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Abstract

This paper is concerned with the Bayesian analysis of stochastic volatility (SV) models
with leverage. Specifically, the paper shows how the often used Kim et al. (1998) method that
was developed for SV models without leverage can be extended to models with leverage. The
approach relies on the novel idea of approximating the joint distribution of the outcome and
volatility innovations by a suitably constructed ten-component mixture of bivariate normal
distributions. The resulting posterior distribution is summarized by MCMC methods and
the small approximation error in working with the mixture approximation is corrected by a
reweighting procedure. The overall procedure is fast and highly efficient. We illustrate the
ideas on daily returns of the Tokyo Stock Price Index. Finally, extensions of the method are
described for superposition models (where the log-volatility is made up of a linear combination
of heterogenous and independent autoregressions) and heavy-tailed error distributions (stu-
dent and log-normal).

Key words: Leverage effect, Markov chain Monte Carlo, Mixture sampler, Stochastic volatility,
Stock returns.

1 Introduction

There is by now a large literature on the fitting of stochastic volatility (SV) models (see, for

example, the reviews in Ghysels et al. (1996) and Shephard (2005)). Particularly well studied are

SV models without leverage for which the Bayesian approach of Kim et al. (1998) has become
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well established (for example, Mahieu and Schotman (1998), Primiceri (2005) and Stroud et al.

(2003)). A salient feature of the Kim et al. (1998) approach is that it produces samples from the

posterior distribution of interest by sampling a more tractable approximate posterior distribution;

the small approximation error is corrected by reweighting the sampled draws. This procedure is

highly efficient in the sense that the sampled draws display weak serial dependence, a desirable

feature of any well constructed MCMC algorithm. It has long been believed, however, that the

Kim et al. (1998) approach cannot be extended to the broader and more realistic class of SV

models with leverage. The purpose of this paper is to show that in fact such an extension is

eminently possible and that the modified approach retains all the appealing characteristics of the

original approach - simplicity, ease of implementation, and weak serial dependence in the sampled

draws.

The simplest model we study is the discrete time log-normal SV model given by

yt = εt exp(ht/2), (1)

ht+1 = µ + φ(ht − µ) + ηt, t = 0, 1, . . . , n,

where yt is the observed response, {ht} are unobserved log-volatilities, |φ| < 1,

(
εt

ηt

)
|(ρ, σ) ∼ i.i.d. N2 (0,Σ) , Σ =

(
1 ρσ
ρσ σ2

)
, (2)

and Np (m,V) is the p-variate normal distribution with mean vector m and covariance matrix V.

In this model, the parameter ρ measures the correlation between εt and ηt and, when negative,

captures the increase in volatility that follows a drop in equity returns (e.g. Black (1976) and

Nelson (1991)).

In the context of models without leverage, Kim et al. (1998) approximate the distribution of

log ε2
t by a mixture of seven Gaussian distributions to match its first four moments. Conditioned

on the latent mixture component indicators st, (t = 1, 2, . . . , n), this produces a model that is

linear and Gaussian, with all its attendant benefits. Essentially, it then becomes possible to

efficiently sample the posterior distribution of sn = {st}n
t=1, the latent volatilities hn = {ht}n

t=1

and the parameters by MCMC methods. One key feature of their method is that it permits

the joint sampling of hn conditioned on sn thus leading to posterior draws that mix better than
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approaches that rely on one-at-a-time sampling of the volatilities. The sampling is finished by

a reweighting step to compensate for any error arising from the mixture approximation. In this

paper we show how this basic idea can be extended to SV models with leverage by starting with

the joint distribution of log ε2
t , ηt|sign(yt), ρ, σ and approximating this distribution by a suitably

constructed ten-component mixture of normal distributions. Our approach effectively solves the

problems of fitting SV models with leverage. We also show how our new approach can be further

extended to cover more general SV models than those given in (1).

For a deeper understanding of the model we analyze in this paper it is worth noting that the

model in Jacquier et al. (2004) where εt and ηt−1 are correlated is distinct and different. The model

in (2) is appealing because it is an Euler approximation to the log-normal OU SV model with

leverage. Thus, the methods we develop in this paper, combined with those of Elerian et al. (2001),

Eraker (2001) and Roberts and Stramer (2001), can be used to fit the corresponding continuous

time model with discretely sampled data. Letting yt−1 = (y1, ..., yt−1), another distinction is

that a model with correlated εt and ηt−1 implies that yt|yt−1 can be skewed, while models which

correlate εt and ηt have symmetric yt|yt−1 unless εt is skewed itself. On the other hand, in

the alternative specification ρ has two roles, leverage and skewness. In our view, the use of a

single parameter to model two effects is not appealing because it makes the parameter difficult

to interpret. Another downside of correlating εt and ηt−1 is that yt is no longer a martingale

difference sequence. A more desirable way of introducing skewness in the distribution of yt|yt−1 is

by modeling εt as asymmetric within the setup of (2). This allows the SV model to maintain the

martingale difference property in parallel fashion to what is done in the GARCH literature and

in the literature on time-changed Lévy processes and Lévy based SV models. Yu (2005) provides

further discussion of some of these issues alongside empirical evidence that the model in (2) is

better supported in a real data example.

The rest of the paper is organized as follows. In Section 2 we develop in detail our approach to

dealing with SV models with leverage. Section 3 illustrates the performance of this method both

on its own terms and in relation to a single move method that appears in Jacquier et al. (2004)

in which the {ht} and the parameters are sampled one at a time, conditioned on the remaining

values. In Section 4 we illustrate our techniques on data from the Japanese stock market. Section
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5 deals with extensions of the method to superposition models (where the log-volatility is made

up of a linear combination of heterogenous and independent autoregressions) and heavy-tailed

error distributions (student and log-normal). Concluding remarks are contained in Section 6.

2 Efficient auxiliary mixture sampler

2.1 Reformulation in the no leverage case

To motivate our technique, recall from Nelson (1988), Harvey et al. (1994) and Harvey and

Shephard (1996) that the process for yt in (1) can equivalently be expressed in terms of the the

bivariate observations (dt, y
∗
t ) where

dt = I(εt ≥ 0)− I(εt < 0), (3)

y∗t = log y2
t = ht + ε∗tt, (4)

and

ε∗t = log ε2
t .

