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Abstract

The use of seasonally adjusted (official) data may have statistical problem because it is a com-
mon practice to use X-12-ARIMA in the official seasonal adjustment, which adopts the univariate
ARIMA time series modeling with some refinements. Instead of using the seasonally adjusted
data, for estimating the structural parameters and relationships among non-stationary economic
time series with seasonality and noise, we propose a new method called the Separating Informa-
tion Maximum Likelihood (SIML) estimation. We show that the SIML estimation can identify
the nonstationary trend, the seasonality and the noise components, which have been observed in
many macro-economic time series, and recover the structural parameters and relationships among
the non-stationary trends with seasonality. The SIML estimation is consistent and it has the
asymptotic normality when the sample size is large. Based on simulations, we find that the SIML
estimator has reasonable finite sample properties and thus it would be useful for practice.
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1. Introduction

There have been vast literatures on the use of statistical time series

analysis of macro economic time series. One important distinction of

macro-economic time series from the standard time series analysis in

other areas has been the mixture of non-stationarity and measurement

errors including the apparent seasonality although the analysis of sea-

sonality in economic time series has been often ignored. Although

there have been many attempts to deal with the stationarity, the non-

stationarity and seasonality separately in macro-economic time series

analysis, there have been some need to incorporate these different as-

pects of economic time series in a unifying way.

For an expository purpose, we illustrate two macro time series in

Figure 1-1, which gives the original quarterly data of the real GDP

and fixed investment published by the Cabinet Office of Japanese Gov-

ernment. We have standardized two time series such that the data in

scale have the similar value such that we can observe clear common

trends, common seasonality and noise in two important time series,

which are quite typical in Japanese quarterly GDP data. An inter-

esting empirical question here would be to find reasonable estimates

of correlations of trends and seasonalities among two nonstationary

macro time series we observe quarterly.

The use of seasonally adjusted data has been a common practice

among many economists in business, but then we have to cope with

2



the problem of the official seasonal adjustments method producing the

published data for macro-economic variables. It has been a common

practice to use X-12-ARIMA in many official agencies including the

Cabinet office of the Japanese Government (i.e. they produce the

official GDP in Japan), but usually they use the univariate ARIMA

time series modeling with some refinements, which has been a common

practice since Box and Jenkins (1970). (See Findley et al. (1998) for

the details of X-12-ARIMA.)

In this paper, instead of using the seasonally adjusted data and

investigate the statistical relationships among macro time series, we

propose to use the separating information maximum likelihood (SIML)

estimation method, which is new to the macro-time series analysis. We

shall show that this macro-SIML method is useful to identify the trend,

the seasonal, the cycle, and the irregular noise components in the

non-stationary errors-in-variables model. The statistical time series

model we shall use is an extension of the univariate decomposition

of its components by Akaike (1980) and Kitagawa (2010) in different

perspectives.

There have been many studies on the errors-in-variables models,

which are closely related to the classical multivariate analysis includ-

ing the factor models and simultaneous equations models. (See An-

derson (1984, 2003) and Fuller (1987) for the related issues.) It has

been known that there are serious identification problems occurred

in the classical errors-in-variables models and the estimation problem

3



of unknown parameters in the underlying hidden variables has some

difficulty. In this paper we shall show that in the mixture of non-

stationary and stationary components including the seasonal factor

we can identify the unknown parameters generating the hidden time

series components. The typical examples are the variance-covariance

matrix of the hidden trend variables which follow the random walks

and the variance-covariance matrix of the hidden seasonal variables.

We shall show that the SIML estimation can estimate the trend, the

seasonality and noise components from the observed time series, and

recover the structural relationships among the non-stationary trend

and seasonality. Also we show that the SIML estimator is consistent

and it has the asymptotic normality when the sample size is large.

Based on a set of simulations, we find that the SIML estimator has

reasonable finite sample properties and thus it would be useful for

practice.

A motivation of our study is the fact that it is not a trivial task to

handle the exact likelihood function and calculate the exact ML es-

timator of structural relationships among trends from non-stationary

time series data when the observed time series have seasonality and

noise in the nonstationary errors-in-variables models. This aspect is

quite important for the analysis of multivariate macro-economic time

series because the modeling the seasonality and noise could have pos-

sible misspecifications. In this paper we regard the seasonality and

noise as the measurement errors. Instead of calculating the exact like-
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lihood function, we try to separate the information of the signal part

and the measurement errors part from the likelihood function and

then use each information separately. This procedure approximates

the maximization of the likelihood function and make the estimation

procedure applicable to multivariate non-stationary time series data

in a straightforward manner. We denote our estimation method as

the Separating Information Maximum Likelihood (SIML) estimator

because it gives an extension of the standard ML estimation method.

The main merit of the SIML estimation is its simplicity and then it

can be practically used for the multivariate non-stationary economic

time series.

Earlier and related literatures in econometrics are Engle and Granger

(1987) and Johansen (1995), which have dealt with the multivariate

nonstationary and stationary time series and developed the notion of

co-integration. The problem of the present paper is related to their

work, but has different aspects because of our analysis on the non-

stationary seasonality and measurement errors in the nonstationary

errors-in-variable models. Also our approach is related to the earlier

studies of Engle (1974) and Phillips (1991) on the spectral regression

analysis since our estimation method is related to the spectral analysis

of trend, seasonal and noise frequencies because the former considred

the stationary time series while the latter investigated only the non-

stationary trends. In this sense our analysis could be regarded as an

extension of their earlier works.
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In Section 2 we present a general formulation of the problem and

give simple examples to illustrate the problem in this paper. Then

in Section 3 we develop the nonstationary model with random walk

plus noise, and in Section 4 we develop the macro-SIML estimation

method. In Section 5 we discuss our method to analyze the seasonal

components. In Section 6 we discuss some simulation results and then

we have some concluding remarks in Section 7. The proofs of The-

orems in this paper are based on the modifications of the results by

Kunitomo and Sato (2008, 2011, 2013) for the financial-SIML estima-

tion. Since they are often quite similar to their mathematical proofs,

we omit the details in this version.

2. The general problem and some examples

2.1 The general problem

Let yij be the i−th observation of the j−th time series at i for i =

1, · · · , n; j = 1, · · · , p. We set yi = (y1i, · · · , ypi)
′
be a p× 1 vector and

Yn = (y
′

i) (= (yij)) be an n×pmatrix of observations. (y0 is the initial

observation vector.) We consider the situation when the underlying

non-stationary trends xi (= (xji)) (i = 1, · · · , n) are not necessarily

the same as the observed time series and let s
′

i = (s1i, · · · , spi) and

v
′

i = (v1i, · · · , vpi) be the vectors of the seasonal components, and the

noise components, respectively, which are independent of xi. Then we
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use the additive decomposition model (see Kitagawa (2010))

yi = xi + si + vi (i = 1, · · · , n),(2.1)

where xi (i = 1, · · · , n) are a sequence of non-stationary trend compo-

nents satisfying

∆xi = (1− L)xi = w
(x)
i(2.2)

with Lxi = xi−1, ∆ = 1 − L, E(w(x)
i ) = 0, E(w(x)

i w
(x)′

i ) = Σx, and

si (i = 1, · · · , n) are a sequence of seasonal components satisfying

(1− Ls)si = w
(s)
i(2.3)

or alternatively

(1 + L+ · · ·+ Ls−1)si = w
(s)
i(2.4)

with Lssi = si−s, E(w(s)
i ) = 0, E(w(s)

i w
(s)′

i ) = Σs, and vi are a sequence

of independent noise components with E(vi) = 0, E(viv
′

i) = Σv.

We assume that w
(x)
i ,w

(s)
i and vi are the sequence of i.i.d. random

variables with Σv being positive definite and finite, and the random

variables w
(x)
i ,w

(s)
i and vi are mutually independent.

