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Abstract 
 
 
 The study of mechanism design is sometimes criticized, because the designed 
mechanisms depend on the fine detail of the model specification, and agents’ behavior 
relies on the strong common knowledge assumptions on their rationality and others. Hence, 
the study of ‘detail-free’ mechanism design with weak informational assumptions is the 
most important to make as the first step towards a practically useful theory. This paper will 
emphasize that even if we confine our attentions to detail-free mechanisms with week 
rationality, there still exist a plenty of scope for development of new ideas on how to design 
a mechanism to play the powerful role. We briefly explain my recent works on this line, 
and argue that the use of stochastic decision works much in large exchange economics, and 
agents’ moral preferences can drastically improve implementability of social choice 
functions. 
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1. Introduction 
 
 
 The study of mechanism design such as auction, implementation, and contract theory, 
which is one of my main research fields1 besides repeated games, has been pervasive in 
application of game theory to economics. In order to achieve the desirable allocation, the 
central planner, or the auctioneer, designs a decentralized mechanism such as an auction 
scheme, a trading procedure, and a voting scheme in advance. The designed mechanism is 
assumed to be common knowledge among agents, or traders, who play equilibrium 
behavior in the game induced by this mechanism. 

Many previous works in the mechanism design literature, however, depend on, not 
only this common knowledge assumption, but also the following unrealistic informational 
assumptions. In order to design a well-behaved mechanism, the central planner has to know 
the fine detail of the model specification such as agents’ utility functions, the prior 
distribution, and the social choice function. In order for agents to calculate their equilibrium 
behavior, not only the model specification, but also agents’ rationality, has to be common 
knowledge among agents. As many authors such as Hurwicz (1972), Wilson (1985, 1987), 
and Dasgupta and Maskin (2000) have pointed out as a criticism on mechanism design 
theory, these assumptions make the mechanisms difficult to put into practice. 

Based on this observation, we can say that how to design mechanisms that are 
detail-free, i.e., do not depend on the detail of the model specification, and induce agents to 
play desirable behavior without requiring any restrictive knowledge assumption is the most 
important to investigate as the first step towards a practically useful theory. The purpose of 
the present paper is to show that even if we confine our attentions to the class of detail-free 
mechanisms, there might still be a plenty of scope for ingenious researchers to develop new 
ideas of mechanism design that can drastically improve economic welfare. 

The present paper will explain two recent researches of mine, introducing two new 
ideas on how to design detail-free mechanisms with weak rationality assumptions. First, we 
will argue that in implementing any social choice function, it is quite useful from the 
practical viewpoint to take agents’ moral preferences into account, in addition to their 
material interests. Whenever any social choice function is implementable in Nash 
equilibrium, then it must be contingent only on factors relevant to agents’ preferences. This 
might sometimes be quite restrictive, especially in the case that only agents’ material 
interests are relevant to their preferences. Hence, in order to implement many non-trivial 
social choice functions, we should take aspects of agents’ moral preferences into account 
besides their material interests. 

This point was firstly pointed out by my paper entitled “Universal Mechanisms and 
Moral Preferences in Implementation” (Matsushima (2003)). Matsushima (2003) showed 
that agents’ moral preferences for honesty play a powerful role in, not only implementing a 
wide variety of social choice functions, but also making the mechanisms detail-free in a 
very strict sense. Section 4 will explain Matsushima (2003) in more detail. 
                                                 
1 For instance, see Abreu and Matsushima (1992a, 1992b, 1994) and Matsushima (1988, 1990, 
1991a, 1991b, 1993). 



 3

Second, we will argue that stochastic decision plays a powerful role in large double 
auction environments. According to the well-specified detail-free auction format, traders 
are randomly divided into distinct groups. The members of each group trade at the 
market-clearing price vector in another group. Hence, each agent’s activity in the auction 
game never influences the price vector at which she trades. This will be the driving force of 
agents’ having incentive to adopt price-taking behavior. 

This idea of stochastic auction design was firstly explored by my paper entitled “Large 
Double Auction Design in Dominance” (Matsushima (2004)). Since traders with private 
values adopt price-taking behavior as dominant strategies, it follows from the law of large 
numbers that the auctioneer can achieve the perfectly competitive allocations in the limit as 
the number of traders grows. Of particular importance, in the interdependent value case, the 
auctioneer can achieve the rational expectations equilibrium allocation. Here, traders adopt 
price-taking behavior as twice iteratively undominated strategies, which implies that we do 
not need to assume any strong rationality assumption. Sections 5 and 6 will explain this 
paper in more detail. 