In other words, we have the map

yt = dt exp(y∗t /2).

When ρ = 0 it is easy to see that the signs of yn = (y1, ..., yn)′ are independent of y∗n = (y∗1, ..., y
∗
n)′

which means that we can neglect dn = (d1, ..., dn)′ and focus on the model in terms of {y∗t } which

is linear in {ht} with an i.i.d. error ε∗t that follows a log χ2
1 density

f(ε∗t ) =
1√
2π

exp
{

ε∗t − exp(ε∗t )
2

}
, ε∗t ∈ R.

Although the latter distributional form still precludes direct and simple inference, Kim et al.

(1998) (KSC) introduced the idea of accurately approximating the log χ2
1 distribution by a matched

mixture of normal distributions

g(ε∗t ) =
K∑

j=1

pjN (ε∗t |mj , v
2
j ), ε∗t ∈ R, (5)

where N (ε∗t |mj , v
2
j ) denotes the density function of a normal distribution with mean mj and

variance v2
j . The values of pj , mj and v2

j found by KSC on the basis of K = 7 components
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are reproduced in the first block of columns in Table 1. They proceeded to develop an efficient

Bayesian MCMC method for sampling the resulting posterior distribution and then reweighted

the sampled draws in a way to ensure that the variates corresponded to the posterior under the

log χ2
1 sampling density. The entire approach was shown to be efficient and readily implementable.

In our current work we have favored a tighter approximation to the density of the log χ2
1

distribution that utilizes K = 10 components. The component parameters are given in the

second block of Table 1. For the moment, the columns in the table labeled aj and bj can be

ignored.

KSC K = 10
j pj mj v2

j pj mj v2
j aj bj

1 0.04395 1.50746 0.16735 0.00609 1.92677 0.11265 1.01418 0.50710
2 0.24566 0.52478 0.34023 0.04775 1.34744 0.17788 1.02248 0.51124
3 0.34001 −0.65098 0.64009 0.13057 0.73504 0.26768 1.03403 0.51701
4 0.25750 −2.35859 1.26261 0.20674 0.02266 0.40611 1.05207 0.52604
5 0.10556 −5.24321 2.61369 0.22715 −0.85173 0.62699 1.08153 0.54076
6 0.00002 −9.83726 5.17950 0.18842 −1.97278 0.98583 1.13114 0.56557
7 0.00730 −11.40039 5.79596 0.12047 −3.46788 1.57469 1.21754 0.60877
8 0.05591 −5.55246 2.54498 1.37454 0.68728
9 0.01575 −8.68384 4.16591 1.68327 0.84163
10 0.00115 −14.65000 7.33342 2.50097 1.25049

Table 1: Selection of (pj ,mj , v
2
j , aj , bj). Left hand side was determined by Kim, Shephard and Chib,

the ones on the right hand side are new and represent a better approximation.

That the move to K = 10 components leads to a superior approximation is illustrated in Figure

1 where we plot the difference between the density of the log χ2
1 distribution and the approximating

mixture distribution, evaluated over the range from the first to the 99th percentiles. It can be

seen from the first row of this figure that the new mixture with K = 10 components provides a

much closer fit. The second row of the figure shows that the new approximation is also close for

the density of
√

χ2
1.

2.2 Reformulation in general case

Now consider the general case of ρ 6= 0. The conditional distribution of η is

ηt|dt, ε
∗
t , ρ, σ ∼ N (

dtρσ exp (ε∗t /2) , σ2(1− ρ2)
)
, (6)
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Figure 1: The difference between the approximate and the true densities (for the range from the 1st
percentile to the 99th percentile). The log χ2

1 density (top) and the
√

χ2
1 density (bottom).

which shows that we have two complications: dt is not ignorable and ε∗t enters both (4) and (6).

Our idea now is to approximate the bivariate conditional density of

ε∗t , ηt|dt, ρ, σ

as a mixture of bivariate normal densities. To develop our approximation we start with the usual

marginal-conditional decomposition

f(ε∗t , ηt|dt, ρ, σ) = f(ε∗t |dt)f(ηt|ε∗t , dt, ρ, σ)

= f(ε∗t )f(ηt|ε∗t , dt, ρ, σ). (7)
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We now approximate f(ε∗t ) by the mixture distribution given in (5) and let the approximation of

f(ε∗t , ηt|dt, ρ, σ) take the form

g(ε∗t , ηt|dt, ρ, σ) =
K∑

j=1

pjN (ε∗t |mj , v
2
j )N

[
ηt|dtρσ exp(mj/2) {aj + bj (ε∗t −mj)} , σ2(1− ρ2)

]
, (8)

where the second term in the jth component

N [
ηt|dtρσ exp(mj/2) {aj + bj (ε∗t −mj)} , σ2(1− ρ2)

]

is intended to match the density of ηt|dt, ε
∗
t , ρ, σ given in (6). Specifically, on inspection of the

form of the density in (6), it can be seen that we are approximating

exp (ε∗t /2)

by

exp(mj/2)(aj + bj (ε∗t −mj)),

given ε∗t ∼ N (mj , v
2
j ). We focus on this approximation because it does not depend upon ρ.

Interestingly, ρ does not affect the quality of the approximation as we show below. To find the

values (aj , bj), j = 1, ..., 10, we consider the mean square norm and let

(aj , bj) = arg min
a,b

E{exp (ε∗t /2) exp(−mj/2)−a−b (ε∗t −mj)}2, ε∗t ∼ N (mj , v
2
j ), j = 1, 2, ..., 10.

By calculation, we get

aj = exp(v2
j /8),

bj = E{zt exp(vjzt/2)} =
1
2

exp

(
v2
j

8

)
, j = 1, 2, ..., 10,

which are evaluated and reproduced in Table 1.