The main purpose of this study is to estimate the structural pa-

rameters and the structural relationships among the hidden random

variables; the trend components and seasonal components in partic-

ular when we have stationary and non-stationary errors-in-variables

models. Let β be a p× 1 vector and we want to estimate

β
′
xi = Op(1) (i = 1, · · · , n),(2.5)

when we have the observations of p×1 vectors yi (i = 1, · · · , n). More
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generally, let B be a q × p (q ≤ p) matrix and we want to estimate

Bxi = Op(1) (i = 1, · · · , n)(2.6)

when we have the observations of p × 1 vectors yi (i = 1, · · · , n).

Similarly, some structural relations among seasonal components can

be written as

Bssi = Op(1) (i = 1, · · · , n),(2.7)

and they imply that the observed multivariate time series have com-

mon seasonality.

2.2 Examples

We give simple examples when p = 2 for illustrating the problem of

nonstationary errors-in-variables models.

Example 1 : Assume that for the sequence of observable random

vectors yi = (y1i, y2i)
′
, the random variables x1i = νi = β2µi and

x2i = µi satisfy µi = µi−1 + w
(x)
i (i = 1, · · · , n) and w

(x)
i are i.i.d.

random variables with E(w(x)
i ) = 0 and E(w(x)2

i ) = σ2
x. Then we can

write

yi =

 β2

1

µi + vi .(2.8)

Since µi follows the random walk model, the invariance (CLT) princi-

ple says that as n → ∞,

1

n2

n∑
i=1

µ2
i

p−→ σ2
x

∫ 1

0
B2

sds ,(2.9)

where Bs is the standard Brownian Motion on [0, 1].

If we multiply the vector β
′
= (1,−β2) to (2.7) from the left, we have
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the relation

β
′
yi = ui (= β

′
vi) ,(2.10)

which is a structural equation.

Example 2 : We take the case when xi = µi, and µi = µi−1 +w
(x)
i ,

which has been often called spurious regression. It can be written as

yi =

 1 0

0 1

µi + vi(2.11)

and the dimension of random walk is 2 and β
′
yi = β

′
µi + ui , ui =

β
′

xvi for any β ̸= 0 (the non-stationary term of β
′
µi cannot be disap-

peared).

Example 3 : Assume that the random vectors si = (s1i, s2i)
′
with

s1i = ν
(s)
i = β

(s)
2 µ

(s)
i and s2i = µ

(s)
i satisfy µ

(s)
i = µ

(s)
i−s + w

(s)
i (s ≥

1 ; i = 1, · · · , n) and w
(s)
i are i.i.d. random variables with E(w(s)

i ) = 0

and E(w(s)2
i ) = σ2

s . Then we can write

yi =

 β
(s)
2

1

µi + vi .(2.12)

If we multiply the vector β
′

s = (1,−β
(s)
2 ) to (2.11) from the left, we

have the relation

β
′

syi = ui (= β
′

svi)(2.13)

and yi has the common seasonal components.

Example 4 : We consider the situation when xi = µi, µi = µi−1 +

w
(x)
i with Σx = σ2

xI2 (which is proportional to the identity) as the
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nonstationary trends and si = (s1i, s2i)
′
with s1i = ν

(s)
i = β

(s)
2 µ

(s)
i ,

s2i = µ
(s)
i , µ

(s)
i = µ

(s)
i−s + w

(s)
i (w

(s)
i are i.i.d. random variables) and

Σs ≥ 0 (non-negative definite) as the nonstationary seasonals. In

this case nonstationary trends do not have any common trend, but

there is a common nonstationary seasonals. The standard regression

of one nonstationary variable on another nonstationary variable does

not necessarily give any meaningful information on the underlying

relationships with trends and seasonals.

3. The Case without Seasonality

Let p ≥ 2 and si = 0. We consider the multivariate time series

model having the representation

yi = xi + vi = Πµi + vi ,(3.1)

where w
(x)
i = ∆xi, E(w(x)

i ) = 0, and E(w(x)
i w

(x)′

i ) = Σx. We assume

that the rank of p× q matrix Π is q (≤ p), µi are q × 1 vectors, and

there exists a q × p matrix B such that Byi = ui (= Bvi), which are

the set of q structural equations.

We consider the situation when ∆xi and vi (i = 1, · · · , n) are in-

dependent and each component vectors are independently, identically

and normally distributed asNp(0,Σx) andNp(0,Σv), respectively. We

use an n× p matrix Yn = (y
′

i) and consider the distribution of np× 1

random vector (y
′

1, · · · ,y
′

n)
′
. Given the initial condition y0, we have
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Yn ∼ Nn×p

(
1n · y

′

0, In ⊗Σv +CnC
′

n ⊗Σx

)
,(3.2)

where 1
′

n = (1, · · · , 1) and

Cn =



1 0 · · · 0 0

1 1 0 · · · 0

1 1 1 · · · 0

1 · · · 1 1 0

1 · · · 1 1 1


n×n

.(3.3)

Then given the initial condition y0 the maximum likelihood (ML) esti-

mator can be defined as the solution of maximizing the log-likelihood

function except a constant as

L∗
n = log |In ⊗Σv +CnC

′

n ⊗Σx|−1/2

−1

2
[vec(Yn − Ȳ0)

′
]
′
[In ⊗Σv +CnC

′

n ⊗Σx]
−1[vec(Yn − Ȳ0)

′
]

and

Ȳ0 = 1n · y
′

0 .(3.4)

We transform Yn to Zn (= (z
′

k)) by

Zn = PnC
−1
n

(
Yn − Ȳ0

)
(3.5)

where

C−1
n =



1 0 · · · 0 0

−1 1 0 · · · 0

0 −1 1 0 · · ·

0 0 −1 1 0

0 0 0 −1 1


n×n

,(3.6)
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and

Pn = (p
(n)
jk ) , p

(n)
jk =

√√√√√ 2

n+ 1
2

cos

[
2π

2n+ 1
(k − 1

2
)(j − 1

2
)

]
.(3.7)

By using the spectral decomposition C−1
n C

′−1
n = PnDnP

′

n and Dn is

a diagonal matrix with the k-th element

dk = 2[1− cos(π(
2k − 1

2n+ 1
))] (k = 1, · · · , n) .

Then the log-likelihood function is proportional to

Ln =
n∑

k=1

log |aknΣv +Σx|−1/2 − 1

2

n∑
k=1

z
′

k[aknΣv +Σx]
−1zk ,(3.8)

where

akn (= dk) = 4 sin2
[
π

2

(
2k − 1

2n+ 1

)]
(k = 1, · · · , n) .(3.9)

Since we are dealing with the errors-in-variables model, there is an

issue if we can identify the structural equation of our interest. When

xi are i.i.d. random variables, for instance, the coefficient parameters

are not identified without some further restrictions. In the classi-

cal case when the observed random vectors {yi} are independent, we

need to impose some conditions on the covariance matrix (such as the

homoscedasticity and zero covariance) when we have the functional

relationship model in Example 1 except xi (= µi ; i = 1, · · · , n) with

1

n

n∑
i=1

µ2
i

p−→ σ2
x .(3.10)

(See Fuller (1987) for the details of such conditions.) Here we say that

the parameter vector θ (= (θj)) is identified if θ ̸= θ
′
implies that

Ln(θ) ̸= Ln(θ
′
).
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We illustrate our arguments on the likelihood function when p = 2 and

q = 1. If Σx is degenerate (i.e. rank(Σx) < p) and we set Σv → 0 in

(3.8), it is not obvious to have the (finite) maximum of the likelihood

function. We take θ (= b) and apply the matrix formulae that for a

positive definite A we have

|A+ bb
′| = |A|[1 + b

′
A−1b]

and

[A+ bb
′
]−1 = A−1 −A−1b[1 + b

′
A−1b]−1b

′
A−1

for A = aknΣv (k = 1, · · · , n), Σx = bb
′
, b = σµΠ, σ2

µ = E [(∆µi)
2],

and b∗ = Σ−1
v b.

