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The estimation of the precision matrix of the Wishart distribution is one of classical
problems studied in a decision-theoretic framework and is related to estimation of mean
and covariance matrices of a multivariate normal distribution. This paper revisits the
estimation problem of the precision matrix and investigates how it connects with the the-
ory of the covariance estimation from a decision-theoretic aspect. To evaluate estimators
in terms of risk functions, we employ two kinds of loss functions: the non-scale-invariant
loss and the scale-invariant loss functions which are induced from estimation of means.
Using the same methods as in the estimation of the covariance matrix, we derive not only
the James-Stein type and the Stein type estimators dominating the unbiased estimator,
but also a new type of estimators improving on the Stein type one under the non-scale-
invariant loss. It is observed that dominance properties given in the estimation of the
covariance matrix do not necessarily hold in our setup under the non-scale-invariant loss,
but still hold relative to the scale-invariant loss. The simulation studies are given, and
estimators having superior risk performances are proposed.

Key words and phrases: Covariance matrix, decision theory, empirical Bayes proce-
dure, James-Stein estimator, mean matrix, minimaxity, precision matrix, shrinkage esti-
mation.

1 Introduction

In the context of the empirical Bayes estimation, Efron and Morris (1976) showed that
the problem of estimating a mean matrix of a multivariate normal distribution can be
reduced to that of estimating a precision matrix of a Wishart distribution. The precision
is the inverse of covariance, and this fact suggests that the estimation of the mean matrix
is related to that of the covariance matrix. For the estimation of the covariance matrix,
on the other hand, several decision-theoretic results have been developed in a literature.
Of these, James and Stein (1961) established under Stein’s loss function, referred to as
the entropy loss as well, that the best scalar multiple estimator is not minimax and
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derived a minimax estimator, called the James-Stein estimator, based on the Bartlett
decomposition. Stein (1977) showed that the James-Stein minimax estimator is dominated
by Stein’s orthogonally equivariant estimator, which can be further dominated by the
order-preserving estimator as shown by Sheena and Takemura (1992). Our main concern
is whether or not these decision-theoretic properties hold in the estimation of the precision
matrix under the loss functions induced from the estimation of means.

To describe the problem specifically, let W be a p × p random matrix having the
Wishart distribution Wp(m,Σ) with n degrees of freedom and E[W ] = mΣ. Consider
the problem of estimating the precision matrix Σ−1 based on W relative to the loss
function

L1(δ,Σ) = tr (δ −Σ−1)2W (1.1)

= tr Wδ2 − 2trWδΣ−1 + trWΣ−2

for an estimator δ of Σ−1. Efron and Morris (1976) induced this loss function from the
estimation of the mean matrix in the context of the empirical Bayes estimation. The
derivation of the loss function is explained later through a random effect model. When an
estimator is evaluated in terms of the risk function relative to the loss function L1(δ,Σ),
the best estimator among multiples of W is given by

δ0 = a0W
−1, a0 = m− p− 1,

which is also an unbiased estimator of Σ−1 with the risk

R1(Σ, δ0) = E[L1(δ0,Σ)] = (p+ 1)trΣ−1.

Using the similar methods as in the estimation theory of the covariance matrix, we want
to construct estimators of Σ−1 having uniformly smaller risks than δ0 under the loss
L1(δ,Σ).

We begin with addressing the issue of deriving a James-Stein type estimator improving
on δ0. In the estimation of the covariance matrix, the James-Stein estimator is the best
within the class of estimators equivariant under transformation with respect to triangular
matrices, but in our estimation problem, there does not exist the best, since the risk
function of any equivariant estimator depends on unknown parameters. This means that
decision-theoretic properties developed in the estimation of the covariance matrix do not
necessarily hold in our setup. In Section 2, we derive a James-Stein type estimator within
the class of equivariant estimators as a feasible one improving on δ0. It is shown that
the maximum value of the risk of this James-Stein type estimator is equal to that of δ0,
which suggests that the unbiased estimator δ0 would be minimax, though we could not
verify it analytically.

A drawback of the James-Stein type estimator is that it depends on a coordinate
system, which leads us to considering orthogonally equivariant estimators. In Section 3,
we derive the Stein type orthogonally equivariant estimators improving on δ0. However,
it seems difficult to verify that they dominate the James-Stein type estimator. In Section
3.2, we obtain a new type of orthogonally equivariant estimator which dominates the Stein
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type estimator. The risk behaviors are numerically investigated in Section 4 to compare
the risk behaviors of all the estimators derived in this paper and some estimators given
in the literature.

As stated above, the decision-theoretic properties in our estimation problem relative
to the non-scale-invariant loss L1(δ,Σ) are slightly different from those in the estimation
of the covariance matrix. However, we have a different story when the scale-invariant loss
function is employed:

L2(δ,Σ) = tr (δ − Σ−1)Σ(δ −Σ−1)W

= tr δWδΣ − 2tr δW + tr WΣ−1.