Remark 1 The key question is how well (8) approximates (7). We give results for ρ = −0.3,−0.6

and −0.9. Figure 2 shows f and g for ηt|ε∗t , dt = 1 evaluated with ε∗t set at its 25th, 50th and

75th percentiles. Likewise Figure 3 shows f and g for ε∗t |ηt, dt = 1 evaluated with ηt = −0.67σ, 0,

0.67σ. The results suggest the approximation is quite good for it is very hard to see any difference

between the true densities f and the approximations g. Further, Figure 4 shows the marginal

density of ηt given dt = 1. It is clear that the true conditional joint density given dt is well

approximated by the stated bivariate normal mixture.
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Figure 2: The conditional density of ηt given dt = 1 and ξt = log χ2
1(0.25), log χ2

1(0.5), log χ2
1(0.75) (left,

middle, right) for ρ = −0.3, −0.6, −0.9 (top, middle, bottom).

2.3 MCMC algorithm

2.3.1 Broad principles

The SV model can be expressed as

(
y∗t

ht+1

)
=

(
ht

µ + φ(ht − µ)

)
+

(
ε∗t
ηt

)
.

Now on using the mixture approximation (8) to the density ε∗t , ηt|dt, ρ, σ and introducing the

mixture component indicator st ∈ {1, 2, ..., K} we have that

{(
ε∗t
ηt

)
|dt, st = j, ρ, σ

}
L=

(
mj + vjzt

dtρσ(aj + bjvjzt) exp(mj/2) + σ
√

1− ρ2z∗t

)
,

(
zt

z∗t

)
i.i.d.∼ N2(0, I),
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Figure 3: The conditional density of ξt given dt = 1 and ηt = −0.67σ, 0, 0.67σ (left, middle, right) for
ρ = −0.3, −0.6, −0.9 (top, middle, bottom). The value of σ is set to 1 in this example.

where A
L= B implies that A and B have the same distribution. If we let θ = (φ, ρ, σ) and assume

that h1|µ,θ ∼ N (µ, σ2/(1− φ2)), then under the auxiliary notation

µ̃1 = µ̃2 = ... = µ̃n = µ,

we have that the SV model with leverage can be expressed in linear Gaussian state space form

(e.g. Harvey (1989), West and Harrison (1997) and Durbin and Koopman (2001))



y∗t
ht+1

µ̃t+1


 =




ht

µ̃t + φ(ht − µ̃t)
µ̃t


 +




ε∗t
ηt

0


 , (9)

for t = 1, 2, . . . , n, and
(

h1

µ̃1

)
∼ N

((
µ0

µ0

)
,

(
σ2/(1− φ2) + σ2

0 σ2
0

σ2
0 σ2

0

))
. (10)

9



−0.25 0.00 0.25

2.5

5.0

ρ= −0.3
True Approx 

−0.25 0.00 0.25

2.5

5.0

ρ= −0.6

−0.25 0.00 0.25

2.5

5.0

ρ= −0.9

Figure 4: The marginal density of ηt given dt = 1 for ρ = −0.3, −0.6, −0.9 (left, middle, right). The
value of σ is set to 1 in this example.

Under a given prior π(θ) on θ and a normal prior on µ (µ ∼ N (µ0, σ
2
0)), it is now possible to

efficiently sample the posterior density

g(sn,hn, µ, θ|y∗n,dn) (11)

by MCMC techniques (see for example Chib (2001) for a review of these methods). Of course,

due to the approximation of ε∗t , ηt|dt, ρ, σ, this posterior is not exactly the correct one, but we will

see in subsection 2.4 that it is easy to correct the small error by reweighting the sampled draws.

There are a number of different ways of sampling the posterior density above but the scheme

given next is relatively simple, fast and effective as we will show. First we initialize sn,hn, µ and

θ, and then iterate the following steps to obtain a posterior sample.

1. Draw sn|y∗n,dn,hn, µ,θ

2. Draw (hn, µ, θ)|y∗n,dn, sn by

(a) Drawing θ|y∗n,dn, sn

(b) Drawing hn, µ|y∗n,dn, sn,θ

2.3.2 Step 1

We first define

ε∗t = y∗t − ht, ηt = (ht+1 − µ)− φ(ht − µ),
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then evaluate for each j = 1, 2, ..., K

π(st = j|y∗n,dn,hn, µ,θ)

∝ π(st = j|ε∗t , ηt, dt, µ, θ)

∝ Pr(st = j)v−1
j exp

{
−(ε∗t −mj)

2

2v2
j

− [ηt − dtρσ exp(mj/2) {aj + bj (ε∗t −mj)}]2
σ2(1− ρ2)

}
.

This discrete distribution is sampled by the inverse distribution method.

2.3.3 Step 2

In Step 2a we sample the density

g(θ|y∗n,dn, sn) ∝ g(y∗n|dn, sn, θ)π(θ),

marginalized over µ. The density g(y∗n|dn, sn,θ) is found from the output of the Kalman filter

recursions applied to the model in (9) and (10). As one of the elements of the state vector is µ,

which is time-invariant, this density can also be computed by the so-called augmented Kalman

filter (e.g. Durbin and Koopman (2001)) but this procedure is computationally more involved.

For the sampling we rely on the Metropolis-Hastings algorithm with a proposal density based

on truncated Gaussian approximation of π(θ|y∗n,dn, sn) (Chib and Greenberg (1994) and Chib

and Greenberg (1995)). We define θ̂ = (φ̂, σ̂2, ρ̂)′ which maximizes (or approximately maximizes)

g(y∗n|dn, sn, θ)π(θ). Then we generate a candidate γ∗ from the normal distribution truncated on

the region R, TNR(θ̂,Σ∗), where

Σ−1
∗ = − ∂2 log g(y∗n|dn, sn,θ)π(θ)

∂θ∂θ′

∣∣∣∣
θ=bθ

,

and R = {γ : |φ| < 1, σ2 > 0, |ρ| < 1}. Alternatively, we may generate a candidate from

an untruncated Gaussian proposal using a transformation θ1 = log(1 + φ) − log(1 − φ), θ2 =

log σ2
1, θ3 = log(1 + ρ)− log(1− ρ).