Then Ln is proportional to (-1/2) times

L1n =
n∑

k=1

log |Σv|+ log(akn + b
′
Σ−1

v b) + a−1
knz

′

kΣ
−1
v zk −

a−1
kn (z

′

kΣ
−1
v b)2

akn + b′Σ−1
v b


= n log |Σv|+

n∑
k=1

a−1
knz

′

kΣ
−1
v zk +

n∑
k=1

log(akn + c)− a−1
kn (z

′

kb∗)
2

akn + c

 ,

where we take c = b
′
Σ−1

v b as the normalization.

Because L1n is a concave function of Σ−1
v and the last term becomes

n∑
k=1

(z
′

kΣ
−1
v b)2

a2kn + aknb
′Σ−1

v b
= b

′

∗

n∑
k=1

[
1

akn(akn + c)
zkz

′

k]b∗

because b∗ = Σ−1
v b. Then given b

′

∗Σvb∗ = c, it is a quadratic form

and its maximum (or the likelihood function is maximized) is the larger

characteristic root. Given the initial condition y0, the unconditional

maximum likelihood (ML) estimator can be defined as the solution

of maximizing the log-likelihood function. In the general case when
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p > q ≥ 1, we have the next result.

Theorem 3.1 : Assume Σv is non-singular and rank(Σx) = p−q (p >

q ≥ 1) in (2.2) and (3.1). Then there exists a unique ML estimator

for B.

As a consequence of this result, under the above conditions the

structural parameter θ (i.e. B) is identified (up to a normalization).

When we take the normalization b
′
Σ−1

v b = b
′

∗Σvb∗ = c (a constant),

the maximum likelihood estimator of Σv is given by

Σ̂v,ML =
1

n

n∑
k=1

a−1
knzkz

′

k .(3.11)

In the present setting

E [Σ̂v,ML] = Σv + (
1

n

n∑
k=1

a−1
kn )Σx(3.12)

and thus Σ̂v,ML cannot be a consistent estimator of Σv. This is one

of the consequence of the errors-in-variables models although it has

been known in the standard errors-in-variables models. (See Anderson

(1984) for the details.) Also one may think that as an estimator of Σx

we may have

Sn =
1

n

n∑
k=1

zkz
′

k .(3.13)

Since

E [Sn] = Σx + (
1

n

n∑
k=1

akn)Σv ,(3.14)

then Sn cannot be a consistent estimator of Σx.
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It is straightforward to extend the above likelihood analysis to the

cases for more general q (q ≤ p) and we have the corresponding results.

Then it is not obvious to find a general way to construct the consistent

estimator of Σx and Σv at the same time even if we do not have the

seasonality component in the nonstationary errors-in-variable models.

4. Macro-SIML Estimation

Although we have considered the likelihood function in the errors-

in-variables models under the Gaussianity, we need a simple robust

procedure such that the assumptions of Gaussianity and the specifi-

cations of each components are not crucial for the estimating results.

We denote akn,n and we notice that akn,n → 0 as n → ∞ when

kn = O(nα) (0 < α < 1) since sin x ∼ x as x → 0. When kn is

small, we expect that akn,n is small. Then the separating information

maximum likelihood (SIML) estimator of Σ̂x is defined by

Σ̂x,SIML =
1

mn

mn∑
k=1

zkz
′

k .(4.1)

(We need to use a consistent estimator for Σv.) For Σ̂x, the number

of terms mn should be dependent on n. Then we need the order

requirement that mn = O(nα) and 0 < α < 1.

Asymptotic properties of SIML

For the estimation of the variance-covariance matrix Σx = (σ
(x)
gh ), we

have the next result.

Theorem 4.1 : We assume (2.2) and (3.1) and also assume that
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w
(x)
i = (w

(x)
ji ) and vi = (vji) are a sequence of independent random

variables with E [w(x)4
ig ] < ∞ and E [v4ig] < ∞ (i, j = 1, · · · , n; g, h =

1, · · · , p).

Then (i) For mn = nα and 0 < α < 1, as n −→ ∞

Σ̂x −Σx
p−→ O .(4.2)

(ii) For mn = nα and 0 < α < 0.8, as n −→ ∞

√
mn

[
σ̂
(x)
gh − σ

(x)
gh

]
L−→ N

(
0, σ(x)

gg σ
(x)
hh +

[
σ
(x)
gh

]2)
.(4.3)

The covariance of the limiting distributions of
√
mn[σ̂

(x)
gh − σ

(x)
gh ] and

√
mn[σ̂

(x)
kl − σ

(x)
kl ] is given by σ

(x)
gk σ

(x)
hl + σ

(x)
gl σ

(x)
hk (g, h, k, l = 1, · · · , p).

For estimating the variance-covariance matrixΣx = (σ
(x)
gh ),the num-

ber of terms mn should be dependent on n because we need the re-

sulting desirable asymptotic properties. Then we need the order re-

quirement that mn = O(nα) (0 < α < 1). Because the properties of

the SIML estimation method depend on the choice of mn, which are

dependent on n, we have investigated the asymptotic effects as well

as the small sample effects of several possibilities. We can obtain an

optimal choice of mn.

Theorem 4.2 : In the setting of Theorem 4.1, an optimal choice of

mn = nα (0 < α < 1) with respect to the asymptotic mean squared

error when n is large is given by α∗ = 0.8.
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It may be natural to use the sample quantities

Σ̂x = (
1

mn

mn∑
k=1

zikzjk)(4.4)

in order to make statistical inference on Σx. The estimation of the

Pearson-correlation coefficients among the trend variables is a typical

case, which is given by

ρ̂ij =

∑mn
k=1 zikzjk√∑mn

k=1 z
2
ik

√∑mn
k=1 z

2
jk

.(4.5)

Furthermore, we consider the estimation of the structural relation-

ships in the non-stationary time series process satisfying (3.1). Here

we notice that the present statistical problem could be regarded as

the estimation of structural relationships with the covariance matrix

Σx(θ) with θ being the vector of parameters. In the standard statis-

tical multivariate analysis, Anderson (1984, 2004) have discussed the

statistical models of estimating structural relationships among a set of

variables and we have n independent observations on the underlying

variables.

We consider the estimation of the structural parameter vector β in

the structural equation

β
′
yi = ui ,(4.6)

where ui (= β
′
vi) in (3.1). It is a simle case when q = 1. By using the

arguments on the likelihood function, it may be natural to consider

the characteristic equation[
Σ̂x − λΣv

]
β̂ = 0 .(4.7)
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where Σ̂x is given by (4.1) and λ is the (scalar) characteristic root.

Here we need to use a consistent estimator for Σv. When we take

the smallest eigenvalue λ1 in (4.7) and we take Σ̂v,SIML, we have the

β̂SIML, which is called the SIML estimator of β.

Theorem 4.3 : We assume (3.1), (2.2), (4.6) and rank(Σx) = p− 1.

Let β̂ be the characteristic vector with the corresponding minimum

characteristic root of (4.7), which is the SIML estimator of β. We

assume that w
(x)
i = (w

(x)
ji ) and vi = (vji) (i = 1, · · · , n; j = 1, · · · , p)

are a sequence of independent random variables with E [w(x)4
ig ] < ∞

and E [v4ig] < ∞ (i, j = 1, · · · , n; g, h = 1, · · · , p). We further assume

that we have a consistent estimator Σ̂v = Σv +Op(m
−1/2
n ).

Then (i) For mn = nα and 0 < α < 1, as n −→ ∞

β̂ − β
p−→ 0 .(4.8)

(ii) For mn = nα and 0 < α < 0.8, as n −→ ∞

√
mn(β̂2 − β2)

L−→ N(0,Σ
(x)−1
22 E [S2ββ

′
S

′

2]Σ
(x)−1
22 ) ,(4.9)

where β̂ = (1,−β̂2), S2 = (0, Ip−1)S, S is the limiting (normal) ran-

dom matrix of
√
mn[Σ̂x − Σx] and Σ

(x)
22 = (0, Ip−1)Σx(0, Ip−1)

′
is the

(p− 1)× (p− 1) right-lower-corner of the variance-covariance matrix

Σx. (We have assumed that rank(Σx) = p − 1 and then we take

|Σ(x)
22 | ̸= 0.)