Section 5 treats the estimation problem of Σ−1 relative to the scale-invariant loss L2(δ,Σ).
The non-minimaxity of δ0 and the minimaxity of the James-Stein type estimator are
demonstrated, and the domination of the Stein type estimator over the James-Stein one
is verified for p = 2 with a simple method. For p = 3, the dominance result follows from
Sheena (2003), who recently succeeded in establishing the same property relative to the
entropy loss, though it is still open for p ≥ 4. Finally, we derive an Efron-Morris type
estimator superior to δ0 and investigate their risk behaviors numerically.

We conclude this section with explaining that the loss functions L1(δ,Σ) and L2(δ,Σ)
are induced from the following simple prediction problem. Consider a one-way layout
random effect model with equal replications:

yij = µ + αi + εij , (1.2)

for i = 1, . . . , k and j = 1, . . . , r, where p-dimensional random vectors εij ’s and α’s are
mutually independently distributed as εij ∼ Np(0,ΣE) and αi ∼ Np(0,ΣA). The grand
mean µ and the ‘between’ component of covariance ΣA are unknown parameters while
the ‘within’ component of covariance ΣE is assumed to be known in this paper for the
sake of simplicity. It is supposed that we want to predict the quantities θi = µ + αi,
which are related to the realized means for the individual small areas in the field of small
area statistics. The best linear unbiased predictor of θi is given by

θ̂
B

i = yi −ΣEΣ−1
2 (yi − µ)

where yi =
∑r

j=1 yij/r and Σ2 = ΣE + rΣA. The grand mean µ is estimated by µ̂ =∑k
i=1

∑r
j=1 yij/(rk), and Σ2 is estimated by estimator Σ̂2 based on the statistic W̃ =

r
∑k

i=1(yi − µ̂)(yi − µ̂)t, which is distributed as Wp(m,Σ2) for m = k− 1. The resulting
predictor is written by

θ̂
EB

i = yi −ΣEΣ̂
−1

2 (yi − µ̂),

called the estimated best linear unbiased predictor, and our concern is how we should
estimate Σ−1

2 , which determines how much yi be shrunken towards the total mean µ̂.

When the predictors are evaluated relative to the loss function

k∑
i=1

(θ̂
EB

i − θi)
tΣ−1

E (θ̂
EB

i − θi), (1.3)
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it can be seen that the risk function is expressed as

r−1E
[
tr (Σ̂

−1

2 − Σ−1
2 )ΣE(Σ̂

−1

2 − Σ−1
2 )W

]
+ r−1[pk − (k − 1)trΣEΣ−1

2 ].

Let Σ = Σ
−1/2
E Σ2Σ

−1/2
E = I+rΣ

−1/2
E ΣAΣ

−1/2
E , W = Σ

−1/2
E W̃Σ

−1/2
E and Σ̂ = Σ

−1/2
E Σ̂2Σ

−1/2
E .

Then, the problem of predicting θi’s with θ̂
EB

i ’s can be reduced to that of estimating Σ−1

relative to the non-scale-invariant loss L1(δ,Σ) based on the statistic W having Wp(m,Σ)

where Σ ≥ I. When the predictors θ̂
EB

i ’s are evaluated under the loss

k∑
i=1

(θ̂
EB

i − θi)
tΣ−1

E Σ2Σ
−1
E (θ̂

EB

i − θi), (1.4)

the risk can be written as

r−1E
[
tr (Σ̂

−1

2 − Σ−1
2 )Σ2(Σ̂

−1

2 − Σ−1
2 )W

]
+ r−1[ktrΣ2Σ

−1
E − p(k − 1)],

so that the problem is reduced to estimation of Σ−1 relative to the scale-invariant loss
L2(δ,Σ).

When we consider a multiple of W−1 as an estimator of Σ−1, the risk function under
the loss L1(δ,Σ) is written by

R1(Σ, aW
−1) = E

[
tr
(
aW−1 −Σ−1

)2
W
]

= E
[
a2tr W−1 − 2atrΣ−1 + trΣ−1WΣ−1

]
= trΣ−1

{
(m− p− 1)−1a2 − 2a+m

}
,

which is minimized at a = m− p− 1. For m > p+ 1, let

δ0 = a0W
−1, a0 = m− p− 1,

and it has the risk R(Σ, δ0) = (p + 1)trΣ−1, which is less than or equal to mtrΣ−1 for
m > p + 1. This implies that the crude predictor Y = (y1, . . . ,yk) is dominated by the
shrinkage predictor Y (I − (m− p− 1)W−1) under the loss (1.3) for m = k − 1 > p+ 1,
since Y corresponds to δ = 0 in the estimation of Σ−1.