The next section shows the basic model of implementation. Section 3 shows a brief 
survey on the background. This paper, however, does not intend to give a comprehensive 
survey on the general literature of implementation and auction theory. 
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2. Basic Model 
 
 

This section introduces the basic model of implementation.2 Let N  denote the finite 
set of agents. Let A  denote the finite set of pure alternatives. Let ∆  denote the set of 
lotteries over pure alternatives. 

A mechanism is defined as ),( gMG = , where ∏
∈

=
Ni

iMM , iM  is the finite set of 

messages for agent Ni∈ , and 
∆→Mg : . 

The central planner designs a mechanism ),( gMG =  in advance, and then requires each 
agent Ni∈  to announce her message ii Mm ∈ . When agents announce message profile 

Am∈ , the central planner chooses any pure alternative Aa∈  with probability ))(( amg . 
Agent si'  utility function is defined as a function 

RMAu ii →×: , 
which satisfies the expected utility hypothesis. In Section 4, we allow each agent’s 
announcement to have intrinsic value for her welfare. For instance, each agent may have 
moral preference in that she has positive physiological cost of announcing dishonestly. 
When agent si'  announcement has no such intrinsic values, we will simply write )(aui  
instead of ),( ii mau . Let )( ii MU  denote the set of possible utility functions for agent i . 
Let ∏

∈

=
Ni

ii MUMU )()(  and )()( MUuu Nii ∈= ∈ . Two utility function profiles 

)(MUu∈  and )(MUu ∈′  are said to be preference-equivalent if for every Ni∈ , there 
exist 0>iβ  and Ri ∈γ  such that iiii uu γβ +=′ . 

A combination of a mechanism G  and a utility function profile )(MUu∈ , i.e., 
),( uG , defines a game. A message profile Mm∈  is said to be dominant in ),( uG  if for 

every Ni∈  and every Mm ∈′ , 
   )),(()),,(( iiiiii mmgummmgu ′′≥′− . 
A message profile Mm∈  is said to be a Nash equilibrium in ),( uG  if for every Ni∈  
and every ii Mm ∈′ , 
   )),,(()),(( iiiiii mmmgummgu ′′≥ − . 

We introduce the Bayesian framework for our model as follows. Let ∏
∈

Ω=Ω
Ni

i  

denote the finite set of states, where iΩ  is the set of agent si'  private signals. Let 
),( Ωii MW  denote the set of functions )(: iii MUw →Ω . When the state is ω , agent 

                                                 
2 For surveys on implementation, see Moore (1992), Palfrey (1992), Osborne and Rubinstein (1994, 
Chapter 10), Mas-Colell, Whinston, and Green (1995, Chapter 23), and Maskin and Sjöström 
(2002). 
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si' utility function is given by )()( iii MUw ∈ω . Let ∏
∈

Ω=Ω
Ni

ii MWMW ),(),(  and 

),()( Ω∈= ∈ MWww Nii . We will say that agent i  has private values if )(ωiw  does not 
depend on the other agents’ private signals ii −− Ω∈ω . In this case, we will simply write 

)( iiw ω  instead of )(ωiw . We will say that agent i  has interdependent values if )(ωiw  
depends on ii −− Ω∈ω . 

A social choice function is defined as a function ∆→Ω:f . We will say that a social 
choice function f  is deterministic if for every Ω∈ω , the lottery )(ωf  is degenerate, 
i.e., 

1))(( =af ω  for some Aa∈ . 
In this case, we will simply write af =)(ω  instead of 1))(( =af ω . Otherwise, we will 
say that it is stochastic. Let )(ΩF  denote the set of social choice functions. For every 
positive real number 0>ε , two social choice functions )(Ω∈ Ff  and )(~

Ω∈ Ff  are 
said to be −ε close if for every Ω∈ω  and every Aa∈ , 
   εωω ≤− ))((~))(( afaf . 

The direct mechanism associated with the social choice function )(Ω∈ Ff  is denoted by 
),()( gMfG =  where 

   iiM Ω=  and fg = . 
Let ]1,0[: →Ωψ  denote a common prior, where the state ω  occurs with 

probability )(ωψ . Let Ψ  denote the set of common priors with full supports. A 
combination of a mechanism G , state-contingent utility function profile ),( Ω∈ MWw , 
and a common prior Ψ∈ψ , i.e., ),,( ψwG , defines a Bayesian game. A strategy for agent 

Ni∈  is defined as a function iii Ms →Ω: . We denote by ),( iii MS Ω  the set of 
strategies for agent i . Let ∏

∈

Ω=Ω
Ni

iii MSMS ),(),(  and ),()( Ω∈= ∈ MSss Nii . 