Also under a set of regularity conditions we have that the smallest
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eigenvalue λ1 of (4.7),

λ1 −→ 0 (in probability)(4.10)

as n → ∞. Then we define the SILS (Separating Information Least

Squares) method by solving

Σ̂xβ̂SILS = 0 .(4.11)

When p = 2, q = 1, β = (1,−β2)
′
, β̂∗,SIML = (1,−β̂2)

′
, and Π =

(β2, 1)
′
(Σv = σ2

vI2) in Example 1, then the SILS estimation becomes

β̂2 =

∑mn
k=1 z1kz2k∑mn
k=1 z

2
2k

,(4.12)

which is the regression coefficient of the first transformed variable on

the second transformed variable in zk (= (z1k, z2k)
′
) (k = 1, · · · ,mn).

Some Remarks

We notice that the ML estimator ofΣv is not consistent because ak,n =

O(n−1) for a fixed k when n is large. It is a consequence of the errors-

in-variables models and the problem of incidental parameters. In order

to construct a consistent estimator we use the fact that for any positive

integer ln such that ln → ∞, ln/n → 0 (n → ∞), an+1−ln,n → 4 (n →

∞) and
1

ln

n∑
k=n+1−ln

a−1
knzkz

′

k
p−→ 1

4
Σx +Σv .(4.13)

Then we can construct a consistent estimator of Σv as

Σ̂v =
1

ln

n∑
k=n+1−ln

a−1
knzkz

′

k −
1

4
Σx .(4.14)

Although we have developed the SIML estimation when q = 1, it

is straightforward to extend the SIML procedure when we have sev-
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eral structural relationships among trend variables at the same time.

The SIML estimation can be defined by the smaller q (≤ p) roots and

the corresponding q (≤ p) vectors of the characteristic equation. It

may correspond to the standard situation in the statistical multivari-

ate analysis except the fact that the classical multivariate analysis was

based on the case when the observations are realizations of indepen-

dent random variables without seasonality as well as non-stationarity

in time series data sets.

5. Discussions on seasonality

We return to the original setting with seasonality in Section 2 and

consider the case when we have

yi = xi + si + vi ,(5.1)

where xi are a sequence of trend components and si are a sequence of

seasonal components. When we transform the observed data by using

the difference operator ∆ = 1 − L (Lyi = yi−1) and Pn, we have the

next result, which is a direct extension of Theorem 4.1.

Theorem 5.1 : We assume (5.1), (2.2) and (2.4) and also assume

that w
(x)
i = (w

(x)
ji ),w

(s)
i = (w

(s)
ji ) and vi = (vji) are a sequence of

independent random variables with E [w(x)4
ig ] < ∞, E [w(s)4

ig ] < ∞ and

E [v4ig] < ∞ (i, j = 1, · · · , n; g, h = 1, · · · , p). Let Σ̂x be given by (4.1).

Then (i) For mn = nα and 0 < α < 1, as n −→ ∞

Σ̂x −Σx
p−→ O .(5.2)
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(ii) For mn = nα and 0 < α < 0.8, as n −→ ∞
√
mn

[
σ̂
(x)
gh − σ

(x)
gh

]
L−→ N

(
0, σ(x)

gg σ
(x)
hh +

[
σ
(x)
gh

]2)
.(5.3)

The covariance of the limiting distributions of
√
mn[σ̂

(x)
gh − σ

(x)
gh ] and

√
mn[σ̂

(x)
kl − σ

(x)
kl ] is given by σ

(x)
gk σ

(x)
hl + σ

(x)
gl σ

(x)
hk (g, h, k, l = 1, · · · , p).

Alternatively, it has been a common practice to use the seasonal

difference of original time series since Box and Jenkins (1970) if we

observe clear seasonal fluctuations. When we transform the observed

data by using the seasonal difference operator ∆s = 1 − Ls (Lsyi =

yi−s) and Pn, we have

∆syi = (1 + L+ · · ·+ Ls−1)∆xi + (1− Ls)si + (1− Ls)vi .(5.4)

Then there can be alternative possibilities of transformation of Yn,

but we may use Z(s)
n (= (z

(s)′

k )) by

Z(s)
n = PnC

(s)−1
n

(
Yn − Ȳ0

)
,(5.5)

where C(s)−1
n = C−1

N ⊗ Is and

C−1
N =



1 0 · · · 0 0

−1 1 0 · · · 0

0 −1 1 0 · · ·

0 0 −1 1 0

0 0 0 −1 1


N×N

,(5.6)

where we have assumed that N, s and n = Ns are positive integers.

Then the analysis of the likelihood function in Section 3 can be ex-
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tended to the above transformation with seasonality. We take the

transformation matrix

B(1)
n = (b

(1)
jk ) = PnC

(s)−1
n ,(5.7)

Lemma A-1 in Appendix gives

n∑
j=1

b
(1)
kj b

(1)

k′ ,j
= δ(k, k

′
)4 sin2

[
π

2

2k − 1

2n+ 1
s

]
+O(

1

n
) .(5.8)

For any finite integer s (the seasonal lag), we take k = kn, k
′
= k

′

n

depending on n. If we take kn = [2ns ] + ln (or k
′

n = [2ns ] + l
′

n) and ln, l
′

n

being integers, (5.8) is o(1) when ln/n → 0.

For the estimation of the seasonal covariance matrix Σs = (σ
(s)
gh )

and Σ̂s = (σ̂
(s)
gh ), instead of (4.1) we use

Σ̂s,SIML =
1

mn

∑
k∈I(s)n

z
(s)
k z

(s)′

k ,(5.9)

where s is the seasonal integer, [x] is the largest integer being equal

or less than x and I(s)n is the set of integers such that I(s)n = {[2n/s] +

1, · · · , [2n/s] +mn]} with mn = nα (0 < α < 1).

Alternatively, I(s)n can be replaced by a symmetric region I(s)n = {[2n/s]−

mn/2, · · · , [2n/s], · · · , [2n/s] +mn/2]}.

In this formulation [2n/s] corresponds to the seasonal frequency in the

frequency domain of the observed time series. For the quarterly and

monthly data, we take s = 4 and s = 12, respectively. Then we have

the next result.

Theorem 5.2 : We assume (5.1), (2.2) and (2.3) and also assume

that w
(x)
i = (w

(x)
ji ), w

(s)
i = (w

(s)
ji ) and vi = (vji) are a sequence of
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independent random variables with E [w(x)4
ig ] < ∞, E [w(s)4

ig ] < ∞ and

E [v4ig] < ∞ (i, j = 1, · · · , n; g, h = 1, · · · , p). Let Σ̂s be given by (5.9).

Then (i) for mn = nα and 0 < α < 1, as n −→ ∞

Σ̂s −Σs
p−→ O .(5.10)

(ii) For mn = nα and 0 < α < 0.8, as n −→ ∞

√
mn

[
σ̂
(s)
gh − σ

(s)
gh

]
L−→ N

(
0, σ(s)

gg σ
(s)
hh +

[
σ
(s)
gh

]2)
.(5.11)

The covariance of the limiting distributions of
√
mn[σ̂

(s)
gh − σ

(s)
gh ] and

√
mn[σ̂

(s)
kl − σ

(s)
kl ] is given by σ

(s)
gk σ

(s)
hl + σ

(s)
gl σ

(s)
hk (g, h, k, l = 1, · · · , p).

When we use (2.4) instead of (2.3) with (5.1) and (2.2) in Theorem

5.2, it is possible to obtain the similar results and

Σ̂s −Σs
p−→ O ,(5.12)

where Σ̂s is given by (5.9).

