposition, which gives the lower bound of the asymptotic covariance
matrix for the class of consistent estimators we have investigated.

Lemma A.1 : For (2.1) and (2.3), suppose all conditions in Theorem 5.1 hold. Define
the class of consistent estimators in the form of (5.9). Then the covariance matrix
(6.21) is minimized in the sense of positive definiteness when

⎛
⎜⎜⎝

φ
(1)
11
...

φ
(G1)
11

⎞
⎟⎟⎠ = [E

′
Φ22.1]−1B

′
2e1 ,(6.22)

where E
′
= B

′
2(β, IG1)

′
. The resulting lower bound of the asymptotic covariance matrix

for the normalized consistent estimator êβ = [Π
′
22A22.1Π22]1/2(β̂−β) can be expressed

as
Ψ∗ = σ2IG1 + c1(1 + c2)σ2Φ−1/2

22.1 E
′−1E−1Φ−1/2

22.1 .(6.23)

Finally, we consider a (1+G1)×(1+G1) matrix C = (c1, C2) such that c1 = Ω1/2b0

and C2 = Ω1/2B2 . Because the matrix C is a block diagonal matrix, we have the
relations c

′
1C2 = 0

′
and

I1+G1 = C(C
′
C)−1C−1 = (b

′
0Ωb0)−1Ω1/2b0b

′
0Ω

1/2 + Ω1/2B2[B
′
2ΩB2]−1B

′
2Ω

1/2 .

Then we use the simple relation that J
′
2ΩBJ2 = J

′
2B

′−1B
′
ΩBJ2 = J

′
2B

′−1J2[B
′
2ΩJ2],

which is eventually the same as E−1B
′
2ΩJ2. Then we find

J
′
2ΩJ2 − σ−2J

′
2Ωb0b

′
0ΩJ2(6.24)

= J
′
2ΩB2[B

′
2ΩB2]−1B

′
2ΩJ2 = E

′−1E−1 ,

and we can confirm that two expressions of the asymptotic covariance matrix in (5.3)
and (6.23) are the same. Hence we have completed the proof of Theorem 5.2.
(Q.E.D.)
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APPENDIX B : TABLES AND FIGURES

Notes on Tables

In Tables the distributions are tabulated in the standardized terms, that is, of (3.2). The tables include

three quartiles, the 5 and 95 percentiles and the interquartile range of the distribution for each case.

Since the limiting distributions of (3.2) for the MEL and GMM estimators in the standard large sample

asymptotic theory are N(0, 1) as n → ∞, we add the standard normal case as the bench mark.

Notes on Figures

In Figures the cdf’s of the LIML, MEL and GMM estimators are shown in the standardized terms,

that is, of (3.2). (The cdf of the TSLS estimator is quite similar to that of the GMM estimator in all

cases and it was omitted in many cases.) The dotted line were used for the distributions of the GMM

estimator. For the comparative purpose we give the standard normal distribution as the bench mark

for each case.
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n − K = 30, K2 = 3, α = 1
δ2 = 10 δ2 = 30

x normal LIML MEL TSLS GMM LIML MEL TSLS GMM
-3 0.001 0.003 0.006 0.001 0.001 0.001 0.000 0.000 0.000

-2.5 0.006 0.005 0.008 0.002 0.003 0.002 0.002 0.000 0.002
-2 0.023 0.009 0.016 0.010 0.014 0.007 0.012 0.011 0.016

-1.4 0.081 0.045 0.062 0.079 0.087 0.053 0.066 0.078 0.091
-1 0.159 0.127 0.146 0.205 0.219 0.133 0.145 0.187 0.195

-0.8 0.212 0.188 0.209 0.295 0.305 0.193 0.204 0.262 0.270
-0.6 0.274 0.264 0.281 0.394 0.394 0.263 0.274 0.346 0.356
-0.4 0.345 0.347 0.357 0.496 0.492 0.339 0.353 0.434 0.443
-0.2 0.421 0.423 0.437 0.591 0.585 0.420 0.429 0.519 0.521
0 0.500 0.499 0.511 0.671 0.663 0.500 0.503 0.601 0.597

0.2 0.579 0.569 0.576 0.738 0.731 0.576 0.574 0.675 0.669
0.4 0.655 0.631 0.635 0.792 0.786 0.646 0.640 0.740 0.732
0.6 0.726 0.686 0.687 0.839 0.832 0.706 0.699 0.793 0.784
0.8 0.788 0.735 0.733 0.876 0.869 0.760 0.751 0.838 0.829
1 0.841 0.775 0.772 0.901 0.896 0.805 0.794 0.877 0.868

1.4 0.919 0.835 0.833 0.939 0.936 0.874 0.866 0.930 0.927
2 0.977 0.891 0.888 0.972 0.968 0.935 0.931 0.971 0.968

2.5 0.994 0.922 0.917 0.985 0.982 0.962 0.956 0.986 0.984
3 0.999 0.941 0.938 0.991 0.989 0.978 0.974 0.994 0.994