We denote by 
∑

Ω∈

=
ω

ωψωωωω )()),()),(()(()( iiii ssgwsw  

the ex-ante expected utility for agent i  when agents play strategy profile ),( Ω∈ MSs . A 
strategy profile ),( Ω∈ MSs  is said to be a Bayesian Nash equilibrium in ),,( ψwG  if 
for every Ni∈  and every ),( iiii MSs Ω∈′ , 

),()( iiii sswsw −′≥ . 
A strategy ),( iiii MSs Ω∈  for agent i  is said to be undominated in ),,( ψwG  if there 
exists no ),( iiii MSs Ω∈′  such that for every ),( iiii MSs −−−− Ω∈ , 
   ),()( iiii sswsw −′≤ , 
and the strict inequality holds for some ),( iiii MSs −−−− Ω∈ . 
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Fix a Bayesian game ),,( ψwG  arbitrarily. We define an infinite sequence of subsets 
of strategy profiles, denoted by 0S , 1S , 2S , …, as follows. Let SS =0 . Let 1S  denote 
the set of undominated strategy profiles. For every integer 2≥r  and every Ni∈ , let r

iS  
denote the set of strategies 1−∈ r

ii Ss  for agent i  such that there exists no strategy 
1−∈′ r

ii Ss  for agent i  such that for every strategy profile for the other agents 1−
−− ∈
r
ii Ss , 

   ),()( iiii sswsw −′≤ , 
and the strict inequality holds for some 1−

−− ∈
r
ii Ss . Let r

r
SS

∞→

∞ = lim . A strategy profile 

),( Ω∈ MSs  is said to be iteratively undominated in ),,( ψwG  if 
∞∈Ss . 

The set of iteratively undominated strategy profiles ∞S  is said to be twice dominance 
solvable in ),,( ψwG  if 

∞= SS 2 . 
When ∞S  is twice dominance solvable, in order to calculate ∞

iS  for each agent Ni∈ , 
she needs to know only that the other agents never play undominated strategies. 

The set of iteratively undominated strategy profiles ∞S  is said to be interchangeable 
in ),,( ψwG  if every iteratively undominated strategy profile ∞∈Ss  is a Bayesian Nash 
equilibrium in ),,( ψwG . If ∞S  is interchangeable, then agents can reach a set of 
Bayesian Nash equilibria only by iteratively eliminating dominated strategies. 
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3. Implementation: Definitions and Literatures 
 
 

This section shows several definitions and the background of implementation. 
 
 
 

3.1. Dominant Strategy 
 
 

A social choice function f  is said to be strategy-proof for ),( Ω∈ MWw  if for 
every Ω∈ω , truth-telling is a dominant strategy profile in ))(),(( ωwfG , i.e., for every 

Ni∈  and every Ω∈′ω , 
  )),()(()),,()(( iiiiii fwfw ωωωωωωω ′′≥′− . 

Most of the previous works on strategy-proofness have studied the case where all agents 
have private values, their announcements have no intrinsic values, and different private 
signals correspond to different preferences over pure alternatives. The use of dominant 
strategies in the implementation literature might be quite appropriate, because by definition 
it does not depend on the model specification, and we need no common knowledge 
assumption on rationality. 

The seminal works by Gibbard (1973) and Satterthwaite (1975), however, by 
investigating the general social choice environments with the rich preference domain and 
with three or more alternatives, showed the impossibility theorem that if a social choice 
function is strategy-proof and deterministic, then it must be dictatorial in the sense that 
there exists an agent Ni∈  such that for every Ω∈ω , 
   ))(())()(( awfw iiii ωωω ≥ . 
A sketch on the proof of the Gibbard-Satterthwaite theorem, which is available in the text 
books such as Mas-Colell, Whinston, and Green (1995, Chapter 21), is as follows. First, we 
show that any strategy-proof social choice function, irrespective of whether it is 
deterministic or stochastic, must be efficient, and monotonic in the sense that for every 

Ω∈ω  and Ω∈′ω , if for every Ni∈  and every ∆∈α , 
   [ ))(())()(( αωωω iiii wfw ≥ ]⇒ [ ))(())()(( αωωω iiii wfw ′≥′ ], 
then )()( ωω ff =′  must hold. Second, we show that if a social choice function is 
deterministic, efficient, and monotonic, then it must be dictatorial. This second step of the 
proof is regarded as the social-choice-function version of the Arrow’s impossibility 
theorem (See Mas-Colell, Whinston, and Green (1995, Chapter 21)). 
 Matsushima (1988), however, showed that every stochastic social choice function, the 
values of which always have the full support, is monotonic, and therefore, almost every 
stochastic social choice function is monotonic. Hence, we cannot directly apply the above 
sketch to show whether any stochastic social choice function to be strategy-proof. 