The proposal values are accepted or rejected according to the Metropolis-Hastings probability

of move. When the Hessian matrix is not negative definite (e.g. when |ρ̂| ≈ 1), we take a normal

proposal TNR(θ̂, c0I) using some large constant c0.

Step 2b, the sampling of hn, µ|y∗n,dn, sn,θ is simple and is implemented with the help of the

Gaussian simulation smoother (Frühwirth-Schnatter (1994), Carter and Kohn (1994), de Jong
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and Shephard (1995) and Durbin and Koopman (2002)). Software for carrying out Gaussian

simulation smoothing is widely available (Koopman et al. (1999)).

2.4 Correcting for misspecification

In our approach we approximate the true bivariate density f(ε∗t , ηt|dt, µ, θ) with our convenient

mixture density g(ε∗t , ηt|dt, µ, θ). Thus the draws from our MCMC procedure

hk
n, µk, θk, k = 1, 2, ..., M,

are from the approximate posterior density g(hn, µ, θ|y∗n,dn). To produce draws from the correct

posterior density π(hn, µ, θ|y∗n,dn) we simply re-weight the sampled draws. Define

ε∗kt = y∗t − hk
t , ηk

t = (hk
t+1 − µk)− φk(hk

t − µk).

Then we compute the weights

w∗k =
n∏

t=1

f(ξk
t , ηk

t |dt, µ
k, θk)

g(ξk
t , ηk

t |dt, µk, θk)
, k = 1, 2, ...,M,

and let

wk =
w∗k∑M
l=1 w∗l

.

We can now acquire a sample from π(h, µ, θ|y∗, d) by resampling the sampled variates with weights

proportional to wj . Furthermore, posterior moments can be computed by weighted averaging of

the MCMC draws as in Kim et al. (1998). For example, we can estimate the posterior mean of

g(θ) as

Ê[g(µ,θ)] =
M∑

k=1

wkg(µk, θk).

We will see in the Monte Carlo experiments and in the empirical work that the variance of these

weights is small, a consequence of the accuracy of our approximation. This implies, therefore,

that the effect of the reweighting is modest.

2.5 Associated particle filter

We complete our methodological developments for this model by presenting a simulation-based

approach to filtering. In particular, we show how we can recursively sample the distributions
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(ht|yt,µ, θ), (ht+1|yt,µ,θ) and (yt+1|yt,µ,θ). These sampled variates are needed in order to cal-

culate marginal likelihoods, Bayes factors and goodness of fit statistics. We implement the filtering

and associated computations by particle filter methods (e.g., in this context, Kim et al. (1998)

and Pitt and Shephard (1999) or more generally Doucet et al. (2001)).

The SV model with leverage can be expressed in the form of a non-linear, non-Gaussian state

space model consisting of the measurement density

f(yt|ht) =
1√
2π

exp
{
−1

2
ht − 1

2
y2

t exp(−ht)
}

(12)

and the evolution density

f(ht+1|yt, ht, µ, θ) =
1√

2π(1− ρ2)σ
exp

{
−(ht+1 − µt+1)2

2(1− ρ2)σ2

}
, (13)

where µt+1 = µ + φ(ht − µ) + ρσ exp(−ht/2)yt. To develop our particle filtering method we start

with the fact (from Bayes theorem) that

f(ht+1, ht|yt+1, µ, θ) ∝ f(yt+1|ht+1)f(ht+1|yt, ht, µ,θ)f(ht|yt, µ,θ)

where we assume that we have samples (particles) from f(ht|yt, µ, θ), and a discrete uniform

approximation f̂(ht|yt, µ,θ) to f(ht|yt, µ,θ). In principle, given this discrete distribution we

could sample ht from f̂(ht|yt, µ, θ), then ht+1 from f(ht+1|yt, ht, µ,θ), a process we could repeat

many times to generate a sample of values on ht+1. We finish the process by resampling the latter

values with weights proportional to f(yt+1|ht+1, µ,θ). By appealing to the theory of importance

sampling it can be shown that these resampled particles are from f(ht+1|yt+1, µ,θ).

Effectively, in the process just described, the target posterior density, namely f(ht+1, ht|yt+1, µ, θ),

is sampled with the help of f(ht+1|yt, ht, µ,θ)× f̂(ht|yt, µ, θ) as the importance function. It turns

out, however, that it is advantageous to also involve yt+1 in the importance function. To this end,

given the ith particle hi
t from f(ht|yt, µ,θ), we let the importance function be

g(ht+1, h
i
t|yt+1, µ, θ) ∝ f(yt+1|µi

t+1)f(ht+1|yt, h
i
t, µ,θ)f̂(hi

t|yt, µ,θ)

∝ f(ht+1|yt, h
i
t, µ,θ)g(hi

t|yt+1, µ, θ) (14)
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where

g(hi
t|yt+1, µ, θ) =

f(yt+1|µi
t+1)f̂(hi

t|yt, µ, θ)∑I
j=1 f(yt+1|µj

t+1)f̂(hj
t |yt, µ,θ)

,

f(yt+1|µi
t+1) =

1√
2π

exp
{
−1

2
µi

t+1 −
1
2
y2

t+1 exp(−µi
t+1)

}
,

µi
t+1 = µ + φ(hi

t − µ) + ρσ exp(−hi
t/2)yt.

This leads to the following particle filtering method.

1. Initialize t = 1, hi
1 from its unconditional distribution for i = 1, 2, ..., I.

(a) Compute wi = f(y1|hi
1) and Wi = F (y1|hi

1), (where F denotes the distribution function

of yt given ht) and record

w1 =
1
I

I∑

i=1

wi, W 1 =
1
I

I∑

i=1

Wi.

(b) Let f̂(hi
1|y1, µ, θ) = πi

1 = wi/
∑I

j=1 wj , i = 1, 2, . . . , I.