X05 -1.65 -1.37 -1.49 -1.55 -1.59 -1.40 -1.52 -1.55 -1.64
L.QT -0.67 -0.63 -0.68 -0.90 -0.93 -0.64 -0.66 -0.83 -0.85

MEDN 0 0.00 -0.03 -0.40 -0.38 0.00 -0.01 -0.24 -0.26
U.QT 0.67 0.87 0.88 0.21 0.27 0.76 0.80 0.44 0.47
X95 1.65 3.21 3.45 1.53 1.62 2.14 2.37 1.64 1.66
IQR 1.35 1.50 1.56 1.11 1.19 1.40 1.46 1.27 1.31

Table 1:
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n − K = 30, K2 = 3, α = 1
δ2 = 50 δ2 = 100

x normal LIML MEL TSLS GMM LIML MEL TSLS GMM
-3 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

-2.5 0.006 0.001 0.001 0.001 0.001 0.002 0.003 0.003 0.003
-2 0.023 0.008 0.012 0.013 0.016 0.011 0.016 0.015 0.019

-1.4 0.081 0.057 0.065 0.079 0.087 0.062 0.069 0.079 0.086
-1 0.159 0.138 0.146 0.181 0.188 0.143 0.150 0.173 0.183

-0.8 0.212 0.197 0.205 0.247 0.257 0.200 0.208 0.237 0.245
-0.6 0.274 0.264 0.271 0.326 0.332 0.267 0.272 0.309 0.313
-0.4 0.345 0.340 0.343 0.413 0.413 0.341 0.342 0.388 0.390
-0.2 0.421 0.420 0.417 0.502 0.491 0.420 0.419 0.470 0.474
0 0.500 0.500 0.490 0.584 0.569 0.500 0.498 0.552 0.556

0.2 0.579 0.577 0.567 0.657 0.648 0.578 0.573 0.629 0.629
0.4 0.655 0.648 0.638 0.723 0.716 0.651 0.644 0.698 0.696
0.6 0.726 0.712 0.698 0.782 0.772 0.716 0.707 0.758 0.758
0.8 0.788 0.767 0.751 0.833 0.818 0.774 0.763 0.811 0.812
1 0.841 0.814 0.799 0.871 0.859 0.823 0.812 0.855 0.853

1.4 0.919 0.885 0.875 0.925 0.920 0.897 0.884 0.918 0.915
2 0.977 0.947 0.938 0.970 0.965 0.958 0.951 0.971 0.967

2.5 0.994 0.973 0.968 0.985 0.983 0.982 0.977 0.988 0.986
3 0.999 0.986 0.984 0.993 0.993 0.992 0.990 0.995 0.995

X05 -1.65 -1.46 -1.50 -1.58 -1.62 -1.47 -1.54 -1.59 -1.63
L.QT -0.67 -0.64 -0.66 -0.80 -0.82 -0.65 -0.67 -0.77 -0.79

MEDN 0 0.00 0.03 -0.20 -0.18 0.00 0.01 -0.14 -0.14
U.QT 0.67 0.73 0.80 0.49 0.52 0.71 0.75 0.55 0.57
X95 1.65 2.01 2.17 1.67 1.75 1.90 1.98 1.71 1.74
IQR 1.35 1.37 1.46 1.29 1.34 1.36 1.42 1.32 1.36

Table 2:
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n − K = 100, K2 = 10, α = 1
δ2 = 30 δ2 = 50

x normal LIML MEL TSLS GMM LIML MEL TSLS GMM
-3 0.001 0.001 0.001 0.000 0.001 0.001 0.000 0.000 0.001

-2.5 0.006 0.001 0.005 0.008 0.013 0.002 0.002 0.009 0.012
-2 0.023 0.011 0.020 0.063 0.072 0.012 0.018 0.047 0.066

-1.4 0.081 0.064 0.089 0.250 0.260 0.065 0.090 0.210 0.226
-1 0.159 0.149 0.178 0.457 0.458 0.147 0.174 0.392 0.394

-0.8 0.212 0.207 0.233 0.564 0.559 0.205 0.231 0.492 0.488
-0.6 0.274 0.275 0.296 0.662 0.651 0.272 0.294 0.592 0.578
-0.4 0.345 0.349 0.362 0.742 0.731 0.345 0.360 0.679 0.661
-0.2 0.421 0.425 0.433 0.811 0.798 0.423 0.428 0.752 0.733
0 0.500 0.500 0.507 0.865 0.854 0.500 0.497 0.815 0.794

0.2 0.579 0.572 0.574 0.905 0.895 0.574 0.565 0.867 0.845
0.4 0.655 0.637 0.635 0.935 0.925 0.644 0.631 0.904 0.888
0.6 0.726 0.696 0.688 0.957 0.947 0.705 0.691 0.933 0.920
0.8 0.788 0.747 0.733 0.970 0.962 0.759 0.742 0.953 0.942
1 0.841 0.791 0.777 0.979 0.973 0.806 0.786 0.968 0.959

1.4 0.919 0.859 0.845 0.991 0.985 0.876 0.856 0.986 0.980
2 0.977 0.923 0.906 0.998 0.995 0.939 0.925 0.997 0.994