Gibbard (1977) and Benoit (2003) showed that there exists no non-trivial stochastic 
social choice function that satisfies strategy-proofness or any related requirements. Hence, 



 8

in general social choice environments, it is quite hard to find non-trivial social choice 
functions that are strategy-proof, even if we take stochastic decision into account. In fact, it 
is clear from the definition of strategy-proofness that if a deterministic social choice 
function is not strategy-proof, then there exists a small but positive real number 0>ε  
such that no −ε close stochastic social choice function is strategy-proof. As Matsushima 
(1988) has showed, we must note that almost every −ε close stochastic social choice 
function is monotonic, but not strategy-proof. 
 In contrast to these negative results, the former part of Matsushima (2004) showed that 
stochastic decision plays a powerful role when we confine our attention to the economic 
environments with quasi-linearity. For every ]1,0[∈ε , a mechanism G  is said to virtually 
−ε implement a lottery ∆∈α  in dominance with respect to )(MUu∈  if there exists a 

dominant message profile in ),( uG , and any dominant message profile Mm∈  in ),( uG  
satisfies 
   εα ≤− )())(( aamg  for all Aa∈ . 
Here, we require all dominant strategy profiles to achieve the lottery α  approximately. 
Matsushima (2004) designed a double auction mechanism that is detail-free, i.e., does not 
depend on the detail of the model specification. Matsushima then showed that this 
mechanism always virtually implements the perfectly competitive allocation in very general 
private value cases when the number of traders is sufficiently large. Section 5 will show a 
brief explanation on the former part of this paper. 
 
 
 

3.2. Nash Equilibrium 
 
 

For every ]1,0[∈ε , a social choice function )(Ω∈ Ff  is virtually 
−ε implementable with respect to ),( Ω∈ MWw  if there exists a mechanism G  such that 

for every Ω∈ω , there exists a Nash equilibrium in ))(),(( ωwfG , and every Nash 
equilibrium ),( Ω∈ MSs  in ))(),(( ωwfG  satisfies 
   εωω ≤− ))(()))((( afasg  for all Aa∈ . 
Here, we require all Nash equilibria to achieve the lottery α  approximately. When 0=ε , 
we will replace “virtually −ε implement” with “exactly implement”. 
 Maskin (1977/1999) showed that if a deterministic social choice function is exactly 
implementable in Nash equilibrium, then it must be monotonic, and therefore, must be 
dictatorial. On the other hand, Matsushima (1988) and Abreu and Sen (1991) showed, by 
extending the analysis by Maskin (1977/1999) on social choice correspondences, that 
monotonicity is necessary and sufficient for exact implementability of stochastic social 
choice functions in Nash equilibrium. Hence, almost every stochastic social choice function 
is exactly implementable in Nash equilibrium. This implies that every social choice 
function, irrespective of whether it is stochastic or deterministic, is virtually 
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−ε implementable in Nash equilibrium, where we can choose ε  as close to zero as 
possible. This possibility result is in contrast with the case of strategy-proofness in the 
general social choice environments. 

In spite of these possibility results, the previous works have investigated only a very 
limited class of social choice functions in the following sense. For every ]1,0[∈ε , a 
mechanism G  is said to virtually −ε implement a lottery )(A∆∈α  in Nash equilibrium 
with respect to )(MUu∈  if there exists a Nash equilibrium in ),( uG , and any Nash 
equilibrium Mm∈  in ),( uG  satisfies 
   εα ≤− )())(( aamg  for all Aa∈ . 
When 0=ε , we will replace “virtually −ε implement” with “exactly implement”. 
Suppose that a social choice function )(Ω∈ Ff  is exactly implementable in Nash 
equilibrium. Then, there exists a mechanism G  that exactly implements )(ωf  with 
respect to )(ωw  in Nash equilibrium for all Ω∈ω . Fix Ω∈ω  and Ω∈′ω  arbitrarily, 
and suppose that )(ωiw  and )(ω′iw  are preference-equivalent for all Ni∈ . Then, it is 
clear from the definition of Nash implementation that 

)()( ωω ′= ff . 
This implies that any social choice function that is exactly implementable in Nash 
equilibrium must depend only on agents’ preferences. 

This point might be controversial, especially when we do not allow each agent’s 
announcement to have intrinsic value, and therefore, agents’ preferences describe only their 
material interests on consequences. However, as Rawls (1971), Dworkin (1981), Sen (1982, 
1985), and others have pointed out in their respective works on theoretical foundation of 
social choice and welfare, reasonable social choice functions should depend on factors such 
as interpersonal comparison that include information other than agents’ material interests. 
Hence, in order to implement such reasonable social choice functions, any relevant factors 
besides agents’ material interests must be verifiable, and the mechanism must directly be 
contingent on these factors.3 

Instead of investigating only material-interest-oriented agents, Matsushima (2003) 
focused on agents who have small moral preferences, where each agent suffers small 
disutility from announcing dishonestly. Matsushima then showed that there exists a single 
mechanism that always exactly implements any alternative in Nash equilibrium whenever 
agents regard this alternative as being socially optimal. Section 4 will show a brief 
explanation on this paper. 
 