2 James-Stein type estimator

James and Stein (1961) provided a method based on the Bartlett decomposition to im-

prove on Σ̂
−1

0 . Let G+
T (p) be a set of p×p lower triangular matrices with positive diagonal

elements. By the Bartlett decomposition, we have W = TT t for T ∈ G+
T (p). Based on

the idea of James and Stein (1961), we consider an estimator of the form

δJS(C) = (T t)−1CT−1, C = diag (c1, . . . , cp),

where ci’s are positive constants suitably chosen later. The risk function of δJS(C) and

its unbiased estimator are given in the fllowing proposition. Let Σ−1
∗ = (σij

∗ ) = (B̃
t
B̃)−1

for B̃ ∈ G+
T (p) satisfying Σ = B̃B̃

t
.
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Proposition 2.1 The risk function of the estimator δJS(C) is expressed by

R1(Σ, δ
JS(C)) −mtrΣ−1 =

p∑
i=1

σii
∗

{
p∑

j=i

c2j∏j
k=i(m− k − 1)

− 2ci

}
(2.1)

=

p∑
i=1

τi
{
c2i − 2(m− i− 1)ci + 2ci+1

}
, (2.2)

where τi = (τi−1 + σii
∗ )/(m − i − 1), τ0 = 0 and dp+1 = 0. An unbiased estimator of the

risk R1(Σ, δ
JS(C)) is given by

R̂1(W , δJS(C)) =m(m− p− 1)tr W−1

+

p∑
i=1

wii
∗
{
c2i − 2(m− i− 1)ci + 2ci+1

}
, (2.3)

where wii
∗ is the (i, i)-th element of (T tT )−1.

Proof. For the convenience, let Q(Σ, δ) = R1(Σ, δ) −mtrΣ−1, which is written by

Q(Σ, δ) = Eω

[
tr δ2W − 2tr δWΣ−1

]
. (2.4)

For the estimator δJS = δJS(C), it is rewritten as

Q(Σ, δJS) = EΣ

[
tr δJSWδJS − 2tr δJSWΣ−1

]
= EΣ=I

[
tr δJSWδJSΣ−1

∗ − 2tr δJSWΣ−1
∗
]
. (2.5)

Let us decompose T , C and Σ∗ as

T =

(
t11 0t

t21 T 22

)
, C =

(
c1 0t

0 C2

)
, Σ−1

∗ =

(
σ11
∗ σ12

∗
σ21

∗ Σ22
∗

)
for scalar t11, c1 and σ11

∗ . Noted that t11, t21 and T 22 are mutually independently dis-
tributed as t211 ∼ χ2

m and t21 ∼ Np−1(0, Ip−1). Then,

EI

[
tr δJSWδJSΣ−1

∗
]

=EI

[
tr (T −1)tC2T −1Σ−1

∗
]

=EI

[
tr

(
t−1
11 −t−1

11 tt
21(T

−1
22 )t

0 (T−1
22 )t

)(
c1 0t

0 C2

)
×
(

t−1
11 0t

−t−1
11 T −1

22 t21 T−1
22

)(
σ11
∗ σ12

∗
σ21

∗ Σ22
∗

)]
=EI

[
σ11
∗ t

−2
11

(
c21 + tt

21(T
t
22)

−1C2
2T

−1
22 t21

)
+ tr (T−1

22 )tC2
2T

−1
22 Σ22

∗
]

=EI

[
σ11
∗

m− 2

(
c21 + tt

21(T
−1
22 )tC2

2T
−1
22 t21

)
+ tr (T−1

22 )tC2
2T

−1
22 Σ22

∗

]
.
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Repeating this argument gives that

EI

[
tr (T −1)tC2T −1Σ−1

∗
]

=EI

[
σ11
∗

m− 2

{
c21 +

1

m− 3

(
c22 + tr (T−1

33 )tC2
3T

−1
33

)}
+

σ22
∗

m− 3

(
c22 + tr (T −1

33 )tC2
3T

−1
33

)
+ tr (T −1

33 )tC2
3T

−1
33 Σ33

∗

]
= · · · · · · (2.6)

=

p∑
i=1

σii
∗

{
p∏

j=i

c2j∏j
k=i(m− k − 1)

}
,

where T 33, C3 and Σ33
∗ are the (p − 2) × (p − 2) lower right submatrices of T , C and

Σ−1
∗ . Applying the same argument to the term EΣ=I

[
tr δJSWΣ−1

∗
]

yields that

EI

[
tr TCT −1Σ−1

∗
]

=EI

[
tr

(
t11 0t

t21 T 22

)(
c1 0t

0 C2

)
×
(

t−1
11 0t

−t−1
11 T−1

22 t21 T−1
22

)(
σ11
∗ σ12

∗
σ21

∗ Σ22
∗

)]
=EI

[
c1σ

11
∗ + t−1

11

(
c1σ

12
∗ t21 − σ12

∗ T 22C2T
−1
22 t21

)
+ trT 22C2T

−1
22 Σ22

∗
]

=c1σ
11
∗ + EI

[
trT 22C2T

−1
22 Σ22

∗
]

(2.7)

=

p∑
i=1

ciσ
ii
∗ .

Combining (2.6) and (2.7), we get the expression (2.1) of the risk function in Proposition
2.1. The expression (2.2) can be obtained by putting τi = (τi−1 + σii

∗ )/(m− i− 1).

For deriving the unbiased estimator (2.3), note that

EΣ[(T tT )t] = EI [T
−1Σ(T−1)t]

=

(
σ11∗
m−2

∗
∗ E[ σ11∗

m−2
(T t

22T 22)
−1 + T −1

22 Σ22
∗ (T−1

22 )t]

)

=


σ11∗
m−2

∗(
σ11∗
m−2

+ σ22
∗
)

1
m−3

∗ A33(Σ),


where

A33(Σ) = E

[(
σ11
∗

m− 2
+ σ22

∗

)
1

m− 3
(T t

33T 33)
−1 + T−1

33 Σ33
∗ (T−1

33 )t

]
.