2. For each i, simulate hi
t and hi

t+1, i = 1, . . . , I, using the importance function g(ht+1, ht|Yt+1, µ, θ)

given by (14). Compute

wi =
f(yt+1|hi

t+1)f(hi
t+1|yt, h

i
t, µ, θ)f̂(hi

t|yt, µ, θ)
g(hi

t+1, h
i
t|yt+1, µ,θ)

=
f(yt+1|hi

t+1)f̂(hi
t|yt, µ,θ)

g(hi
t|yt+1, µ, θ)

,

Wi =
F (yt+1|hi

t+1)f̂(hi
t|yt, µ, θ)

g(hi
t|yt+1, µ, θ)

, i = 1, . . . , I,

and record

wt =
1
I

I∑

i=1

wi, W t =
1
I

I∑

i=1

Wi. (15)

Let f̂(hi
t+1|yt+1, µ, θ) = πi

t+1 = wi/
∑I

j=1 wj , i = 1, 2, . . . , I.

3. Increment t and go to 2.

It can be shown that as I →∞, wt+1
p→ f(yt+1|yt, µ, θ), and

W t+1
p→ F (yt+1|yt, µ, θ),
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the predictive distribution function. In addition, the draws on ht+1 are particles from ht+1|yt, µ, θ,

while the resampled items at stage 3 are samples from ht+1|yt+1, µ,θ. It therefore follows that

n∑

t=1

log wt
p→

n∑

t=1

log f(yt|yt−1, µ,θ),

is a consistent estimate of the conditional log-likelihood and can be used in the method of Chib

(1995) to calculate the marginal likelihood. Likewise the sequence of W t, and its reflected version

2
∣∣W t − 1/2

∣∣, can be used to check for model fit as these are approximately i.i.d. standard uniform

if the model is correctly specified. This diagnostic was introduced into econometrics by Kim

et al. (1998), following the earlier work of Shephard (1994), Smith (1985) and Rosenblatt (1952).

Diagnostic checking of this type has been further popularized by Diebold et al. (1998).

3 Illustrative example

3.1 Auxiliary mixture sampler

This section gives illustrative examples to show the performance of the approximation discussed

above. Throughout we use y∗t = log(y2
t + c) where the offset c is used to deal with very small

values of y2
t as in Kim et al. (1998). Because our ten component mixture approximation provides

an improved fit to the left tail of the log χ2
1 density we set c equal to 0.0001 which is smaller than

the value of c = 0.001 used by Kim et al. (1998).

We simulated the data from the stochastic volatility model (1) where we set φ = 0.97, β ≡
exp(µ/2) = 0.65, σ = 0.15 and ρ = −0.3. These values are based on the estimates reported by

KSC and Yu (2005) in their analysis of daily returns on foreign exchange rates and the S&P500

index. In addition, we also consider models with ρ = 0, −0.6, −0.9 to investigate the effect of ρ

on the quality of our inferences. In each case, we consider samples with n = 1, 000 observations.

The results are based on the prior distribution

µ ∼ N (0, 1),
φ + 1

2
∼ Beta(20, 1.5),

σ−2 ∼ Gamma

(
5
2
,
0.05
2

)
, ρ ∼ U(−1, 1),

where U(−1, 1) denotes a uniform distribution on (−1, 1). The priors for φ and σ2 are the same

as those used by Kim et al. (1998). In particular we use a beta prior on (φ + 1)/2 to ensure the
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stationarity of the latent volatility process. To reflect the high persistence of the process in the

previous empirical literature, we set E(φ) = 0.86 and
√

V ar(φ) = 0.11. In the MCMC sampling

of the posterior distribution, the initial 500 variates are discarded and the subsequent M = 5, 000

values are retained for purposes of analysis. Figure 5 shows the sample autocorrelations function,

the sample paths and the posterior densities of parameters for the case ρ = −0.3. The sample

paths look stable and the autocorrelations decay quickly. In Table 2, the summary statistics are

given for the cases ρ = −0.3, −0.6 and −0.9. The posterior means are close to the true values,

and all true values are contained in the 95% credible intervals.

0 50 100

0

1 φ

0 50 100

0

1 σ

0 50 100

0

1 ρ

0 50 100

0

1 exp(µ/2)

0 2000 4000

0.90

0.95

1.00 φ

0 2000 4000

0.10

0.15

0.20

0.25

σ

0 2000 4000

−0.75

−0.50

−0.25

0.00 ρ

0 2000 4000

0.6

0.8

exp(µ/2)

0.90 0.95 1.00

10

20

30

40 φ

0.1 0.2 0.3

5

10

15

σ

−0.5 0.0

1

2

3

ρ

1 2 3

2.5

5.0

7.5

exp(µ/2)

Figure 5: Asymmetric stochastic volatility model (ρ = −0.3). Sample autocorrelation functions, sample
paths and estimated posterior densities.

To measure how well the chain mixes, we calculate the inefficiency factors (the inverse of in-

efficiency factor is also known as numerical efficiency in Geweke (1992)). The inefficiency factor
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(equivalently the autocorrelation time) is defined as 1 + 2
∑∞

s=1 ρs where ρs is the sample au-

tocorrelation at lag s calculated from the sampled values.1 It is also the ratio of the numerical

variance of the posterior sample mean to the variance of the posterior sample mean from the hy-

pothetical uncorrelated draws. Thus it suggests the relative number of correlated draws necessary

to attain the same variance of the posterior sample mean from the uncorrelated draws. In Kim

et al. (1998), where the ρ = 0 case was considered, the inefficiency factors were between 30 and

150 (Table 5, KSC) for the original mixture sampler and between 10 and 16 for the improved

integration sampler (Table 6, KSC). In our MCMC implementation, these values are still small

for ρ = −0.3,−0.6 and −0.9, showing that our sampler is highly effective. Among the parameters

(φ, σ, ρ, β), the inefficiency factor of β is the smallest while that of σ tends to be the largest. The

leverage effect parameter ρ may have relatively larger values for higher negative correlations.

In order to judge the quality of our approximation we next report the distribution of the

weights as discussed above. Figures 6 and 7 shows the distribution of log(wk ×M), which would

all have been zero if the approximation were exact. Figure 6 looks at the case of ρ = 0 and

compares the K = 7 component analysis used by Kim et al. (1998) to our more refined K = 10

component analysis. While the standard deviation of the log-weights based on K = 7 is 0.92, it is

0.05 when K = 10. KSC demonstrated that reweighting had little impact on posterior inference

about θ, µ, so we would expect that the improvement here is small from a practical viewpoint.