2.5 0.994 0.952 0.938 1.000 0.998 0.967 0.959 0.999 0.998
3 0.999 0.971 0.959 1.000 1.000 0.982 0.977 1.000 0.999

X05 -1.65 -1.51 -1.66 -2.07 -2.11 -1.49 -1.68 -1.98 -2.09
L.QT -0.67 -0.67 -0.75 -1.40 -1.42 -0.66 -0.74 -1.31 -1.33

MEDN 0 0.00 -0.02 -0.92 -0.92 0.00 0.01 -0.77 -0.77
U.QT 0.67 0.81 0.88 -0.38 -0.35 0.76 0.83 -0.18 -0.15
X95 1.65 2.36 2.76 0.52 0.63 2.11 2.35 0.76 0.89
IQR 1.35 1.48 1.62 1.02 1.08 1.42 1.57 1.12 1.19

Table 3:
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n − K = 100, K2 = 10, α = 1
δ2 = 100 δ2 = 300

x normal LIML MEL TSLS GMM LIML MEL TSLS GMM
-3 0.001 0.000 0.000 0.001 0.002 0.000 0.000 0.001 0.001

-2.5 0.006 0.003 0.004 0.009 0.014 0.003 0.005 0.008 0.011
-2 0.023 0.013 0.020 0.046 0.055 0.016 0.022 0.036 0.043

-1.4 0.081 0.066 0.080 0.178 0.188 0.071 0.088 0.132 0.148
-1 0.159 0.148 0.166 0.328 0.337 0.152 0.171 0.251 0.260

-0.8 0.212 0.205 0.224 0.414 0.419 0.207 0.228 0.323 0.330
-0.6 0.274 0.271 0.290 0.501 0.505 0.272 0.290 0.402 0.403
-0.4 0.345 0.345 0.359 0.586 0.586 0.343 0.354 0.486 0.478
-0.2 0.421 0.423 0.429 0.667 0.660 0.421 0.425 0.571 0.555
0 0.500 0.500 0.504 0.739 0.726 0.500 0.500 0.645 0.628

0.2 0.579 0.575 0.577 0.804 0.785 0.578 0.572 0.712 0.694
0.4 0.655 0.647 0.642 0.855 0.832 0.652 0.635 0.776 0.753
0.6 0.726 0.712 0.698 0.893 0.869 0.718 0.693 0.831 0.806
0.8 0.788 0.769 0.748 0.922 0.901 0.778 0.748 0.873 0.853
1 0.841 0.818 0.793 0.944 0.927 0.829 0.798 0.908 0.892

1.4 0.919 0.893 0.869 0.974 0.968 0.905 0.880 0.956 0.944
2 0.977 0.955 0.941 0.992 0.991 0.966 0.952 0.985 0.979

2.5 0.994 0.979 0.970 0.998 0.998 0.988 0.975 0.995 0.990
3 0.999 0.990 0.985 0.999 1.000 0.996 0.989 0.999 0.997

X05 -1.65 -1.54 -1.61 -1.97 -2.04 -1.57 -1.65 -1.86 -1.94
L.QT -0.67 -0.66 -0.72 -1.17 -1.22 -0.66 -0.73 -0.99 -1.03

MEDN 0 0.00 -0.01 -0.59 -0.61 0.00 0.00 -0.36 -0.34
U.QT 0.67 0.73 0.81 0.05 0.08 0.70 0.81 0.31 0.39
X95 1.65 1.90 2.11 1.06 1.18 1.78 1.97 1.32 1.47
IQR 1.35 1.39 1.53 1.22 1.30 1.36 1.54 1.30 1.42

Table 4:
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n − K = 300, K2 = 30, α = 1
δ2 = 50 δ2 = 100

x normal LIML MEL TSLS GMM LIML MEL TSLS GMM
-3 0.001 0.000 0.002 0.033 0.042 0.000 0.001 0.022 0.035

-2.5 0.006 0.003 0.010 0.154 0.165 0.002 0.008 0.105 0.124
-2 0.023 0.019 0.034 0.400 0.417 0.016 0.030 0.302 0.309

-1.4 0.081 0.085 0.110 0.750 0.736 0.077 0.100 0.600 0.593
-1 0.159 0.170 0.195 0.893 0.870 0.160 0.182 0.773 0.758

-0.8 0.212 0.227 0.248 0.933 0.918 0.217 0.235 0.839 0.821
-0.6 0.274 0.231 0.308 0.959 0.950 0.280 0.299 0.889 0.873
-0.4 0.345 0.359 0.369 0.977 0.971 0.351 0.364 0.924 0.913
-0.2 0.421 0.430 0.432 0.988 0.983 0.425 0.428 0.951 0.941
0 0.500 0.500 0.494 0.994 0.991 0.500 0.495 0.968 0.962