 

                                                 
3 For related arguments, see Maskin and Tirole (1999) and Tirole (1999). 
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3.3 Bayesian Framework 
 
 

For every ]1,0[∈ε , a mechanism G  is said to virtually −ε implement a social 
choice function )(Ω∈Ff  in Bayesian Nash equilibrium (iterative dominance) with 
respect to Ψ×Ω∈ ),(),( MWw ψ  if there exists a Bayesian Nash equilibrium (iteratively 
undominated strategy profile) in ),,( ψwG , and any Bayesian Nash equilibrium (iteratively 
undominated strategy profile, respectively) ),( Ω∈ MSs  in ),,( ψwG  satisfies 
   εωω ≤− ))(()))((( afasg  for all Ω∈ω  and all Aa∈ . 
When 0=ε , we will replace “virtually −ε implement” with “exactly implement”. 
Several works such as Jackson (1991), Matsushima (1993), Abreu and Matsushima (1992b), 
Duggan (1997), and Serrano and Vohra (2002) showed the possibility of social choice 
functions being implementable in Bayesian Nash equilibrium or iterative dominance. The 
mechanisms constructed in these works depend on the detail of the model specification 
such as the prior distribution, and therefore, may not be practically useful. Moreover, 
agents’ equilibrium behaviors in these mechanisms depend crucially on strong common 
knowledge assumptions among agents on the prior distribution, their rationality, and others. 

Based on this observation, several recent works such as Bergemann and Morris (2003a, 
2003b) and Chung and Ely (2004) investigated ex post equilibrium instead of Bayesian 
Nash equilibrium or iteratively undominated strategy profile. A strategy profile 

),( Ω∈ MSs  is said to be an ex post equilibrium in ),( wG  if it is a Bayesian Nash 
equilibrium in ),,( ψwG  for all Ψ∈ψ . A mechanism G  is said to exactly implement a 
social choice function )(Ω∈Ff  in ex post equilibrium with respect to ),( Ω∈ MWw  if 
there exists an ex post equilibrium in ),( wG , and any ex post equilibrium ),( Ω∈ MSs  in 

),( wG  satisfies 
   )())(( ωω fsg =  for all Ω∈ω . 
Bergemann and Morris (2003b) investigated the possibility of a social choice function 
being exactly implementable in ex post equilibrium. However, implementation in ex post 
equilibrium does not require that for every common prior Ψ∈ψ , any Bayesian Nash 
equilibrium ),( Ω∈ MSs  in ),,( ψwG  induce the values of the social choice function 

)(Ω∈Ff , i.e., )())(( ωω fsg =  for all Ω∈ω . 
The recent work by Matsushima and Ohashi (2004) required the mechanism to have 

no unwanted Bayesian Nash equilibrium irrespective of how to specify the prior 
distribution. For every ]1,0[∈ε , a mechanism G  is said to virtually −ε implement a 
social choice function )(Ω∈Ff  in Bayesian Nash equilibrium with respect to 

),( Ω∈ MWw  if for every Ψ∈ψ , there exists a Bayesian Nash equilibrium in ),,( ψwG , 
and any Bayesian Nash equilibrium ),( Ω∈ MSs  in ),,( ψwG  satisfies 
   εωω ≤− ))(()))((( afasg  for all Ω∈ω  and all Aa∈ . 
Matsushima and Ohashi assumed that the size of the set of alternatives is sufficiently large 
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relatively to the size of the set of states, and showed that for every ]1,0[∈ε , any social 
choice function )(Ω∈Ff  is virtually −ε implementable in Bayesian Nash equilibrium 
with respect to ),( Ω∈ MWw  with small fines whenever truth-telling is an ex post 
equilibrium in )),(( wfG . Matsushima and Ohashi designed mechanisms that do not 
depend on the prior distribution.4 

The latter part of Matsushima (2004) investigated very general double auction 
environments with interdependent values. Matsushima (2004) provided a new idea of 
detail-free auction design as an extension of auction design with private values studied in 
the former part of this paper. Matsushima then showed that the designed auction 
mechanism always virtually implements the rational expectations equilibrium allocations in 
iterative dominance. Here, the set of iteratively undominated strategy profiles is twice 
dominance solvable. Hence, in order to calculate this set, each agent needs to know only 
that the other agents never play dominated strategies. Moreover, the set of iteratively 
undominated strategy profiles is interchangeable. Hence, agents can reach a set of Bayesian 
Nash equilibria only by twice iteratively eliminating dominated strategies. Section 6 will 
show a brief explanation of the latter part of this paper. 
 