When we use (4.1) for the seasonally transformed data ∆syi (i =

1, · · · , n) in Theorem 5.2, however, its probability limit is given by

Σ̂x
p−→ sΣx +Σs(5.13)

because the transformed trend component is given by

∆sxi = (1 + L+ · · ·+ Ls−1)w
(x)
i .(5.14)

The bias can be significant when s > 1, but there is a way to construct

a consistent estimator.
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Furthermore, in these cases it is possible to obtain the asymptotic dis-

tributions of the estimators for trends, seasonals and other quantities

including the correlation coefficients.

6. Simulations and an Empirical Example

We have done several simulations. The data length is 80, the num-

ber of simulations is 3000, α = 0.6, andmn = nα in each case. We have

set three cases with the nonstationary trend with seasonality, whose

typical simulation paths are given in Appendix. We have done a num-

ber of simulations including the traditional linear seasonal models. and

we will report some results which nay be reasonable description of eco-

nomic quarterly data (s = 4). Since we deal with the nonstationary

seasonality, we need to control the parameter values carefully includ-

ing the initial conditions. Figure-1 does not have any seasonality while

Figure-2 and Figure-3 have non-linear seasonality and they are rather

extreme cases in our simulations. In Simulations 1-3 we first gener-

ated the initial uniform random variables sj,−3, · · · , sj,0, the sequence

of i.i.d. random variable svj,i for j = 1, 2; i = 0, · · · , n. Then we set

si = (s1i, s2i)
′
such that swj,i = swj,j−1+svj,i and sj,i = sj,0×swj,i. We

have summarized the four simulation results in Tables 6.1-6.4. In our

tables cor = 0.9 means the true correlation coefficient among trend

components and cor is the SIML estimate. (vol-1 is the correlation

estimate based on the first differenced data and vol-4 is the correlation

estimate based on the seasonal differenced data with s = 4.)
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When we have the basic model with the trend and noise compo-

nents without the seasonal and cycle components, the optimal choice

of mn = nα would be α = 0.8, but it seems that the choice of α = 0.6

would be appropriate for the robustness of the results when we have

extreme seasonality as well as non-stationary trends.

We have investigated the estimation of the correlation coefficient

of the seasonal components and given Table 6-4 when the seasonals

were generated by si = (s1i, s2i)
′
and w

(s)
i = (w

(s)
1i , w

(s)
2i )

′
such that

sji = −sj,i−1 − sj,i−2 − sj,i−3 + w
(s)
ji (i = 1, · · · , n; j = 1, 2) given the

initial random variables, and we also have trend components and noise

components (Simulation 4). The number of data is 400 and we took

α and we have given a typical sample path as Figure-4 in Appendix.

We have found that even with the extreme cases given in our figures

the macro-SIMLE method gives reasonable estimates while in more

standard cases we have more favorable results for the use of the SIML

estimation.
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Table 6-1 : Simulation-1

(n = 80, α = 0.6, nsim=3000)

cor= 0.9 corr vol-4 vol-1

mean 0.852 0.733 0.491

SD 0.088 0.076 0.095

cor= 0.0 corr vol-4 vol-1

mean 0.007 0.003 0.001

SD 0.278 0.168 0.119

Table 6-2 : Simulation-2

(n = 80, α = 0.6, nsim=3000)

cor= 0.9 corr vol-4 vol-1

mean 0.805 0.663 0.133

SD 0.118 0.088 0.295

cor= 0.0 corr vol-4 vol-1

mean -0.007 2.59E-03 0.005

SD 0.278 1.62E-01 0.287
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Table 6-3 : Simulation-3

(n = 80, α = 0.6, nsim=3000)

cor= 0.9 corr vol-4 vol-1

mean 0.672 0.344 0.034

SD 0.196 0.185 0.191

cor= 0.0 corr vol-4 vol-1

mean 0.002 0.002 0.002

SD 0.284 0.149 0.184

Table 6-4 : Simulation-4

(n = 400, α = 0.40, nsim=1000)

cor= 0.8 corr vol-4 vol-1

mean 0.759 0.550 0.753

SD 0.114 0.068 0.256

cor= 0.0 corr vol-4 vol-1

Finally, we report an empirical estimate of the Japanese (real) GDP

and fix-investment given as Figure 1-1 as a typical example. We have

used the quarterly data which were taken from the official estimates

from the Japanese Cabinet Office. When we take the first differ-

ences and the estimate of the correlation coefficient of the GDP-trend

and investment-trend is 0.726176 while we take the seasonal difference

and the estimate of the correlation coefficient of the GDP-trend and
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investment-trend is -0.12159. On the other hand, the SIML estimate

of the correlation coefficient of the GDP-trend and investment-trend

is 0.614224 (0.069623) while the SIML estimate of the correlation

coefficient of the GDP-seasonal and investment-seasonal is 0.169324

(0.108598). We have used the symmetric region I∗n(s) and the paren-

thesis is the estimate of standard deviation calculated by the standard

asymptotic formula in statistical multivariate analysis (1− ρ̂2)/
√
mn.

These estimates give some information on the statistical relationship

between quarterly GDP and quarterly fixed-investment in Japan.

7. Concluding Remarks

In this paper, we have proposed to use a new statistical method for

estimating the statistical relationships in the non-stationary time se-

ries with trend, seasonality and noise. Instead of using the seasonally

adjusted data published by the official statistics agencies, we propose

to use the Separating Information Maximum Likelihood (SIML) esti-

mator, which can be regarded as a modification of the classical Maxi-

mum Likelihood (ML) method in some sense. We have shown that the

SIML estimator has reasonable asymptotic properties; it is consistent

and it has the asymptotic normality when the sample size is large un-

der reasonable conditions. The SIML estimator has reasonable finite

sample properties and also it has the asymptotic robustness proper-

ties. Based on simulations the SIML estimator is so simple that it can

be practically used for the multivariate non-stationary time series.

28



We also have suggested a number of possible applications in macro-

economic non-stationary time series since many important macro time

series exhibit clear seasonality.

There are several possible extensions and directions. First, it may

be natural to incorporate the stationary cycle components in the time

series decompositions. Second, it may be straightforward to extend

the cases when we have double unit roots in the trend variables. Third,

we have done several data analysis of quarterly macro time series and

have found that the SIML approach gives useful information, but is

obvious to do more.

Finally, there are several important issues remained in the present

work. It may be reasonable to have the cycle component to the time

series decomposition in (2.1). Also there can be some extensions to

the dynamic panel data analysis, which has many recent applications

in econometrics. The results of our investigations on these issues will

be reported in another occasion.
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APPENDIX : Mathematical Derivations of Theorems

In this Appendix, we give some details of the proofs in Sections 3 and

4. However, some of the proofs are are based on the modifications

of the results by Kunitomo and Sato (2008, 2011, 2013) and they are

similar to them, but there are some differences.

Proof of Theorem 3.1 : Because |Σv| ̸= 0 and rank(Σx) = p− q >

0 (p > q ≥ 1), there exists a p× q matrix B such that B = q. We take

B∗ = Σ−1
v B and a constant matrix C such that

B
′

∗ΣvB∗ = C .(A.1)

The likelihood function is proportional to (-1/2) times

L1n = n log |Σv|+
n∑

k=1

|aknIp−q +B
′

∗ΣvB∗|+
n∑

k=1

a−1
knz

′

kΣ
−1
v zk

−
n∑

k=1

a−1
knz

′

kB∗[aknIp−q +B
′

∗ΣvB∗]
−1B

′

∗zk .(A.2)

Then given the normalization (A.1) we can attain the maximum of

the likelihood function when Σv = (1/n)
∑n

k=1 a
−1
knzkz

′

k and we take

the larger p − q characteristic roots of the associated characteristic

equation because the last term of (A.2) can be rewritten as

trB
′

∗(
n∑

k=1

a−1
knzkz

′

k)(aknIp−q +C)−1B∗ .(A.3)

(Q.E.D.)