0.2 0.579 0.567 0.556 0.997 0.996 0.573 0.561 0.980 0.977
0.4 0.655 0.630 0.616 0.999 0.998 0.641 0.626 0.988 0.986
0.6 0.726 0.687 0.670 1.000 1.000 0.703 0.684 0.993 0.992
0.8 0.788 0.739 0.718 1.000 1.000 0.758 0.736 0.995 0.996
1 0.841 0.783 0.756 1.000 1.000 0.806 0.779 0.997 0.998

1.4 0.919 0.852 0.822 1.000 1.000 0.879 0.853 1.000 1.000
2 0.977 0.920 0.895 1.000 1.000 0.946 0.922 1.000 1.000

2.5 0.994 0.953 0.931 1.000 1.000 0.974 0.957 1.000 1.000
3 0.999 0.972 0.953 1.000 1.000 0.988 0.977 1.000 1.000

X05 -1.65 -1.63 -1.82 -2.88 -2.95 -1.56 -1.77 -2.76 -2.87
L.QT -0.67 -0.75 -0.79 -2.28 -2.30 -0.69 -0.75 -2.10 -2.14

MEDN 0 0.00 0.02 -1.85 -1.85 0.00 0.02 -1.60 -1.59
U.QT 0.67 0.85 0.97 -1.40 -1.37 0.77 0.86 -1.07 -1.02
X95 1.65 2.48 2.94 -0.67 -0.60 2.08 2.38 -0.21 -0.12
IQR 1.35 1.60 1.76 0.88 0.94 1.46 1.61 1.03 1.11

Table 5:
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n − K = 100, K2 = 10, α = 1, ui = (χ2(3) − 3)/
√

6
δ2 = 30 δ2 = 50

x normal LIML MEL TSLS GMM LIML MEL TSLS GMM
-3 0.001 0.000 0.003 0.000 0.001 0.000 0.001 0.000 0.001

-2.5 0.006 0.001 0.007 0.011 0.012 0.002 0.004 0.012 0.010
-2 0.023 0.009 0.017 0.057 0.053 0.013 0.015 0.059 0.044

-1.4 0.081 0.058 0.067 0.243 0.211 0.067 0.069 0.218 0.188
-1 0.159 0.139 0.150 0.431 0.394 0.151 0.150 0.390 0.356

-0.8 0.212 0.196 0.201 0.535 0.492 0.208 0.206 0.484 0.448
-0.6 0.274 0.261 0.263 0.636 0.593 0.273 0.275 0.583 0.545
-0.4 0.345 0.333 0.334 0.724 0.689 0.343 0.348 0.669 0.634
-0.2 0.421 0.409 0.409 0.796 0.772 0.423 0.424 0.742 0.712
0 0.500 0.487 0.491 0.852 0.838 0.504 0.505 0.804 0.780

0.2 0.579 0.561 0.568 0.895 0.885 0.579 0.582 0.858 0.835
0.4 0.655 0.631 0.637 0.927 0.919 0.648 0.649 0.899 0.883
0.6 0.726 0.694 0.699 0.951 0.946 0.710 0.708 0.929 0.920
0.8 0.788 0.744 0.753 0.968 0.964 0.764 0.760 0.952 0.948
1 0.841 0.784 0.795 0.979 0.977 0.808 0.804 0.969 0.965

1.4 0.919 0.855 0.860 0.992 0.991 0.878 0.875 0.988 0.987
2 0.977 0.921 0.922 0.998 0.999 0.939 0.936 0.997 0.997

2.5 0.994 0.951 0.953 0.999 1.000 0.968 0.962 0.999 0.999
3 0.999 0.970 0.967 1.000 1.000 0.982 0.979 1.000 1.000

X05 -1.65 -1.46 -1.51 -2.04 -2.02 -1.52 -1.53 -2.06 -1.96
L.QT -0.67 -0.63 -0.64 -1.38 -1.31 -0.67 -0.67 -1.32 -1.24

MEDN 0 0.04 0.02 -0.87 -0.78 -0.01 -0.01 -0.77 -0.69
U.QT 0.67 0.83 0.79 -0.33 -0.26 0.75 0.76 -0.17 -0.09
X95 1.65 2.49 2.43 0.59 0.64 2.17 2.24 0.78 0.82
IQR 1.35 1.46 1.43 1.05 1.05 1.42 1.43 1.14 1.15

Table 6:

B-6



n − K = 100, K2 = 10, α = 1, ui = t(5)
δ2 = 30 δ2 = 50

x normal LIML MEL TSLS GMM LIML MEL TSLS GMM
-3 0.001 0.000 0.002 0.002 0.001 0.000 0.001 0.000 0.002

-2.5 0.006 0.001 0.006 0.013 0.012 0.001 0.005 0.011 0.010
-2 0.023 0.011 0.022 0.062 0.054 0.012 0.016 0.053 0.047

-1.4 0.081 0.060 0.082 0.246 0.218 0.064 0.070 0.204 0.183
-1 0.159 0.143 0.162 0.442 0.408 0.139 0.156 0.374 0.346