In Figure 7, the distributions of log(wk × M) are shown for our new approximation in an

asymmetric volatility model (ρ = −0.3,−0.6,−0.9). For ρ = −0.3, its standard deviation is 0.41,

which is much smaller than that of KSC in the symmetric volatility model. For ρ = −0.6, the

distribution is skewed to the left, and we have a slightly larger but still small standard deviation,

0.83. For ρ = −0.9, the distribution is skewed to the left and the standard deviation is 1.73. This

latter case is, however, somewhat special because in our analysis of real financial data we usually

find that ρ is between −0.3 and −0.5.
1We have used 2, 500 lags in the estimation of the inefficiency factors.
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Figure 6: Histogram of the log(wk × M) where M = 5, 000 is a number of samples for a symmetric
stochastic volatility model (ρ = 0). Left: KSC (K = 7). Right: New (K = 10). Other line: the normal
density function setting its mean and variance equal to the sample mean and sample variance.

3.2 Comparison with a single move sampler

In this subsection, we compare our mixture sampler with a single move sampler in which the {ht}
and the parameters are sampled one-at-a-time, conditioned on the remaining values. Kim et al.

(1998) provide a similar comparison in the no leverage case.

The single move algorithm we employ in this experiment is essentially the algorithm developed

by Jacquier et al. (2004). A straightforward modification of their algorithm is needed, however,

to account for the different manner in which leverage is modeled; as discussed in the introduction,

in the latter paper, εt and ηt−1 are correlated whereas in our case the dependence is in terms of

εt and ηt.

For comparability, the data set and prior is the same as in the previous section although

the burn-in is now 25,000 and the MCMC sample size is M = 250, 000, both considerably larger

than before because of the high serial correlation in the output from the single move method. The

average acceptance rates of the latent variable ht’s in the Metropolis-Hastings algorithms are 71%,

55% and 29% for ρ = −0.3,−0.6 and −0.9. It appears that it gets increasingly difficult to find

competitive proposal values in this method as the leverage correlation becomes more negative.

Our results from the single move method are given in Table 3 and Figure 8. Clearly, the
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Figure 7: Histogram of the log(wk × M) where M = 5, 000 is a number of samples for an asymmetric
stochastic volatility model. Top right: New (ρ = −0.3,K = 10). Top left: New (ρ = −0.6,K = 10). Bottom
left: New (ρ = −0.9, K = 10). Other line: the normal density function setting its mean and variance equal
to the sample mean and sample variance.

sample autocorrelation functions decay markedly slowly and the inefficiency factors in several cases

are in the thousands.2 Notice also a considerable worsening of the sample autocorrelations and

inefficiency factors of (σ, ρ) for the cases ρ = −0.6 and ρ = −0.6. On comparing the corresponding

results given in Table 2 it is apparent that the mixing properties of our method are strikingly

better than those of the single move method.
2Due to the slowly declining serial correlations the inefficiency factors are based on 25, 000 lags. In addition,

even though this algorithm is about 3 times faster per cycle than our algorithm, the high inefficiency factors imply
that the single move method must be run for a substantially longer period to generate the same effective sample
size.
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Unweighted Weighted
Parameter True value Mean Stdev. Mean Stdev. 95% interval Inefficiency

φ 0.97 0.9685 0.0122 0.9686 0.0121 [0.9420, 0.9880] 8.4
σ 0.15 0.1644 0.0265 0.1644 0.0264 [0.1174, 0.2184] 10.1
ρ -0.3 -0.4351 0.1295 -0.4338 0.1301 [-0.6579, -0.1532] 6.8
β 0.65 0.6105 0.0723 0.6108 0.0751 [0.5118, 0.7475] 2.1
φ 0.97 0.9680 0.0113 0.9685 0.0112 [0.9429, 0.9865] 7.4
σ 0.15 0.1684 0.0261 0.1681 0.0260 [0.1214, 0.2273] 7.8
ρ -0.6 -0.6528 0.1004 -0.6501 0.0996 [-0.8242, -0.4340] 7.2
β 0.65 0.6130 0.0585 0.6132 0.0580 [0.5284, 0.7479] 3.1
φ 0.97 0.9595 0.0102 0.9592 0.0101 [0.9349, 0.9766] 8.7
σ 0.15 0.1694 0.0236 0.1688 0.0240 [0.1271, 0.2195] 11.2
ρ -0.9 -0.8613 0.0662 -0.8515 0.0627 [-0.9693, -0.7159] 14.7
β 0.65 0.6807 0.0345 0.6841 0.0225 [0.6106, 0.7466] 5.3

Table 2: Auxiliary mixture sampler. Summary statistics for three simulation experiments using a
variety of values of ρ. Sample size is 1,000 throughout.

4 Empirical example

In this section, we apply our approach to daily returns on the TOPIX (Tokyo Stock Price Index)

which are calculated as the differences in the logarithm of the daily closing value of TOPIX. The

sample period is from January 5, 1998 through December 30, 2002 leading to a sample of 1, 232

days on which the market was open. Table 4 gives the summary statistics of the data. The mean

and standard deviation of the returns are −0.026 and 1.284 respectively. In addition, there were

602 days when yt > 0 and 630 days when yt ≤ 0.

We use the same prior distribution given in Section 3.1, while again the initial 500 MCMC

iterations are discarded and the following 5, 000 values are recorded. Figure 9 shows the sample

autocorrelation functions, the sample paths and the posterior densities of (φ, σ, ρ, β = exp(µ/2)).

The sample autocorrelations decay quickly and the output mixes well.