Proof of Theorem 4.1 :

(Step 1) : Let z
(x)
k = (z

(x)
kj ) and Z

(v)
k = (z

(v)
kj ) (k = 1, · · · , n) be the
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k-th vector elements of n× p matrices

Z(x)
n = PnC

−1
n (Xn − Ȳ0) , Z

(v)
n = PnC

−1
n Vn,(A.4)

respectively, where we denote Xn = (x
′

k) = (xkg), Vn = (v
′

k) = (vkg),

Zn = (z
′

k) (= (zkg)) are n× p matrices with zkg = z
(x)
kg + z

(v)
kg . We write

zkg as the g−th component of zk (k = 1, · · · , n; g = 1, · · · , p). By fol-

lowing the proof developed by Kunitomo and Sato (2013) for the case

of fixed n, we use the decomposition of z
(f)
kg (f = x, v) for investigating

the asymptotic distribution of
√
mn[Σ̂x − Σx] = (

√
mn(σ̂

(x)
gh − σ

(x)
gh )gh)

for g, h = 1, · · · , p. We use the decomposition

√
mn

[
Σ̂x − Σx

]
(A.5)

=
√
mn

 1

mn

mn∑
k=1

zkz
′

k − Σx


=

√
mn

 1

mn

mn∑
k=1

z
(x)
k z

(x)′

k − Σx

+ 1
√
mn

mn∑
k=1

E [z(v)k z
(v)′

k ]

+
1

√
mn

mn∑
k=1

[
z
(v)
k z

(v)′

k − E [z(v)k z
(v)′

k ]
]
+

1
√
mn

mn∑
k=1

[
z
(x)
k z

(v)′

k + z
(v)
k z

(x)′

k

]
.

Then we can investigate the conditions that three terms except the

first one of (A.2) are op(1). When these conditions are satisfied, we

could estimate the variance and covariance of the underlying processes

consistently as if there were no noise terms because other terms can

be ignored asymptotically as n → ∞.

Let bk = (bkj) = e
′

kPnC
−1
n = (bkj) and e

′

k = (0, · · · , 1, 0, · · ·) be an

n × 1 vector. We write z
(v)
kg =

∑n
j=1 bkjvjg for the noise part and use

the relation

(PnC
−1
n C

′−1
n P

′

n)k,k′ = δ(k, k
′
)4 sin2[

π

2n+ 1
(k − 1

2
)] .(A.6)
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Then because we have
∑n

j=1 bkjbk′j = δ(k, k
′
)akn and Σv is bounded, it

is straightforward to find K1 (a constant) such that

E [(z(v)kg )]
2 = E [

n∑
i=1

bkivig
n∑

j=1

bkjvjg] ≤ K1 × akn .(A.7)

Also Kunitomo and Sato (2013) have shown that

1

mn

mn∑
k=1

akn =
1

mn
2

mn∑
k=1

[
1− cos(π

2k − 1

2n+ 1
)

]
= O(

m2
n

n2
)(A.8)

and the second term of (A.5) becomes

1
√
mn

mn∑
k=1

E [z(v)kn ]
2 ≤ K1

1
√
mn

mn∑
k=1

akn = O(
m5/2

n

n2
) ,(A.9)

which is o(1) if we set α such that 0 < α < 0.8. For the fourth term

of (A.2),

E
 1
√
mn

mn∑
j=1

z
(x)
kg z

(v)
kg

2 =
1

mn

mn∑
k,k′=1

E
[
z
(x)
kg z

(x)

k′ ,g
z
(v)
kg z

(v)

k′ ,g

]

= O(
m2

n

n2
) ,

where

sjk = cos[
2π

2n+ 1
(j − 1

2
)(k − 1

2
)]

for j, k = 1, 2, · · · , n. (See Lemma 1.3 of Kunitomo and Sato (2008a).)

In the above evaluation we have used the relation

|
n∑

j=1

sjksj,k′ | ≤ [
n∑

j=1

s2jk] =
n

2
+

1

4
for any k ≥ 1 .

For the third term of (A.5), we need to consider the variance of

(z
(v)
kg )

2 − E [(z(v)kg )
2] =

n∑
j,j′=1

bkjbk,j′
[
vjgvj′ ,g − E(vjgvj′ ,g)

]
.
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Then by using the assumption on the existence of the fourth order

moments, we can find a positive constant K2 such that

E
 1
√
mn

mn∑
k=1

((z
(v)
kg )

2 − E [(z(v)kg )
2])

2

=
1

mn

mn∑
k1,k2=1

E
 n∑
j1,j2,j3,j4=1

bk1,j1bk1,j2(vj1,gvj2,g − E(vj1,gvj2,g))

×bk3,j3bk4,j4(vj3,gvj4,g − E(vj3,gvj4,g))]

≤ K2
1

mn
[
mn∑
k=1

akn]
2

= O(
1

mn
× (

m3
n

n2
)2) ,

which is O(m5
n/n

4). Thus the third term of (A.5) is negligible if we

set α such that 0 < α < 0.8.

(Step 2) The second step is to give the asymptotic variance of the

first term of (A.5), that is,

√
mn

 1

mn

mn∑
k=1

z
(x)
k z

(x)′

k −Σx

(A.10)

because it is of the order Op(1). We can write

1

mn

mn∑
k=1

z
(x)
k z

(x)′

k

=
1

mn
(

2

n+ 1
2

)
mn∑
k=1

[
n∑

i=1

ri cos[π(
2k − 1

2n+ 1
)(i− 1

2
)]

n∑
j=1

r
′

j cos[π(
2k − 1

2n+ 1
)(j − 1

2
)]]

=
n∑

i=1

ciirir
′

i +
∑
i̸=j

cijrirj ,

where ri = xi − xi−1 and

cii = (
2n

2n+ 1
)

1 + 1

m

sin 2πm( i−1/2
2n+1 )

sin(π i−1/2
2n+1 )

 ,
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cij =
1

2m
(

2n

2n+ 1
)

sin 2πm( i+j−1
2n+1 )

sin(π i+j−1
2n+1 )

+
sin 2πm( j−i

2n+1)

sin(π j−i
2n+1)

 (i ̸= j) .

Then Kunitomo and Sato (2008, 2011) have shown that
√
mn

n

n∑
i=1

[
rir

′

i −Σx + (cii − 1)rir
′

i

]
= op(1)(A.11)

and by re-writing (A-7) as
√
mn

n

n∑
i=1

[
cii rir

′

i −Σx

]
+

√
mn

n

n∑
i ̸=j

[
cij rir

′

j

]
(A.12)

we need to evaluate the asymptotic variance of its second term. Ku-

nitomo and Sato (2008, 2011) have also shown that the variance of

the limiting distribution of the (g,g)-the element of (A.10) is the limit

of

Vn(g, g) = 2
n∑

i,j=1

mn

n
c2ij[σ

(x)
gg ]

2 ,(A.13)

The resulting arguments of the derivations are the result of straight-

forward calculations and lengthy, but the final form becomes simple.

Because of Lemma 3 of Kunitomo and Sato (2013) as

n∑
i,j=1

c2ij =
4

mn

[
n

2
+

1

4

]2
,(A.14)

we have that as n → ∞

Vn(g, g) −→ V (g, g) = 2
[
σ(x)
gg

]2
.(A.15)

(Step 3) Finally, we need to give the proof of the asymptotic nor-

mality. Define the sequence of σ−fields Fn,i generated by the set of

random variables {xj,vj; 1 ≤ j ≤ i ≤ n}, As the proof of Theorem
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3 of Kunitomo and Sato (2008), for (g, g)−the element we shall use a

sequence of random variables

Un(g, g) =
n∑

j=2

[2
j−1∑
i=1

√
mncij

rgi√
n
]
rgj√
n
,(A.16)

which is a discrete martingale. Since the log-returns rgi = xgi −

xg,i−1 (g = 1, · · · , p; i = 1, · · · , n) are also (discrete) martingales, we

set

Xnj(g, g) = (2
∑j−1

i=1
√
mncij

rgi√
n
) rgj√

n
(j = 2, · · · , n) and V ∗

gg.n(g, g) =∑n
j=2 E [X2

nj|Fn,j−1].