-0.8 0.212 0.200 0.222 0.550 0.513 0.192 0.210 0.475 0.444
-0.6 0.274 0.270 0.290 0.650 0.613 0.257 0.273 0.573 0.545
-0.4 0.345 0.348 0.362 0.738 0.702 0.333 0.344 0.662 0.635
-0.2 0.421 0.428 0.437 0.810 0.777 0.413 0.419 0.742 0.718
0 0.500 0.504 0.508 0.864 0.841 0.492 0.495 0.807 0.789

0.2 0.579 0.577 0.572 0.904 0.890 0.563 0.565 0.861 0.842
0.4 0.655 0.643 0.632 0.933 0.925 0.630 0.631 0.900 0.885
0.6 0.726 0.703 0.690 0.955 0.949 0.698 0.690 0.929 0.918
0.8 0.788 0.753 0.739 0.971 0.967 0.757 0.742 0.952 0.944
1 0.841 0.794 0.781 0.982 0.978 0.805 0.787 0.967 0.963

1.4 0.919 0.856 0.847 0.993 0.990 0.875 0.860 0.985 0.985
2 0.977 0.921 0.909 0.998 0.997 0.942 0.927 0.997 0.997

2.5 0.994 0.953 0.940 0.999 0.999 0.968 0.960 1.000 0.999
3 0.999 0.971 0.958 1.000 1.000 0.983 0.977 1.000 1.000

X05 -1.65 -1.47 -1.65 -2.07 -2.03 -1.51 -1.55 -2.02 -1.97
L.QT -0.67 -0.65 -0.72 -1.39 -1.32 -0.62 -0.67 -1.28 -1.22

MEDN 0 -0.01 -0.02 -0.89 -0.82 0.02 0.01 -0.75 -0.69
U.QT 0.67 0.79 0.85 -0.37 -0.28 0.77 0.83 -0.18 -0.12
X95 1.65 2.44 2.76 0.54 0.62 2.12 2.33 0.78 0.86
IQR 1.35 1.44 1.56 1.02 1.05 1.39 1.50 1.10 1.10

Table 7:
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n − K = 30, K2 = 3, α = 1, ui = ‖Zi‖εi

δ2 = 30 δ2 = 100
x normal LIML MEL TSLS GMM LIML MEL TSLS GMM
-3 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

-2.5 0.006 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001
-2 0.023 0.003 0.007 0.007 0.009 0.007 0.012 0.010 0.015

-1.4 0.081 0.042 0.052 0.066 0.071 0.049 0.067 0.066 0.080
-1 0.159 0.121 0.130 0.176 0.173 0.121 0.149 0.154 0.176

-0.8 0.212 0.180 0.186 0.255 0.249 0.179 0.204 0.223 0.242
-0.6 0.274 0.250 0.251 0.342 0.335 0.249 0.270 0.303 0.318
-0.4 0.345 0.328 0.330 0.431 0.426 0.329 0.344 0.387 0.401
-0.2 0.421 0.412 0.412 0.524 0.519 0.410 0.426 0.473 0.488
0 0.500 0.495 0.494 0.612 0.609 0.493 0.506 0.560 0.569

0.2 0.579 0.574 0.571 0.687 0.685 0.576 0.584 0.644 0.646
0.4 0.655 0.644 0.641 0.749 0.750 0.653 0.658 0.714 0.716
0.6 0.726 0.704 0.703 0.807 0.806 0.720 0.720 0.774 0.778
0.8 0.788 0.761 0.756 0.855 0.851 0.779 0.776 0.827 0.833
1 0.841 0.806 0.797 0.890 0.883 0.828 0.825 0.870 0.875

1.4 0.919 0.870 0.860 0.932 0.930 0.899 0.892 0.930 0.926
2 0.977 0.928 0.924 0.969 0.971 0.955 0.947 0.973 0.968

2.5 0.994 0.955 0.956 0.984 0.985 0.977 0.974 0.987 0.987
3 0.999 0.973 0.975 0.991 0.992 0.988 0.988 0.994 0.996

X05 -1.65 -1.35 -1.42 -1.49 -1.53 -1.39 -1.51 -1.52 -1.57
L.QT -0.67 -0.60 -0.60 -0.81 -0.80 -0.60 -0.66 -0.73 -0.78

MEDN 0 0.01 0.02 -0.25 -0.24 0.02 -0.02 -0.14 -0.17
U.QT 0.67 0.76 0.78 0.40 0.40 0.70 0.71 0.52 0.51
X95 1.65 2.40 2.40 1.65 1.62 1.93 2.05 1.62 1.70
IQR 1.35 1.36 1.38 1.21 1.20 1.29 1.36 1.25 1.29

Table 8:
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n − K = 100, K2 = 10, α = 1, ui = ‖Zi‖εi

δ2 = 50 δ2 = 100
x normal LIML MEL TSLS GMM LIML MEL TSLS GMM
-3 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.002

-2.5 0.006 0.000 0.003 0.010 0.011 0.002 0.003 0.009 0.013
-2 0.023 0.011 0.017 0.056 0.057 0.014 0.020 0.045 0.054