                                                 
4 The result of Matsushima and Ohashi does not depend on the existence of common prior 
distribution, and could exclude any unwanted subjective correlated equilibrium. For related analysis, 
see Brandenburger and Dekel (1987), Battigalli and Siniscalchi (2003), and Bergemann and Morris 
(2003b). 
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4. Moral Preferences 
 
 

This section shows a brief explanation on Matsushima (2003), which assumed that 
agents have small moral preferences, and then showed that there exists a detail-free 
mechanism that exactly implements any alternative in Nash equilibrium, whenever agents 
regard this alternative as being socially optimal. 

Let }3,2,1{=N . Consider the follows mechanism ),(* gMG =  such that 
   k

i AM 2=  for all }3,2,1{∈i , 
where k  is an arbitrary positive integer that is sufficiently large. Hence, each agent k2  
times announces her opinions on which alternative the central planner should choose. Let 

),...,( 21 k
iii mmm = . For every }2,...,1{ kl∈ , let Ni

l
i

l mm ∈= )(  denote the thl −  message 
profile. The central planner picks up one integer l  from the set }2,...,1{ kk +  at random, 

i.e., with probability 
k
1 , and then chooses a pure alternative Amx l ∈)(  where 

   amx l =)(  if aml
i =  for two or three agents and a  is enforceable, 

and 
   amx l ~)( =  if there exists no such a , where a~  is regarded as “the status 

quo”. 

The central planner fines any agent a small positive monetary amount 0
2
>

ξ  if she is the 

last deviant from one of her first k  messages. That is, the central planner fines agent 
Ni∈  if and only if there exist },...,1{ kl∈  and }2,...,1{ kkl +∈′  such that 

   l
i

l
i mm ′≠ , 

and 
rr mm ′=  for all },...,1{ kr∈  and all }2,...,1{ klr +′∈′ . 

 The mechanism *G  specified above is detail-free in the following very strict sense. It 
never depends on the model specification such as agents’ utility functions and the social 
choice function. In fact, it is simply described by the following statement that the central 
planner gives to agents. 

 
“Tell me k2  times on what I should do. I will pick up one opinion profile 
among the k2  announced profiles. If at least two of you recommend me to do 
the same thing and I can enforce it, then I will do it. Otherwise, I will do 
nothing.” 

 
Here, all we need to assume is that whether any recommendation to be enforceable is 
verifiable. We do not even need to specify the set of enforceable alternatives in advance. 
 Fix any alternative Aa ∈*  arbitrarily, which agents regard as being socially optimal. 
Matsushima (2003) confined attentions to utility functions for each agent Ni∈  such that 
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whenever the number of her opinions that do not recommend the socially optimal 
alternative *a  is more than or equals k , then she suffers psychological disutility that is at 
least equivalent to the amount ξ  of monetary loss. We denote by ),,( * ξaMU ii  the set of 
such utility functions for agent i . Let ∏

∈

=
Ni

ii aMUaMU ),,(),,( ** ξξ . Matsushima (2003) 

showed that for every Aa ∈*  and every )(MUu∈ , the detail-free mechanism *G  
specified above exactly implements *a  in Nash equilibrium with respect to u  whenever 

),,( * ξaMUu∈ . 
 By letting the number of opinions k2  sufficiently large, we can choose the monetary 

fine 
2
ξ  and the lower bound of disutility for dishonest reporting ξ  as close to zero as 

possible. Hence, only by introducing moral preferences in the minimal way, we can exactly 
implement any alternative in Nash equilibrium by using the single detail-free mechanism, 
as long as agents regard it as being socially optimal. Matsushima (2003) could extend this 
result to the incomplete information environments. 
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5. Perfect Competition 
 
 

This section shows a brief explanation of the former part of Matsushima (2004), which 
investigated double auction design in the general equilibrium model where many sellers 
and many buyers with quasi-linear preferences trade multiple commodities. 

Let }4,...,1{ nN = . There exist n2  sellers, i.e., sellers 1, …, and n2 , and n2  
buyers, i.e., buyers 12 +n , …, and n4 , where n  is a sufficiently large positive integer. 
There exist k  distinct commodities to be traded. Each seller can produce multiple units of 
each commodity up to l  units. Each buyer will demand multiple unit of each demand up 
to l  units. All agents have private values. 