Repeating this argument，we can notice the equation

E[wii
∗ ] =

{
E[wi−1,i−1

∗ ] + σii
∗
}
/(m− i− 1) = τi,
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where wii
∗ = [(T tT )−1]ii, the (i, i) element of [(T tT )−1]. Replacing τi with wii

∗ in the risk
function (2.2), we obtain the unbiased estimator (2.3), and Proposition 2.1 is proved.

From this proposition, we see that the optimal c1 is c1 = m − 2 while the optimal
ci depends on unknown parameters for i ≥ 2. A reasonable choice of ci is given by
ci = m − i − 1 for i = 1, . . . , p, and hereafter, the notation ci means ci = m − i − 1.
Denote the James-Stein type estimator by

δJS
c = δJS(C), for ci = m− i− 1. (2.8)

Noting that for i = 1, . . . , p− 1,

c2i − 2(m− i− 1)ci + 2ci+1 ≤ c2p − 2(m− i− 1)cp + 2cp,

we observe that

R1(Σ, δ
JS
c ) ≤

p∑
i=1

τi
{
c2p − 2(m− i− 1)cp + 2cp

}
= R1(Σ, δ0),

which implies the domination of δJS
c over δ0.

Proposition 2.2 The James-Stein type estimator δJS
c dominates δ0.

In the context of estimation of the covariance matrix under the Stein loss, it is well
known that the James-Stein estimator is minimax with a constant risk, which means that
the unbiased estimator is not minimax. However, this decision-theoretic property does
not hold in our problem as shown in the following proposition.

Proposition 2.3 The estimators δJS
c and δ0 have the same maximum risk under the loss

function L∗
1(δ,Σ) = tr (δ − Σ−1)2W /trΣ−1, which is given by

sup
Σ

{
E[L∗

1(δ
JS
c ,Σ)]

}
= E[L∗

1(δ0,Σ)] = p(p+ 1).

Proof. Note that σii
∗ /trΣ

−1 ≤ 1. Then from Proposition 2.1, it is seen that

sup
Σ

{
E[L∗

1(δ
JS
c ,Σ)]

}
= p× max

i
{Ai},

where

Ai =

p∑
j=i

(m− j − 1)2∏j
k=i(m− k − 1)

− 2(m− i− 1) +m.

It suffices to show that maxiAi = p + 1. Clearly, Ap = p + 1. For i ≤ p − 1, we observe
that

Ai =

p∑
j=i+1

(m− j − 1)2∏j
k=i(m− k − 1)

+ i+ 1

=

p∑
j=i+1

{
1∏j−2

k=i(m− k − 1)
− 1∏j−1

k=i(m− k − 1)

}
+ i+ 1

= 1 − 1∏p−1
k=i (m− k − 1)

+ i+ 1 ≤ i+ 2,

where
∏i−1

k=i(m− k − 1) is equal to one. Since i+ 2 ≤ p + 1 for i ≤ p− 1, it is seen that
maxiAi = p+ 1, proving Proposition 2.3.
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3 Stein type estimators and further dominance re-

sults

A drawback of the James-Stein type estimator δJS
c is that it depends on a coordinate

system, and it is reasonable to consider orthogonally equivariant estimators. One of them
is the Stein type estimator of the form

δS
c = HL−1CH t, C = diag (c1, . . . , cp), ci = m− i− 1, (3.1)

where H is a p × p orthogonal matrix and L = diag (�1, . . . , �p), �1 ≥ . . . ≥ �p, such
that W = HLH t. Although Stein’s orthogonally equivariant estimator dominates the
James-Stein estimator in the estimation of the covariance matrix, our estimation issue
possesses a different story that the Stein type estimator δS

c is not always better than
the James-Stein type one δJS

c because the risk function of δJS
c depends on the unknown

parameters based on the coordinate system. Thus, we here obtain Stein type estimators
improving on the unbiased one δ0 and develop further dominance results over the Stein
type estimators.

3.1 Stein type estimators

We begin with deriving conditions under which the unbiased estimator δ0 is improved on
by orthogonally equivariant estimators of the general form

δ(Φ) = HΦ(�)H t, � = (�1, . . . , �p)
t (3.2)

Φ(�) = diag (φ1(�), . . . , φp(�)) .