Table 5 shows the estimated posterior means, standard deviations, the 95% credible intervals

and inefficiency factors.3 These factors are small, suggesting that the the posterior moments of

the parameters could be estimated with relatively economical sample sizes. The posterior means

of φ, σ, β are 0.95, 0.13 and 1.21 respectively, which are typical of the values found in prior analysis

of these data.
3The inefficiency factors are based on 100 lags of the autocorrelation functions and do not change materially

when more lags (say a 1, 000) are involved.
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Figure 8: Single move sampler. Sample autocorrelation functions of parameters for asymmetric stochastic
volatility models with ρ = −0.3,−0.6,−0.9.

The posterior mean of ρ is −0.36 and negative as expected, suggesting the presence of leverage.

Since its 95% credible interval is [−0.59, −0.11], the posterior probability that ρ is negative is

greater than 0.95.

Figure 10 shows the distributions of log(wk ×M) for the proposed sampler. As in the illus-

trative examples when ρ = −0.3, the log weights are concentrated around zero, and the standard

deviation is 0.34. In contrast, Kim et al. (1998) in the context of the basic SV model report a

standard deviation of around 1.0 in their analysis of similar data. This shows that our overall

approach is well behaved.

Table 5 shows the effect of reweighting on inference. We see that reweighting has a small

effect on the estimates of the posterior mean. In the first column of Table 6 we present the log
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Parameter True value Mean Stdev. 95% interval Inefficiency
φ 0.97 0.9629 0.0133 [0.9330, 0.9848] 598.7
σ 0.15 0.1712 0.0295 [0.1201, 0.2342] 1350.4
ρ -0.3 -0.4043 0.1235 [-0.6223, -0.1418] 620.5
β 0.65 0.5910 0.0522 [0.5046, 0.7042] 73.6
φ 0.97 0.9615 0.0129 [0.9309, 0.9819] 1427.5
σ 0.15 0.1763 0.0258 [0.1351, 0.2416] 1722.8
ρ -0.6 -0.6026 0.0979 [-0.7769, -0.3909] 2591.0
β 0.65 0.5743 0.0437 [0.5008, 0.6686] 384.1
φ 0.97 0.9619 0.0043 [0.9532, 0.9702] 1166.8
σ 0.15 0.1467 0.0041 [0.1390, 0.1549] 5928.3
ρ -0.9 -0.8777 0.0185 [-0.9091, -0.8374] 8405.3
β 0.65 0.7085 0.0221 [0.6645, 0.7516] 510.0

Table 3: Single move sampler. Summary statistics for three simulation experiments using a variety
of values of ρ. Sample size is 1,000 throughout.

TOPIX (1998/1/5 - 2002/12/30)
Obs. Mean Stdev Max Min pos(+) neg(-)
1,232 -0.0255 1.2839 5.3749 -5.6819 602 630

Table 4: Summary statistics for TOPIX return data (log-difference).

of the marginal likelihood for the SV model in the ρ = 0 case. The marginal likelihood here and

elsewhere was calculated by the method of Chib (1995), alongside the modification for Metropolis-

Hastings chains given in Chib and Jeliazkov (2001). The log-likelihood ordinate, which is an input

into this computation, was calculated by the particle filter method with I = 10, 000 using (15).

The marginal likelihood of this model can be compared to the SV model with leverage given in the

third column of the table. The results show that the model with leverage improves the likelihood,

evaluated at the posterior mean, by around 4 at the cost of a single parameter. On the basis of

the log marginal likelihood, which contains an automatic penalty for model complexity, we find

Unweighted Weighted
Parameter Mean Stdev. Mean Stdev. 95% interval Ineff Posterior correlation

φ 0.9511 0.0185 0.9512 0.0185 [0.908, 0.980] 9.3 1 -.66 -.30 -.06
σ 0.1343 0.0262 0.1341 0.0264 [0.091, 0.193] 13.0 1 .19 -.08
ρ -0.3617 0.1265 -0.3578 0.1257 [-0.593,-0.107] 6.8 1 .13
β 1.2056 0.0573 1.2052 0.0571 [1.089, 1.318] 2.7 1

Table 5: Estimation result for TOPIX. Sample size was 5,000, based on 5,500 MCMC draws, dis-
carding the first 500. Posterior correlation denotes the posterior correlation matrix.
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Figure 9: Estimation result for TOPIX. Sample autocorrelation functions, sample paths of MCMC output
and estimated posterior densities.

that the log of the Bayes factor in favor of the leverage model is around 2.

5 More general dynamics

5.1 Framework

Precisely the same methods can be used to handle flexible models of the type

yt = εt exp(ht/2), ht = z′tαt, (16)

αt+1 = bt + Ttαt + ηt, (17)

where zt, bt and Tt are non-stochastic processes, potentially dependent on some parameter θ and

αt is r-dimensional. We assume that
(

εt

ηt

)
∼ Nr+1 (0,Σ) , Σ =

(
1 σ′

σ Ω

)
. (18)

In order to simplify the exposition assume that Ω is non-singular. In principle this framework

can allow general forms of leverage wherein the dependence between εt and the elements of ηt is
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Figure 10: Sampling result of log-weights log(wk ×M) for the TOPIX series. Shows histogram and fitted
normal density.

allowed to vary over the individual elements.

This structure implies that

ηt|dt, ε
∗
t ∼ N (

dtσ exp (ε∗t /2) ,Ω− σσ′
)
.

Then, if we use our bivariate mixture approximation, we get that

{(
ε∗t
ηt

)
|dt, st = j

}
L=

(
mj + vjzt

dtσ(aj + bjvjzt) exp(mj/2) + (Ω− σσ′)1/2 z∗t

)
,

where (zt, z∗t )
′ i.i.d.∼ Nr+1(0, I). Therefore, except for an increase in the dimension of the problem,

this extension raises no new issues for our MCMC implementation.
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5.2 Example: superposition model

Suppose that

ht =
r∑

i=1

αi,t,

where

αt+1 =




µ
0
0
...
0




+




φ1 0 0 · · · 0
0 φ2 0 · · · 0
0 0 φ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · φr







αt −




µ
0
0
...
0







+ ηt,

and

(
εt

ηt

)
∼ Nr+1 (0,Σ) , Σ =




1 ρ1σ1 ρ2σ2 · · · ρrσr

ρ1σ1 σ2
1 0 · · · 0

ρ2σ2 0 σ2
2 · · · 0

...
...