Matsushima (2004) introduced a new idea on how to design auction formats as follows. 
First, the auctioneer randomly divides all agents into two distinct groups, i.e., groups 1 and 

2. The auctioneer randomly, i.e., with probability 2)!2(
1
n

, chooses a one-to-one function 

on the set of agents, i.e., NN →:φ , that is defined as a combination of a permutation on 
the set of sellers and a permutation on the set of buyers. As the members of group 1, the 
auctioneer picks up the n  sellers }2,...,1{ ni∈  whose values of the function φ  belong to 

},...,1{ n , i.e., },...,1{)( ni ∈φ . As the members of group 1, the auctioneer also picks up the 
n  buyers }4,...,12{ nni +∈  whose values of φ  belong to }3,...,12{ nn + , i.e., 

}3,...,12{)( nni +∈φ . The other agents belong to group 2. 
The auctioneer asks each buyer to announce a demand function. At the same time, the 

auctioneer asks each seller to announce a supply function. The auctioneer calculates the 
(approximate) market-clearing price vector within each group. Importantly, agents in each 
group trade at the market-clearing price vector in the other group. The auctioneer 
determines the trading amounts for each agent according to the following rationing rule. In 
each group, and in each commodity market within this group, if there exists excess supply, 
then any buyer in this group can buy the same amount as what she intends to demand, but 
some sellers in this group whose values of φ  are relatively high cannot sell the same 
amount as what she intends to supply. Similarly, if there exists excess demand, then any 
seller can sell the same amount as what she intends to supply, but some buyers whose 
values of φ  are relatively high cannot buy the same amount as what she intends to 
demand. 

Note that each agent’s announcement never influences the price vector at which she 
trades. This, together with the specification of rationing rule, will be the driving force of 
incentivizing each seller (buyer) to announce her true competitive supplies (demands, 
respectively) as the dominant strategy. When the number of agents is sufficiently large, it is 
almost sure that the market-clearing price vector within each group approximates the 
market-clearing price vector in the whole markets combining both groups. This implies that 
the auctioneer can achieve the perfectly competitive allocation in the limit as the number of 
agents grows. Hence, the former part of Matsushima (2004) showed that for every 0>ε  
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and every sufficiently large n , the above auction format always virtually −ε implements 
the perfectly competitive allocation in dominance. 

This result is in sharp contrast with the previous works on the mechanism design 
literature. Groves (1973) showed that there exists no non-trivial strategy-proof 
deterministic social choice function that is efficient and satisfies budget-balancing in that 
the sum of the monetary transfers always equals zero. In contrast, Matsushima’s auction 
format satisfies budget-balancing. Barbarà and Jackson (1995) showed that any anonymous 
and deterministic social choice function that is strategy-proof is inefficient even in the limit 
as the number of agents grows. Matsushima format satisfies anonymity also, but allows 
stochastic decision. McAfee (1992) showed an idea of efficient double auction design 
where the budgetary deficit never occurs. McAfee’s analysis, however, relies crucially on 
the assumption of single-unit demands and supplies. In contrast, Matsushima (2004) covers 
very wide class of double auction environments where we allow multiple commodities to 
be traded, each seller (buyer) to supply (demand) multiple units, and allow any mixture of 
complements and substitutes among distinct commodities for each traders. 

There are researches on a strategic foundation of perfect competition by using naïve 
double auction models. See Wilson (1977), Rustichini, Satterthwaite, and Williams (1994), 
Fudenberg, Mobius, and Szeidl (2003), Jackson and Swinkels (2004), and others. These 
works investigated Bayesian Nash equilibria instead of dominant strategies, and therefore, 
inevitably depend on the strong common knowledge and rationality assumptions. 
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6. Rational Expectations Equilibrium 
 
 

This section shows a brief explanation of the latter part of Matsushima (2004), where 
agents have interdependent values in the double auction environments. Let }2,...,1{ rnN = , 
where r  and n  are sufficiently large positive integers. There exist rn  sellers, i.e., 
sellers 1, …, and rn , and rn  buyers, i.e., buyers 1+rn , …, and rn2 . There exist k  
distinct commodities to be traded. Each seller can produce multiple units of each 
commodity up to l  units. Each buyer will demand multiple unit of each demand up to l  
units. Since agents have interdependent values, the auctioneer has to make each agent 
informed of the other agents’ private signals in order to achieve ex post efficiency. The 
latter part of Matsushima (2004) could extend the idea of random grouping in the private 
value case to the interdependent value case in the following way. 

First, the auctioneer randomly divides all agents into r  distinct groups, i.e., groups 1, 

…, and r . The auctioneer randomly, i.e., with probability 2)!(
1

rn
, chooses a one-to-one 

function on the set of agents, i.e., NN →:φ , which is defined as a combination of a 
permutation on the set of sellers and a permutation on the set of buyers. As the members of 
each group },...,1{ rh∈ , the auctioneer picks up the n  sellers },...,1{ rni∈  whose values 
of the function φ  belong to },...,1)1{( hnnh +− , i.e., },...,1)1{()( hnnhi +−∈φ . As the 
members of each group },...,1{ rh∈ , the auctioneer also picks up the n  buyers 

}2,...,1{ rnrni +∈  whose values of φ  belong to },...,1)1{( hnnh +− , i.e., 
},...,1)1{()( hnnhi +−∈φ . According to the following three stages, the auctioneer three 

times asks each buyer to announce a demand function, and three times asks each seller to 
announce a supply function. 