-1.4 0.081 0.068 0.080 0.227 0.224 0.066 0.080 0.177 0.190
-1 0.159 0.153 0.167 0.410 0.406 0.147 0.165 0.340 0.335

-0.8 0.212 0.213 0.227 0.509 0.500 0.205 0.221 0.433 0.417
-0.6 0.274 0.279 0.292 0.606 0.590 0.276 0.282 0.523 0.502
-0.4 0.345 0.350 0.362 0.693 0.679 0.355 0.350 0.608 0.588
-0.2 0.421 0.430 0.439 0.767 0.755 0.436 0.422 0.689 0.663
0 0.500 0.508 0.511 0.827 0.816 0.517 0.491 0.759 0.729

0.2 0.579 0.581 0.579 0.873 0.866 0.592 0.563 0.816 0.787
0.4 0.655 0.646 0.642 0.909 0.904 0.660 0.629 0.862 0.840
0.6 0.726 0.708 0.703 0.938 0.933 0.722 0.689 0.897 0.885
0.8 0.788 0.761 0.754 0.959 0.953 0.776 0.743 0.925 0.918
1 0.841 0.805 0.794 0.973 0.967 0.820 0.792 0.947 0.942

1.4 0.919 0.870 0.860 0.988 0.984 0.889 0.869 0.975 0.970
2 0.977 0.935 0.923 0.998 0.997 0.952 0.935 0.994 0.991

2.5 0.994 0.964 0.953 1.000 0.999 0.978 0.966 0.998 0.997
3 0.999 0.981 0.971 1.000 1.000 0.991 0.984 1.000 1.000

X05 -1.65 -1.52 -1.60 -2.05 -2.05 -1.52 -1.64 -1.96 -2.03
L.QT -0.67 -0.69 -0.73 -1.34 -1.34 -0.67 -0.70 -1.20 -1.22

MEDN 0 -0.02 -0.03 -0.82 -0.80 -0.04 0.03 -0.65 -0.60
U.QT 0.67 0.76 0.78 -0.25 -0.21 0.70 0.83 -0.03 0.07
X95 1.65 2.23 2.43 0.71 0.76 1.97 2.20 1.03 1.09
IQR 1.35 1.44 1.51 1.10 1.12 1.37 1.53 1.18 1.29

Table 9:
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n − K = 300, K2 = 30, α = 1, ui = ‖Zi‖εi

δ2 = 50 δ2 = 100
x normal LIML MEL TSLS GMM LIML MEL TSLS GMM
-3 0.001 0.000 0.002 0.035 0.045 0.000 0.000 0.022 0.030

-2.5 0.006 0.005 0.010 0.159 0.169 0.002 0.005 0.111 0.118
-2 0.023 0.021 0.031 0.424 0.419 0.016 0.024 0.314 0.312

-1.4 0.081 0.082 0.100 0.763 0.743 0.075 0.091 0.614 0.599
-1 0.159 0.171 0.188 0.901 0.888 0.161 0.178 0.788 0.767

-0.8 0.212 0.226 0.241 0.943 0.931 0.217 0.231 0.853 0.830
-0.6 0.274 0.286 0.299 0.969 0.959 0.284 0.295 0.899 0.880
-0.4 0.345 0.351 0.364 0.983 0.976 0.355 0.361 0.931 0.918
-0.2 0.421 0.422 0.428 0.991 0.986 0.427 0.427 0.954 0.944
0 0.500 0.493 0.491 0.995 0.993 0.499 0.495 0.970 0.962

0.2 0.579 0.560 0.551 0.998 0.996 0.568 0.563 0.981 0.975
0.4 0.655 0.622 0.605 0.999 0.999 0.635 0.626 0.988 0.984
0.6 0.726 0.678 0.660 1.000 1.000 0.696 0.683 0.993 0.991
0.8 0.788 0.729 0.710 1.000 1.000 0.752 0.732 0.996 0.995
1 0.841 0.775 0.757 1.000 1.000 0.801 0.777 0.998 0.998

1.4 0.919 0.845 0.826 1.000 1.000 0.880 0.849 1.000 1.000
2 0.977 0.912 0.893 1.000 1.000 0.941 0.923 1.000 1.000

2.5 0.994 0.947 0.931 1.000 1.000 0.972 0.958 1.000 1.000
3 0.999 0.970 0.952 1.000 1.000 0.987 0.976 1.000 1.000

X05 -1.65 -1.62 -1.77 -2.90 -2.97 -1.56 -1.70 -2.76 -2.83
L.QT -0.67 -0.72 -0.77 -2.30 -2.31 -0.70 -0.74 -2.14 -2.14

MEDN 0 0.02 0.03 -1.87 -1.86 0.00 0.01 -1.63 -1.60
U.QT 0.67 0.89 0.97 -1.43 -1.39 0.79 0.88 -1.10 -1.05
X95 1.65 2.55 2.97 -0.76 -0.68 2.13 2.34 -0.25 -0.14
IQR 1.35 1.61 1.73 0.87 0.92 1.49 1.61 1.04 1.09