In order to prove

Un(g, g) =
n∑

i=1

Xni(g, g)
L−→ N(0, V (g, g))(A.17)

we need to show the conditions (i)
∑n

i=1 E [Xni(g, g)
2|Fn,i−1]

p−→ V (g, g)

and (ii)
∑n

i=1 E [Xni(g, g)
2I(|Xni(g, g)| > ϵ)|Fn,i−1]

p−→ 0 (for any ϵ >

0).

In the present situation, these conditions are satisfied, which have

been basically given in the proof of Theorem 3 in Kunitomo and Sato

(2008) as its special case.

For the covariance of the trend term σ
(x)
sf (s, f = 1, · · · , p), we have the

similar arguments and obtain the corresponding results.

(Q.E.D.)

Proof of Theorem 4.2 : By the proof of Theorem 4.1, we have found

that the main order of the bias of the SIML estimator ism−1
n
∑mn

k=1 akn =

O(n2α−2). Since the normalization of the SIML estimator is in the

form of
√
mn[σ̂

(x)
gg − σ(x)

gg ] = Op(1), its variance is of the order O(n−α).
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Hence when n is large we can approximate the mean squared error of

σ̂(x)
gg (g = 1, · · · , p) as

gn(α) = c1g
1

nα
+ c2gn

4α−4 ,(A.18)

where c1g and c2g are some constants. The first term and the second

term correspond to the order of the variance and the squared bias,

respectively. By minimizing gn(α) with respect to α, we obtain an

optimal choice of mn.

(Q.E.D.)

Proof of Theorem 4.3 : We consider the sample characteristic

equation [
Σ̂x − λ1Σv

]
β̂ = 0 ,(A.19)

when λ1 is the smallest root of the corresponding characteristic equa-

tion. By Theorem 4.1 we have

Σ̂x
p−→ Σx(A.20)

and we use

β̂
′ [
Σ̂x − λ1Σv

]
β̂ = 0 .(A.21)

Then we find λ1
p→ 0 as (4.10) because λ1 is the minimum root of the

characteristic equation and the rank of Σx is less than p. Since Σv is

a nonsingular matrix, we have the consistency of (4.8). Furthermore,

due to Part (ii) of Theorem 4.1 we write
√
mn[Σ̂x −Σx]

L−→ S , and

then we have
√
mnλ1

p−→ 0 .(A.22)
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Then we rewrite the sample characteristic equation(Σx +
1

√
mn

S)− λ1Σv

 β +
1

√
mn

√
mn(β̂ − β)

 = op(1) ,(A.23)

which is asymptotically equivalent to

Σx
√
mn(β̂ − β)− Sβ = op(1) .(A.24)

We use the representation

√
mn(β̂ − β) =

√
mn

 0

−(β̂2 − β2)

 ,(A.25)

where β̂2 and β2 are is the (p − 1) × 1 vector of β̂ and β. Then

by multiplying the choice matrix (0, Ip−1) from the left, we have the

asymptotic distribution of β̂.

(Q.E.D.)

For the proofs of Theorem 5.1 and Theorem 5.2, we give some prelim-

inary lemmas, which are keys in our arguments.

Lemma A-1 : Let

B(1)
n = (b

(1)
jk ) = PnC

(s)−1
n(A.26)

in (5.5). Then we have

n∑
j=1

b
(1)
kj b

(1)

k′ ,j
= δ(k, k

′
)4 sin2

[
π

2

2k − 1

2n+ 1
s

]
+O(

1

n
) .(A.27)

Lemma A-2 : Let

B(2)
n = (b

(2)
jk ) = PnC

(s)−1
n Cn .(A.28)
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Then we have

n−s∑
j=1

b
(2)
kj b

(2)

k′ ,j
= δ(k, k

′
)
sin2

[
π
2
2k−1
2n+1s

]
sin2

[
π
2
2k−1
2n+1

] +O(
1

n
) .(A.29)

Lemma A-3 : Let n = Ns,N and s be positive integers and

B(3)
n = (b

(3)
jk ) = PnC

2

nC
(s)−1
n .(A.30)

Then we have

n−s∑
j=1

b
(2)
kj b

(2)

k′ ,j
= δ(k, k

′
)4
sin4

[
π
2
2k−1
2n+1s

]
sin2

[
π
2
2k−1
2n+1

] +O(
1

n
) .(A.31)

Proof of Lemma A-1 : The proof is the result of lengthy, but

straightforward calculations of the trigonometric functions. We set

b
(1)
kj = pkj − pk,j+s (1 ≤ j ≤ n− s) ,(A.32)

which can be written as

b
(1)
kj =

1√
2n+ 1

{[1− ei
2π

2n+1 (k−
1
2 )s]ei

2π
2n+1 (k−

1
2 )(j−

1
2 )(A.33)

+[1− e−i 2π
2n+1 (k−

1
2 )s]e−i 2π

2n+1 (k−
1
2 )(j−

1
2 )} .

Then we evaluate each terms of

n−s∑
j=1

b
(1)
kj b

(1)

k′j
=

1

2n+ 1

n−s∑
j=1

{[A1j(k) + A2j(k)][A1j(k
′
) + A2j(k

′
)]}

=
1

2n+ 1

n−s∑
j=1

{A1j(k)A1j(k
′
) + A2j(k)A2j(k

′
)(A.34)

+A1j(k)A2j(k
′
) + A2j(k)A2j(k

′
)} ,

where we denote

A1j(k) = (1− eiθ
s
k)eiθk,j , A2j(k) = (1− e−iθsk)e−iθk,j ,
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and

θsk =
2π

2n+ 1
(k − 1

2
)s, θk,j =

2π

2n+ 1
(k − 1

2
)(j − 1

2
) .

There are four terms in the summation of (A.34). For instance, the

first term of (A.34) is given by

n−s∑
j=1

A1j(k)A1j(k
′
) = (1− eiθ

s
k)(1− e

iθs
k
′ )
1− ei

2π
2n+1 (k+k

′−1)(n−s+1)

1− ei
2π

2n+1 (k+k′−1)

×ei
2π

2n+1 (k+k
′−1) 12

and the third term of (A.34) is

n−s∑
j=1

A1j(k)A2j(k
′
) = (1− eiθ

s
k)(1− e

−iθs
k
′ )
1− ei

2π
2n+1 (k−k

′
)(n−s+1)

1− ei
2π

2n+1 (k−k′)

×ei
2π

2n+1 (k+k
′−1) 12

when k ̸= k
′
. When k = k

′
, the third term of (A.34) becomes

n−s∑
j=1

A1j(k)A2j(k
′
) = (n− s)(1− eiθ

s
k)(1− e−iθsk)(A.35)

= (n− s)(−1)[e−iθsk/2 − eiθ
s
k/2]2

= 4(n− s) sin2[
θsk
2
] .

Then by using similar calculations of the second and fourth terms and

by summarizing four terms of (A.35), we have the desired result.

(Q.E.D.)

Proof of Lemma A-2 : The derivation of Lemma A-2 is similar to

that of Lemma A-1. For k = 1, · · · , n; j = 1, · · · , n− s+ 1, we set

b
(2)
kj = pkj + · · ·+ pk,j+s−1 ,(A.36)
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which can be written as

b
(2)
kj =

1√
2n+ 1

{1− ei
2π

2n+1 (k−
1
2 )s

1− ei
2π

2n+1 (k−
1
2 )
ei

2π
2n+1 (k−

1
2 )(j−

1
2 )(A.37)

+
1− e−i 2π

2n+1 (k−
1
2 )s

1− e−i 2π
2n+1 (k−

1
2 )
e−i 2π

2n+1 (k−
1
2 )(j−

1
2 )} .

Then the rest of derivation is similar to that of Lemma A-1.

(Q.E.D.)