The risk function of δ(Φ) under the loss L1(δ,Σ) is expressed as

R1(Σ, δ(Φ)) −mtrΣ−1 = E
[
tr {δ(Φ)}2W − 2tr δ(Φ)WΣ−1

]
. (3.3)

The Stein-Haff identity given by Stein (1977) and Haff (1979a) shows that

E
[
tr δ(Φ)WΣ−1

]
= E [(m− p− 1)tr δ(Φ) + 2trDW [δ(Φ)W ]] , (3.4)

where DW = (dij) is a p × p matrix of differential operators dij ’s which are given by
dij = 2−1(1 + δij)(∂/∂wij) for the Kronecker delta δij and W = (wij). Following Stein
(1977) and Haff (1982), we have that

trDW [HΦ(�)LH t] =

p∑
i=1

{
1

2

∑
j �=i

�iφi(�) − �jφ(�)

�i − �j
+
∂[�iφi(�)]

∂�i

}
. (3.5)

Combining (3.3), (3.4) and (3.5), we get the following expression of the risk function.
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Proposition 3.1 The risk function of the orthogonally equivariant estimator δ(Φ) is
expressed by

R1(Σ,δ(Φ)) −mtrΣ−1

=

p∑
i=1

E

[
�iφ

2
i − 2(m− p− 1)φi − 2

∑
j �=i

�iφi − �jφj

�i − �j
− 4

∂(�iφi)

∂�i

]

=

p∑
i=1

E

[
ψ2

i

�i
− 2(m− p− 1)

ψi

�i
− 2
∑
j �=i

ψi − ψj

�i − �j
− 4

∂ψi

∂�i

]
,

where Φ(�) = L−1Ψ(�) = diag (ψ1(�)/�1, . . . , ψp(�)/�p) for ψi = �iφi.

From this proposition, we get a sufficient condition for improving on the unbiased
estimator δ0.

Proposition 3.2 The estimator δ(Φ) dominates δ0 relative to the loss L1(Σ, δ) if ψi(�)’s
satisfy the inequality

p∑
i=1

{
ψ2

i

�i
− 2(m− p− 1)

ψi

�i
− 2
∑
j �=i

ψi − ψj

�i − �j
− 4

∂ψi

∂�i

}
≤ −

p∑
i=1

(m− p− 1)2

�i
.

Proposition 3.3 Assume that Ψ(�) = diag (ψ1(�), . . . , ψp(�)) satisfies the following con-
ditions for m > p+ 1:

(a) ∂ψi(�)/∂�i ≥ 0 for i = 1, . . . , p.
(b) ψ1(�) ≥ · · · ≥ ψp(�) = m− p− 1.
(c) m+ p− 2i− 1 ≥ ψi(�) for each i.

Then the estiamtor δ(L−1Ψ) = HL−1Ψ(�)H t dominates the unbiased estimator δ0 under
the loss L1(δ,Σ).

Proof. Note that∑
i

∑
j �=i

ψi − ψj

�i − �j
=2
∑

i

∑
j>i

ψi − ψj

�i − �j

=2
∑

i

1

�i

∑
j>i

(ψi − ψj) + 2
∑

i

1

�i

∑
j>i

�j(ψi − ψj)

�i − �j
,

and that
∑

j>i(ψi − ψj) = (p − i)ψi −
∑

j>i ψj. Then, the r.h.s. of the inequality in
Proposition 3.2 is expressed by

p∑
i=1

1

�i

{
ψ2

i − 2(m+ p− 2i− 1)ψi + 4
∑
j>i

ψj

}
− 4

p∑
i=1

∑
j>i

�j(ψi − ψj)

�i(�i − �j)
+
∂ψi

∂�i
. (3.6)
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The conditions (b) and (c) imply that

ψ2
i − 2(m+ p− 2i− 1)ψi + 4

∑
j>i

ψj

≤ ψ2
i+1 − 2(m + p− 2i− 1)ψi+1 + 4ψi+1 + 4

∑
j>i+1

ψj

= ψ2
i+1 − 2{m+ p− 2(i+ 1) − 1}ψi+1 + 4

∑
j>i+1

ψj

≤ · · · ≤ ψ2
p − 2(m− p− 1)ψp. (3.7)

Combining (3.6) and (3.7), we see that the estimator δ(L−1Ψ) has a uniformly smaller
risk than δ0 under the conditions in Proposition 3.3.

For the Stein type estimator δS
c with ci = m − i − 1, it is easily checked to satisfy

the conditions in Proposition 3.3. Also, we can consider another estimator with constants
bi = m+ p− 2i− 1 for i = 1, . . . , p:

δS
b = HL−1BH t, B = diag (b1, . . . , bp), bi = m+ p− 2i− 1, (3.8)

which satisfies the conditions in Proposition 3.3.

Corollary 3.1 The Stein type estimators δS
c and δS

b dominate the unbiased estimator δ0

under the loss L1(δ,Σ).

The risk performances of the two Stein type estimators δS
c and δS

b are studied numer-
ically in Section 4, which reports that δS

b has much smaller risks than δS
c . However, the

Stein type orthogonally equivariant estimator δS
b has a shortcoming that the ordered rela-

tion that b1/�1 ≤ . . . ≤ bp/�p is not preserved. In the estimation of the covariance matrix
under the Stein loss, Sheena and Takemura (1992) proved that a non-order-preserving
estimator is improved on by the order-preserving methods such as order statistics and
isotonic regression. In our setup, however, it is hard to show the similar property, mainly
because the loss function L1(δ,Σ) incorporates the random matrix W . In the next sub-
section, we obtain another type of estimators improving on the Stein type estimator δS

b .