Table 10:
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n − K = 1000, K2 = 100, α = 1, δ2 = 100
ui = N(0, 1) ui = ‖Zi‖εi

x normal LIML TSLS GMM LIML TSLS GMM
-3 0.001 0.002 0.817 0.803 0.002 0.834 0.808

-2.5 0.006 0.009 0.961 0.947 0.010 0.965 0.952
-2 0.023 0.032 0.994 0.993 0.035 0.998 0.995

-1.4 0.081 0.111 1.000 1.000 0.111 1.000 1.000
-1 0.159 0.191 1.000 1.000 0.200 1.000 1.000

-0.8 0.212 0.243 1.000 1.000 0.253 1.000 1.000
-0.6 0.274 0.306 1.000 1.000 0.308 1.000 1.000
-0.4 0.345 0.370 1.000 1.005 0.368 1.000 1.000
-0.2 0.421 0.434 1.000 1.000 0.433 1.000 1.000
0 0.500 0.499 1.000 1.000 0.497 1.000 1.000

0.2 0.579 0.564 1.000 1.000 0.557 1.000 1.000
0.4 0.655 0.623 1.000 1.000 0.617 1.000 1.000
0.6 0.726 0.677 1.000 1.000 0.673 1.000 1.000
0.8 0.788 0.728 1.000 1.000 0.722 1.000 1.000
1 0.841 0.774 1.000 1.000 0.765 1.000 1.000

1.4 0.919 0.851 1.000 1.000 0.839 1.000 1.000
2 0.977 0.920 1.000 1.000 0.912 1.000 1.000

2.5 0.994 0.957 1.000 1.000 0.949 1.000 1.000
3 0.999 0.979 1.000 1.000 0.972 1.000 1.000

X05 -1.65 -1.82 -4.46 -4.51 -1.84 -4.44 -4.49
L.QT -0.67 -0.78 -3.89 -3.92 -0.81 -3.91 -3.93

MEDN 0 0.00 -3.53 -3.53 0.01 -3.54 -3.53
U.QT 0.67 0.89 -3.14 -3.12 0.93 -3.17 -3.12
X95 1.65 2.39 -2.57 -2.49 2.51 -2.59 -2.51
IQR 1.35 1.67 0.75 0.80 1.74 0.75 0.81

Table 11:
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n − K = 300, K2 = 30, δ2 = 100
α = 0 α = 5

x normal LIML MEL TSLS GMM LIML MEL TSLS GMM
-3 0.001 0.006 0.014 0.000 0.001 0.000 0.000 0.088 0.108

-2.5 0.006 0.017 0.030 0.003 0.005 0.000 0.000 0.319 0.333
-2 0.023 0.044 0.064 0.012 0.016 0.007 0.011 0.636 0.622

-1.4 0.081 0.115 0.146 0.055 0.066 0.055 0.067 0.883 0.863
-1 0.159 0.193 0.226 0.130 0.146 0.137 0.155 0.953 0.943

-0.8 0.212 0.244 0.277 0.187 0.203 0.196 0.213 0.971 0.966
-0.6 0.274 0.300 0.333 0.252 0.271 0.265 0.280 0.983 0.979
-0.4 0.345 0.364 0.391 0.328 0.346 0.340 0.352 0.991 0.986
-0.2 0.421 0.430 0.449 0.415 0.425 0.420 0.430 0.994 0.992
0 0.500 0.500 0.507 0.502 0.506 0.500 0.506 0.996 0.995

0.2 0.579 0.570 0.567 0.585 0.587 0.577 0.578 0.997 0.998
0.4 0.655 0.636 0.627 0.666 0.666 0.648 0.643 0.999 0.999
0.6 0.726 0.700 0.684 0.744 0.737 0.712 0.704 0.999 1.000
0.8 0.788 0.756 0.736 0.814 0.800 0.768 0.761 1.000 1.000
1 0.841 0.807 0.784 0.870 0.855 0.815 0.806 1.000 1.000

1.4 0.919 0.885 0.862 0.943 0.931 0.886 0.876 1.000 1.000
2 0.977 0.956 0.937 0.987 0.983 0.950 0.940 1.000 1.000

2.5 0.994 0.983 0.970 0.998 0.997 0.976 0.970 1.000 1.000
3 0.999 0.994 0.987 1.000 1.000 0.989 0.983 1.000 1.000

X05 -1.65 -1.90 -2.16 -1.44 -1.53 -1.43 -1.52 -3.14 -3.24
L.QT -0.67 -0.78 -0.90 -0.60 -0.66 -0.64 -0.69 -2.63 -2.65

MEDN 0 0.00 -0.02 0.00 -0.01 0.00 -0.02 -2.22 -2.22
U.QT 0.67 0.78 0.86 0.60 0.64 0.73 0.76 -1.77 -1.73
X95 1.65 1.93 2.14 1.46 1.56 1.98 2.14 -1.02 -0.96
IQR 1.35 1.56 1.76 1.19 1.30 1.37 1.45 0.86 0.92

Table 12:
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n − K = 30, K2 = 3, α = 5
δ2 = 30 δ2 = 100

x normal LIML MEL TSLS GMM LIML MEL TSLS GMM
-3 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