At stage 1, each buyer (seller) announces a demand (supply, respectively) function as 
her first message. A the end of stage 1, agents in each group },...,1{ rh∈  observe the first 
messages announced in the subsequent group 1+h , where we denote 11 =+r . 

At stage 2, each buyer (seller) announces a demand (supply, respectively) function as 
her second message. At the end of stage 2, agents in each group },...,1{ rh∈  observe the 
first messages announced in all groups except her group, i.e., except group h . By 
regarding the second messages as agents’ supplies and demands, the auctioneer calculates 
the (approximate) market-clearing price vector hp  in each group },...,1{ rh∈ . 

At stage 3, each buyer (seller) announces a demand (supply, respectively) function as 
her third message. At the end of stage 3, agents in each group },...,1{ rh∈  almost certainly 
trade at the market-clearing price vector in the subsequent group, i.e., at 1+hp , which the 
auctioneer calculated at the end of step 2. Here, the auctioneer determines the trading 
amounts by regarding their third messages as agents’ supplies and demands. With small but 
positive probability, the auctioneer randomly picks up an arbitrary price vector, and then 
agents trade at this price vector. Here, the auctioneer randomly chooses one of the three 
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message profiles, and determines the trading amounts by regarding this profile as agents’ 
supplies and demands. Whenever there exists either excess supply or excess demand in 
each commodity market within each group, then the auctioneer will use a modified version 
of the rationing rule specified in the private value case. 

The above auction format is detail-free in that the auctioneer needs no information 
about the model specification such as agents’ utility functions and the prior distribution. 
Note that each agent’s three messages never influence the price vector at which she trades. 
This, together with the well-specified rationing rule, implies that without any knowledge on 
the other agents’ private signals, each seller (buyer) has incentive to truthfully announce her 
competitive supplies (demands, respectively) as her undominated first message. With a 
minor informational condition, agents’ first message announcement can fully reveal their 
private signals. Similarly, with full knowledge on the private signals of the members in the 
subsequent group, each seller (buyer) has incentive to truthfully announce her competitive 
supplies (demands, respectively) as her twice iteratively undominated second message. 

We shall assume that by observing only nr )1( −  sellers’ and nr )1( −  buyers’ 
private signals in addition to her private signal, each seller (buyer) can calculate her true 
competitive supplies (demand, respectively) based on full knowledge about the state. This 
assumption might be unrestrictive whenever r  is sufficiently large. Hence, the auctioneer 
can incentivize each seller (buyer) to truthfully announce her competitive supplies 
(demands, respectively) based on full knowledge about the state as her twice iteratively 
undominated third message. 

When n  is sufficiently large, it is almost certain from the law of large numbers that 
each seller’s (buyer’s) second message approximates her true competitive supplies 
(demands, respectively) based on full knowledge about the state. Hence, it is almost certain 
that the market-clearing price vector in each group approximates the market-clearing price 
vector in the whole markets combining all groups. 
 Based on the above observations, the latter part of Matsushima (2004) could show that 
for every 0>ε , every sufficiently large n , and every sufficiently large r , the above 
auction format always virtually −ε implements the ex post efficient allocation in iterative 
dominance. Here, the set of iteratively undominated strategy profiles is twice dominance 
solvable and interchangeable. Any iteratively undominated strategy profile mimics 
price-taking behavior. 

This possibility result is closely related to the study of rational expectations 
equilibrium in competitive economies originated in the seminal work by Lucas (1972). The 
recent works by Reny and Perry (2003) investigated a strategic foundation of rational 
expectations equilibrium by using a naïve single-object and single-unit double auction, and 
showed that when agents’ private signals are strictly affiliated and the number of agents is 
sufficiently large, there exists an approximately ex post efficient pure strategy Bayesian 
Nash equilibrium that mimics price-taking behavior. 

The study of rational expectations equilibrium presumes that all agents’ rational 
behavior is common knowledge among agents. In contrast, the latter part of Matsushima 
(2004) does not need to assume such restrictive assumptions. All we need is to assume that 
each agent knows that the other agents never play dominated strategies. Matsushima (2004) 
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covers a very wide class of trading environments even with interdependent values. We do 
not require the private signals to be affiliated, we can allow multiple objects to be traded, 
and we can allow any mixture of complements and substitutes for every agent. 
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