3.2 Further improvement on the Stein type estimator

For the purpose, we consider estimators of the form

δIS(g) = δS
b +

g(�)

tr W
Ip, (3.9)
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where g(�) is an absolutely continuous function. From Proposition 3.1, it is seen that the
risk difference of the two estimators δS

b and δIS(g) is given by

∆ =R1(Σ, δ
IS(g)) − R1(Σ, δ

S
b )

=

p∑
i=1

E

[
1

�i

(
�2i g

2

(tr W )2
+ 2

bi�ig

trW

)
− 2(m− p− 1)

g

trW

−2
∑
j �=i

g

tr W
− 4

(∑
j �=i �j

(trW )2
g +

�i
trW

∂g

∂�i

)]

=E

[
1

trW

{
g2 − 4(p− 1)g − 4

p∑
i=1

�i
∂g

∂�i

}]
, (3.10)

since
∑p

i=1 bi = p(m − 2). The expression (3.10) provides the following conditions for
δIS(g) to dominate δS

b .

Proposition 3.4 Assume that g(�) satisfies the conditions:
(a) ∂g(�)/∂�i ≥ 0 for i = 1, . . . , p.
(b) 0 < g(�) ≤ 4(p− 1).

Then the estimator δIS(g) dominates the Stein type estimator δS
b under the loss L1(Σ, δ).

Putting g(�) = 2(p− 1) in (3.9) gives the improved estimator

δIS = HL−1BH t +
2(p− 1)

tr W
Ip, (3.11)

which we shall call the improved Stein type estimator. It is noted that δIS has a similar
form to the Efron-Morris estimator (4.1), which can not dominate δS

b , but δ0.

3.3 Truncation rule

All the estimators given so far can be further improved on by use of the information on
the restriction of the parameter space that Σ−1 ≤ I. Thus, every estimator δ should
be constricted to the restricted space. Let R be a p × p orthogonal matrix such that
δ = RΛRt for Λ = diag (λ1, . . . , λp). Consider the truncation rule defined by

[Λ]TR = diag ([λ1]
TR, . . . , [λp]

TR) for [λi]
TR = min(λi, 1). (3.12)

Then, Efron and Morris (1976) showed the following proposition.

Proposition 3.5 If P [λi > 1 for some i] > 0, then the estimator δ = RΛRt is improved
on by the truncated one δTR = R[Λ]TRR under the loss L1(δ,Σ).

Applying the truncation rule to the Stein type estimator δS
b and the improved Stein

type one δIS, we get further improved procedures

δSTR
b =H [BL−1]TRH t, (3.13)

δISTR =H

[
BL−1 +

2(p− 1)

trL
Ip

]TR

H t. (3.14)

11



4 Simulation studies

Now we investigate the risk-performances of estimators of Σ−1 numerically. The estima-
tors we want to investigate are not only the estimators δ0, δJS

c , δS
c , δS

b , δIS, δSTR and
δISTR given so far in this paper, but also the following estimators studied in the literature:
Efron and Morris (1976) proposed the improved estimator

δEM = (m− p− 1)W−1 +
(p− 1)(p+ 2)

trW
Ip, (4.1)

called the Efron-Morris estimator, and the truncated version

δEMTR = H

[
(m− p− 1)L−1 +

(p− 1)(p+ 2)

tr L
Ip

]TR

H t. (4.2)

Haff (1979) and Dey et al . (1990) have treated more general types of estimators and
derived conditions for the improvement over δ0. Dey et al . (1990) proposed the estimator

δDGS = (m− p− 1)W−1 +
2(p− 1)

tr W 2 W , (4.3)

and numerically revealed that the risk performance of δDGS is comparable to that of the
Efron-Morris estimator δEM .

Every estimator δ is evaluated by the risk function R1(Σ, δ) under the loss function
L1(Σ, δ). The values of the risks of the above estimators are obtained from 5,000 replica-
tions through simulation experiments, and the relative efficiencies R1(Σ, δ)/R1(Σ, δ0) of
estimator δ over δ0 are reported. The simulation experiments are done in the two cases:
(1) p = 2, 5, 7,m = 10, Σ = Hdiag (σ1, . . . , σp)H

t for σi = (i−1)×k+1, k = 0, . . . , 4, and
some orthogonal matrices H and (2) p = 5, 10, 15, m = 30, Σ = Hdiag (σ1, . . . , σp)H

t

for σi =
√

(p− i)k + 1, k = 0, . . . , 4, and some orthogonal matrices H .

The relative efficiencies of the above estimators for the two cases are given in Ta-
bles 1 and 2 where the notations JS, SC, SB, IS, EM , DGS, SBT , IST and EMT ,
respectively, stand for the estimators δJS

c , δS
c , δS

b , δIS, δEM , δDSG, δSTR, δISTR and
δEMTR.

From these tables, the following conclusions can be drawn.

(1) The truncated improved Stein type estimator δISTR and the truncated Efron-
Morris estimator δEMTR have the best risk-performances and much smaller risks for higher
dimensions p than the unbiased estimator δ0.

(2) Among the non-truncated estimators, the improved Stein type estimator δIS is
superior when p/m is small, and the Efron-Morris estimator δEM is better for large p/m.

(3) The risk gains of the James-Stein type estimator δJS
c are quite small. Compared

with δS
c , the Stein type estimator δS

b is much better for all the cases. The risk-behaviors
of the estimator δDGS are worse than δEM except the case of small p/m.