-2.5 0.006 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002
-2 0.023 0.001 0.002 0.004 0.009 0.006 0.009 0.010 0.013

-1.4 0.081 0.031 0.042 0.067 0.084 0.049 0.058 0.073 0.080
-1 0.159 0.117 0.132 0.207 0.220 0.134 0.142 0.177 0.186

-0.8 0.212 0.182 0.197 0.294 0.304 0.189 0.200 0.244 0.253
-0.6 0.274 0.257 0.270 0.389 0.394 0.253 0.263 0.322 0.330
-0.4 0.345 0.341 0.352 0.479 0.487 0.330 0.339 0.405 0.408
-0.2 0.421 0.424 0.428 0.561 0.571 0.409 0.412 0.489 0.490
0 0.500 0.502 0.507 0.644 0.644 0.492 0.492 0.573 0.573

0.2 0.579 0.580 0.583 0.720 0.712 0.576 0.572 0.656 0.651
0.4 0.655 0.655 0.650 0.778 0.767 0.650 0.644 0.720 0.715
0.6 0.726 0.713 0.706 0.824 0.815 0.715 0.704 0.778 0.771
0.8 0.788 0.768 0.756 0.862 0.856 0.773 0.761 0.829 0.820
1 0.841 0.810 0.794 0.893 0.883 0.821 0.807 0.867 0.858

1.4 0.919 0.869 0.859 0.930 0.924 0.891 0.880 0.924 0.917
2 0.977 0.930 0.917 0.965 0.963 0.953 0.944 0.969 0.965

2.5 0.994 0.958 0.948 0.983 0.980 0.981 0.976 0.989 0.986
3 0.999 0.975 0.966 0.990 0.989 0.993 0.989 0.995 0.994

X05 -1.96 -1.27 -1.34 -1.48 -1.55 -1.39 -1.45 -1.54 -1.58
L.QT -0.67 -0.62 -0.65 -0.89 -0.93 -0.61 -0.64 -0.78 -0.81

MEDN 0 -0.01 -0.02 -0.35 -0.37 0.02 0.02 -0.17 -0.18
U.QT 0.67 0.73 0.78 0.30 0.34 0.72 0.76 0.50 0.53
X95 1.96 2.35 2.54 1.73 1.76 1.96 2.09 1.69 1.78
IQR 1.35 1.34 1.43 1.19 1.26 1.33 1.40 1.29 1.33

Table 13:
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Figure 1: n − K = 30, K2 = 3, α = 1, δ2 = 10
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Figure 2: n − K = 30, K2 = 3, α = 1, δ2 = 30
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Figure 3: n − K = 30, K2 = 3, α = 1, δ2 = 50
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Figure 4: n − K = 30, K2 = 3, α = 1, δ2 = 100
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Figure 5: n − K = 100, K2 = 10, α = 1, δ2 = 30
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Figure 6: n − K = 100, K2 = 10, α = 1, δ2 = 50
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Figure 7: n − K = 100, K2 = 10, α = 1, δ2 = 100
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Figure 8: n − K = 100, K2 = 10, α = 1, δ2 = 300
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Figure 9: n − K = 300, K2 = 30, α = 1, δ2 = 50
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Figure 10: n − K = 300, K2 = 30, α = 1, δ2 = 100
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Figure 11: n − K = 100, K2 = 10, α = 1, δ2 = 30, ui = χ2(3)−3√
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Figure 12: n − K = 100, K2 = 10, α = 1, δ2 = 50, ui = χ2(3)−3√
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Figure 13: n − K = 100, K2 = 10, α = 1, δ2 = 30, ui = t(5)
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Figure 14: n − K = 100, K2 = 10, α = 1, δ2 = 50, ui = t(5)
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Figure 15: n − K = 30, K2 = 3, α = 1, δ2 = 30, ui = ‖zi‖εi
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Figure 16: n − K = 30, K2 = 3, α = 1, δ2 = 100, ui = ‖zi‖εi
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Figure 17: n − K = 100, K2 = 10, α = 1, δ2 = 50, ui = ‖zi‖εi
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Figure 18: n − K = 100, K2 = 10, α = 1, δ2 = 100, ui = ‖zi‖εi
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Figure 19: n − K = 300, K2 = 30, α = 1, δ2 = 50, ui = ‖zi‖εi
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Figure 20: n − K = 300, K2 = 30, α = 1, δ2 = 100, ui = ‖zi‖εi
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Figure 21: n − K = 1000, K2 = 100, α = 1, δ2 = 100
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Figure 22: n − K = 1000, K2 = 100, α = 1, δ2 = 100, ui = ‖zi‖εi
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Figure 23: n − K = 300, K2 = 30, α = 0, δ2 = 100
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Figure 24: n − K = 300, K2 = 30, α = 5, δ2 = 100
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Figure 25: n − K = 30, K2 = 3, α = 5, δ2 = 30
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Figure 26: n − K = 30, K2 = 3, α = 5, δ2 = 100
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