...
. . .

...
ρrσr 0 σ2

r




.

Then the log-volatility is made up of the sum of independent autoregressions, each with a different

persistence level and degree of leverage. Superposition models of this type have become popular

in financial econometrics as they are more general than empirically limiting Markov volatility

models while close to corresponding continuous time models (Shephard (1996), Engle and Lee

(1999), Barndorff-Nielsen and Shephard (2001) and Chernov et al. (2003)). It is easy to check

that for Σ to be positive definite we need
∑r

i=1 ρ2
i < 1.

Column 6 of Table 6 shows that for the TOPIX data set adding a second volatility component

to the model has a modest effect on the fit of the model as measured by the log marginal likelihood.

The log of Bayes factors are also given in Table 7. These results are based on a prior where

(φ2 + 1)/2 ∼ Beta(10, 10) with the side constraint that φ2 < φ1. Further, we assume (ρ2 + 1)/2

∼ Beta(10, 10) with the constraint that 0 < ρ2
1 +ρ2

2 < 1. Finally, σ−2
2 ∼ Gamma(5/2, 0.05/2). To

generate a candidate with such constraints, we draw a candidate from the untruncated Gaussian

proposal using a transformation θ1 = log(1+φ1)− log(1−φ1), θ2 = log(1+φ2)− log(φ1−φ2), θ3 =

log σ2
1, θ4 = log σ2

2, θ5 = log(1 + ρ1)− log(1− ρ1) and θ6 = log(
√

1− ρ2
1 + ρ2)− log(

√
1− ρ2

1− ρ2).

Even though the log-likelihood, evaluated at the posterior mean of the parameters, is higher than

the one component model, the new model has three extra parameters σ2, ρ2 and φ2, which is

obviously penalized in the marginal likelihood computation.
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Table 6: Marginal likelihood estimation by the Chib (1995) method for the TOPIX data. All values
are in the natural-log scale. SV, SV-t and SV-g denote the SV models with Gaussian, student t and
normal log-normal errors. ASV allows ρ 6= 0. SP denotes superposition model.

SV SV-t ASV ASV-t ASV-g SP

Likelihood ordinate -2033.83 -2033.21 -2029.55 -2029.12 -2029.20 -2029.68
(S.E.) (0.16) (0.19) (0.10) (0.12) (0.17) (0.13)

Prior ordinate 3.75 0.16 3.09 0.99 3.38 7.84

Posterior ordinate 8.87 5.17 10.25 8.46 12.50 14.81
(S.E.) (0.02) (0.20) (0.02) (0.08) (0.04) (0.04)

Marg Likelihood -2038.95 -2038.21 -2036.71 -2036.59 -2038.31 -2036.65
(S.E.) (0.16) (0.28) (0.10) (0.14) (0.17) (0.14)

SV-t ASV ASV-t ASV-g SP
SV -0.32 -0.97 -1.02 -0.28 -1.00
SV-t -0.65 -0.70 0.04 -0.68
ASV -0.05 0.69 -0.03
ASV-t 0.75 0.03
ASV-g -0.72

Table 7: Bayes factors for the TOPIX data. The figures are log (base 10) of Bayes factors for the
row model against the column model.

5.3 Example: heavy-tailed error distribution

Many writers have followed Harvey et al. (1994) in extending the SV model to allow for heavier

tailed returns. For example, Chib et al. (2002) extended the basic Kim et al. (1998) approach by

letting

yt =
√

λtεt exp(ht/2), (19)

ht+1 = µ + φ(ht − µ) + ηt, t = 0, 1, . . . , n, (20)

where λt is an i.i.d. scale mixture variable and λt ⊥⊥ (εt, ηt) (⊥⊥ denotes probabilistic indepen-

dence). This is relevant empirically and also corresponds to the literature on time-change Lévy

processes and Lévy based SV models (Carr et al. (2003), Carr and Wu (2004) and Cont and

Tankov (2004)). Papers on various inferential aspects of these models include Barndorff-Nielsen
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and Shephard (2005) and Li et al. (2004). In this subsection we will assume that

log λt ∼ N (−0.5τ2, τ2),

in which case λ
1/2
t εt has a normal log-normal distribution. This specification is closed in the

empirical work by assuming that τ2 ∼ Gamma(1, 1).

The above model fits into the framework put forward in (16)-(18) by writing

yt = εt exp(ht/2), (21)

ht = h∗t+1 + λt, (22)

h∗t+1 = µ + φ(h∗t − µ) + ηt, t = 0, 1, . . . , n, (23)

where 


εt

ηt

λt


 ∼ N3







0
0

−0.5τ2


 ,




1 ρσ 0
ρσ σ2 0
0 0 τ2





 .

Therefore, this extension again raises no new inferential issues.

Table 6 gives results for the three different heavier tailed specifications. In the second (fourth)

column we report the results when ρ = 0 (ρ 6= 0) and
√

λtεt follows a student-t distribution with

ν degrees of freedom, where ν ∼ Gamma(16, 0.8). The fifth column reports the results for the

Gaussian scale mixture SV model with leverage. The fit of the second model is better than the

basic model, but not over the leverage model. Overall, however, the simple Gaussian SV model

with leverage is preferred for these data.

6 Conclusion

In this paper we have extended the Kim et al. (1998) approach to SV models with leverage. This

starts with the joint distribution of log ε2
t , ηt|sign(yt) which is then approximated by a suitably

constructed ten-component mixture of bivariate normal distributions. We show that this method,

which is easy to implement and produces output that mixes well, effectively solves the problems

of fitting SV models with leverage. We also show how our new method can be further extended to

cover even more general SV models such as those with heavy-tailed distributions and superposition

effects. In each case, our algorithm performs as well as the original Kim et al. (1998) algorithm but
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is applicable under wider conditions. We also discuss the computation of the marginal likelihood

and Bayes factors and provide an empirical analysis of real Japanese stock return data where the

SV model with leverage is preferred over competing models.
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