12



Table 1: Relative Efficiencies of the Estimators under the Loss L1(Σ, δ) in the Cases of
Σ = Hdiag (σ1, . . . , σp)H

t for σi = (i− 1) × k + 1, k = 0, . . . , 4, m = 10 and p = 2, 5, 7

p k JS SC SB IS EM DSG SBT IST EMT
0 0.973 0.869 0.766 0.730 0.851 0.818 0.438 0.298 0.334
1 0.982 0.907 0.837 0.805 0.867 0.853 0.565 0.469 0.469

p = 2 2 0.986 0.939 0.898 0.871 0.886 0.892 0.646 0.578 0.551
3 0.989 0.957 0.930 0.906 0.902 0.918 0.683 0.629 0.593
4 0.990 0.967 0.947 0.927 0.914 0.935 0.701 0.657 0.619
0 0.947 0.666 0.484 0.442 0.462 0.667 0.214 0.100 0.087
1 0.968 0.762 0.642 0.611 0.604 0.788 0.481 0.433 0.406

p = 5 2 0.975 0.824 0.740 0.716 0.695 0.847 0.609 0.578 0.544
3 0.980 0.861 0.799 0.779 0.751 0.879 0.678 0.654 0.617
4 0.983 0.886 0.837 0.821 0.790 0.900 0.721 0.701 0.663
0 0.911 0.549 0.361 0.324 0.235 0.667 0.155 0.065 0.034
1 0.946 0.674 0.545 0.520 0.479 0.805 0.438 0.407 0.372

p = 7 2 0.958 0.748 0.651 0.632 0.604 0.858 0.566 0.545 0.519
3 0.966 0.794 0.717 0.702 0.678 0.887 0.642 0.625 0.602
4 0.971 0.826 0.763 0.750 0.728 0.905 0.693 0.679 0.657

Table 2: Relative Efficiencies of the Estimators under the Loss L1(Σ, δ) in the Cases of
Σ = Hdiag (σ1, . . . , σp)H

t for σi =
√

(p− i)k+1, k = 0, . . . , 4, m = 30 and p = 5, 10, 15

p k JS SC SB IS EM DSG SBT IST EMT
0 0.990 0.820 0.692 0.680 0.829 0.850 0.294 0.212 0.244
1 0.988 0.881 0.806 0.795 0.853 0.882 0.663 0.636 0.650

p = 5 2 0.987 0.899 0.839 0.829 0.864 0.894 0.714 0.693 0.696
3 0.987 0.909 0.856 0.847 0.871 0.902 0.737 0.719 0.717
4 0.987 0.916 0.868 0.859 0.877 0.908 0.751 0.734 0.729
0 0.984 0.721 0.572 0.563 0.647 0.838 0.194 0.136 0.132
1 0.980 0.786 0.683 0.675 0.698 0.871 0.574 0.558 0.543

p = 10 2 0.980 0.807 0.718 0.710 0.718 0.882 0.637 0.625 0.607
3 0.979 0.820 0.739 0.732 0.732 0.888 0.668 0.657 0.637
4 0.979 0.830 0.754 0.748 0.742 0.893 0.688 0.678 0.656
0 0.978 0.642 0.500 0.493 0.473 0.846 0.143 0.100 0.066
1 0.975 0.707 0.602 0.596 0.551 0.877 0.493 0.481 0.410

p = 15 2 0.974 0.730 0.635 0.630 0.578 0.886 0.558 0.549 0.479
3 0.974 0.744 0.657 0.651 0.596 0.891 0.593 0.585 0.515
4 0.974 0.755 0.673 0.668 0.610 0.895 0.616 0.609 0.539
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5 Estimation under the scale-invariant loss

Several dominance results have been stated in the previous sections for the non-scale-
invariant loss L1(δ,Σ). When a scale-invariant loss is employed, however, we have a
different story, that is, the invariant loss allows us to provide the similar decision-theoretic
results as in the estimation of the covariance matrix. The loss function we treat in this
section is of the form

L2(δ,Σ) = tr (δ − Σ−1)Σ(δ −Σ−1)W

= tr δWδΣ − 2tr δW + tr WΣ−1, (5.1)

which is invariant under the scale transformations W → AWAt, Σ → AΣAt and
δ → AδAt for any p× p matrix A.

5.1 James-Stein type minimax estimator

The best scalar multiple of W−1 under the loss L2(δ,Σ) is given by δ0 = a0W
−1 for

a0 = m − p − 1. However, it is not minimax under the scale-invariant loss L2(δ,Σ).
A minimax estimator with a constant risk is provided by the James-Stein type rule,
where the minimaxity follows from Kiefer (1957). Let W = TT t for T ∈ G+

T (p), and
the risk function of the estimator (T t)−1DT−1 for a constant diagonal matrix D =
diag (d1, . . . , dp) for positive constants di’s is written by

R2(Σ, (T
t)−1DT−1) = EΣ[L2((T

t)−1DT−1,Σ)]

= EΣ

[
tr (T t)−1D2T −1Σ − 2trD +mp

]
= EI

[
tr D2T−1(T t)−1

]− 2trD +mp.