Proof of Lemma A-3 : The derivation of Lemma A-3 is similar to

those of Lemmas A-1 and A-2. For k = 1, · · · , n; j = 1, · · · , n− s+ 1,

we set

b
(3)
kj = [(pkj − pk,j−1)− (pk,j+1 − pk,j)] + · · ·

+[(pk,(N−1)s − pk,(N−1)s−1)− (pk,Ns − pk,Ns−1)],(A.38)

which can be written as

b
(3)
kj =

1√
2n+ 1

{(1− ei
2π

2n+1 (k−
1
2 ))2

1− ei
2π

2n+1 (k−
1
2 )s

ei
2π

2n+1 (k−
1
2 )(j−

1
2 )(A.39)

+
(1− e−i 2π

2n+1 (k−
1
2 ))2

1− e−i 2π
2n+1 (k−

1
2 )s

e−i 2π
2n+1 (k−

1
2 )(j−

1
2 )} .

Then the rest of derivation is similar to those of Lemmas A-1 and A-2.

(Q.E.D.)

Proof of Theorem 5.1 : The proof of Theorem 5.1 is similar to

that of Theorem 4.1 except the fact we use a different transformation

of seasonal effects. Let n = sN and N is an integer. (In the general

case when n = sN + j (1 ≤ j < s) we need some arguments, but the

effects of additional terms n = sN + j (1 ≤ j < s) are small.)
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We set z
(x)
k = (z

(x)
kg ),z

(v)
k = (z

(v)
kg ) and z

(s)
k = (z

(g)
kg ), (k = 1, · · · , n; g =

1, · · · , p) be the k-th vector elements of n× p matrix such that

Z(x)
n = PnC

−1
n (Xn − Ȳ0) , Z

(v)
n = PnC

−1
n Vn , Z(s)

n = PnC
−1
n Sn ,

where Sn = (s
′

i) = (sig), Vn = (v
′

i) (= (vig)) and Zn = (z
′

k) (= (zkg))

are n× p matrices with zkg = z
(x)
kg + z

(v)
kg + z

(s)
kg . Then we can write

Z(s)
n = B(3)

n [CnC
(s)−1
n Sn]

and we use the fact that (1− L)−1(1− Ls)si = w
(s)
i and w

(s)
i are the

sequence of i.i.d. random variables for i = s, s + 1, · · · , n in (2.3),

where we have set B(3)
n in (A.30).

Then we have several additional terms in the decomposition of

zk (k = 1, · · · ,mn) as

1
√
mn

mn∑
k=1

E(z(s)k z
(s)′

k ),
1

√
mn

mn∑
k=1

[
z
(s)
k z

(s)′

k − E(z(s)k z
(s)′

k )
]
,

and

1
√
mn

mn∑
k=1

(z
(x)
k z

(s)′

k + z
(s)
k z

(x)′

k ),
1

√
mn

mn∑
k=1

(z
(v)
k z

(s)′

k + z
(s)
k z

(v)′

k ) .

We need to show that these terms are stochastically negligible. The

resulting evaluations are rather straightforward, but quite tedious. We

illustrate a typical argument such that for any constant p × 1 vector

a and b we have

E
 1
√
mn

mn∑
k=1

a
′
z
(x)
k z

(s)′

k b

2 ≤ 1

mn
E
(mn∑

k=1

a
′
z
(x)
k )2(

mn∑
k=1

z
(s)′

k b)2


≤ 1

mn
E
(mn∑

k=1

a
′
z
(x)
k )2

 E
(mn∑

k=1

z
(s)′

k b)2
 .
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Then by using Lemma A-3 it is possible to see the fact that this term

and other extra terms due to the seasonality are of the smaller order

op(1) than constants. Since the evaluation of each terms are quite

similar to the proof of Theorem 4.1, we omit some details.

(Q.E.D.)

Proof of Theorem 5.2 : The proof of Theorem 5.3 is similar to

that of Theorem 4.1 except the fact we use a different transformation

of seasonal effects. Let n = sN and N is an integer. (In the general

case when n = sN + j (1 ≤ j < s) we need some arguments, but the

effects of additional terms n = sN + j (1 ≤ j < s) are small.)

Let z
(x)
k = (z

(x)
kg ), Z

(v)
k = (z

(v)
kg ) and z

(s)
k = (z

(s)
kg ) (k = 1, · · · , n; g =

1, · · · , p) be the k-th vector elements of n× p matrices such that

Z(x)
n = PnC

(s)−1
n (Xn − Ȳ0) , Z

(v)
n = PnC

(s)−1
n Vn ,Z(s)

n = PnC
(s)−1
n Sn ,

respectively, and Xn = (x
′

k) = (xkg), Vn = (v
′

k) = (vkg), Sn = (s
′

k) (=

(skg)) Zn = (z
′

k) (= (zkg)) are n×pmatrices with zkg = z
(x)
kg +z

(v)
kg +z

(s)
kg .

(We have written zkg as the g−th component of zk.) Then we can write

Z(x)
n = B(2)

n C−1
n (Xn − Ȳn) , Z

(v)
n = B(1)

n Vn ,

and we use the fact that (1 − L)xi = w
(x)
i and w

(x)
i are the sequence

of i.i.d. random variables for i = 2, · · · , n in (2.2), where we have set

B(1)
n and B(2)

n in (A.26) and (A.28).

Next, we extend the decomposition in the present case as

√
mn

[
Σ̂s − Σs

]
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=
√
mn

 1

mn

∑
k∈In(s)

zkz
′

k − Σs


=

√
mn

 1

mn

∑
k∈In(s)

z
(s)
k z

(s)′

k − Σs


+

1
√
mn

 ∑
k∈In(s)

E(z(x)k z
(x)′

k ) +
∑

k∈In(s)
E(z(v)k z

(v)′

k )


+

1
√
mn

∑
k∈In(s)

[
[z

(x)
k z

(x)′

k − E(z(x)k z
(x)′

k )] + [z
(v)
k z

(v)′

k − E(z(v)k z
(v)′

k ])
]

+
1

√
mn

∑
k∈In(s)

(
z
(s)
k z

(x)′

k + z
(x)
k z

(s)′

k

)
+

1
√
mn

∑
k∈In(s)

(
z
(s)
k z

(v)′

k + z
(v)
k z

(s)′

k

)

+
1

√
mn

∑
k∈In(s)

(
z
(x)
k z

(v)′

k + z
(v)
k z

(x)′

k

)
.

In order to evaluate many terms, we use the relations of Lemma A-1

and Lemma A-2. For instance, we can find a positive constant K
′

1

such that

E [(z(v)ks )]
2 ≤ K

′

1 × a
(s)
kn ,(A.40)

where

a
(s)
kn = 4 sin2[

π

2n+ 1
(k − 1

2
)s] .

Also we find that

1

mn

∑
k∈In(s)

a
(s)
kn =

1

mn
2

∑
k∈In(s)

[
1− cos(π

2k − 1

2n+ 1
)s

]
= O(

m2
n

n2
)(A.41)

and then the second term of the decomposition becomes

1
√
mn

∑
k∈In(s)

E [z(v)ks ]
2 ≤ K

′

1

1
√
mn

∑
k∈In(s)

a
(s)
kn = O(

m5/2
n

n2
) .(A.42)

This term is o(1) if 0 < α < 0.8. The remaining arguments of the
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proof are quite similar to that of Theorem 4.1 and

E
 1
√
mn

mn∑
j=1

((z
(2)
kg )

2 − E [(z(2)kg )
2])

2 ≤ K
′

2

1

mn
[
mn∑
k=1

akn]
2

= O(
1

mn
× (

m3
n

n2
)2) ,

where K
′

2 is a positive constant. Since the rest of arguments are quite

similar to the proofs of Theorem 4.1 and Theorem 5.1, we omit some

details.

(Q.E.D.)
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Fig.1−1:Real GDP and Investment(red line)
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Fig.6−1:Trend+Noise
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Fig.6−2:Trend+Seasonal+Noise
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Fig.6−3:Trend+Seasonal(irregular case)+Noise
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Fig.6−4:Trend+Seasonal+Noise(small)
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