Krishnamoorthy and Gupta (1989) calculated the first term in the r.h.s. of the last
equality as

EI

[
tr D2T−1(T t)−1

]
=

p∑
i=1

m− 1

(m− i− 1)(m− i)
d2

i .

Hence the risk is rewritten by

R2(Σ, (T
t)−1DT−1) =

p∑
i=1

{
m− 1

(m− i− 1)(m− i)
d2

i − 2di +m

}
,

which is minimized at di = (m − i − 1)(m − i)/(m − 1) for i = 1, . . . , p, and hereafter,
the notation di means the constant. Thus, we get the James-Stein type estimator

δJS
d = (T t)−1DT−1, D = diag (d1, . . . , dp), di =

(m− i− 1)(m− i)

m− 1
, (5.2)

which is minimax with the constant risk

R2(Σ, δ
JS
d ) = trD − 2trD +mp =

p∑
i=1

{
(2m− 1)i− i2

}
/(m− 1)

= p(p+ 1)

[
1 − p− 1

3(m− 1)

]
, (5.3)

being less than the risk R2(Σ, δ0) = p(p+ 1).
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5.2 Two dimensional case

For improving on the James-Stein type estimator δJS
d , consider the Stein type estimator

δS
d = HL−1DH t (5.4)

where W , L and H are the same notations as used in Section 3 and D is defined by
(5.2). The risk function of δS

d is expressed by

R2(Σ, δ
S
d ) = E

[
tr HL−1D2H tΣ

]− 2trD +mp. (5.5)

It is interesting to note that the risk function under the loss L2(δ,Σ) has the similar
structure as in the case of the entropy loss function

Le(δ,Σ) = tr δΣ − log |δΣ| − p,

that is, the risk of δS
d under the Le-loss is given by

Re(Σ, δ
S
d ) = E

[
trHL−1DH tΣ − log |D| − log |W−1Σ| − p

]
.

The minimaxity of the Stein estimator δS
d is called the Krishnamoorthy-Gupta conjecture,

because it is very hard to evaluate the term E[tr HL−1DH tΣ]. Perron (1997) proved
the conjecture for p = 2, and Sheena (2003) recently succeeded in proving the minimaxity
for p = 3, which needs a long and hard proof. though the issue is still open for p ≥ 4.
From these results, it follows that the Stein type estimator δS

d dominates δJS
d for p = 2

and 3. In the case of p = 2, we here give a simple proof different from Perron (1997) for
the minimaxity of δS

d under the L2-loss.

Proposition 5.1 For p = 2, the Stein type estimator δS
d dominates the James-Stein type

minimax estimator δJS
d relative to the scale-invariant loss L2(δ,Σ).

Proof. Without any loss of generality, assume that Σ = diag (σ1, σ2), σ1 ≥ σ2. From
(5.3) and (5.5), it suffices to show that

g(Σ) ≡ E
[
tr HL−1D2H tΣ

] ≤ tr D,

or for H = (hij),

g(Σ) = E

[
d2

1

�1
(σ1h

2
11 + σ2h

2
21) +

d2
2

�2
(σ1h

2
12 + σ2h

2
22)

]
≤ d1 + d2, (5.6)

for d1 = m− 2 and d2 = (m− 2)(m− 3)/(m− 1). Incorporating the term |WΣ−1|−1 into
the Wishart density of W gives that

g(Σ) = E

[
�1�2
σ1σ2

{
d2

1

�1
(σ1h

2
11 + σ2h

2
21) +

d2
2

�2
(σ1h

2
12 + σ2h

2
22)

}
1

|WΣ−1|
]

=
1

(m− 2)(m− 3)
E

[
z1z2
σ1σ2

{
d2

1

z1
(σ1h

2
11 + σ2h

2
21) +

d2
2

z2
(σ1h

2
12 + σ2h

2
22)

}]
=

1

(m− 2)(m− 3)
E

[
d2

1z2

(
h2

11

σ2

+
h2

21

σ1

)
+ d2

2z1

(
h2

12

σ2

+
h2

22

σ1

)]
,
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where diag (z1, z2) = H tV H and V has Wp(m − 2,Σ). Since h2
11 + h2

21 = h2
11 + h2

12 =
h2

22 + h2
21 = h2

22 + h2
12 = 1, we observe that h2

11 = h2
22 and h2

12 = h2
21, which is used to

express that

g(Σ) =
1

(m− 2)(m− 3)
E

[
d2

2z1

(
h2

11

σ1
+
h2

12

σ2

)
+ d2

1z2

(
h2

12

σ1
+
h2

22

σ2

)]
=

1

(m− 2)(m− 3)
E
[
trHdiag (d2

2z1, d
2
1z2)H

tΣ−1
]
.

The Stein-Haff identity (3.4) and the equation (3.5) are used to rewrite g(Σ) as

g(Σ) =
1

(m− 2)(m− 3)
E
[
(m− 5)trHdiag (d2

2z1, d
2
1z2)H

tV −1

+2trDV [Hdiag (d2
2z1, d

2
1z2)H

t]
]

=
1

(m− 2)(m− 3)
E

[
(m− 5)(d2

1 + d2
2) + 2

d2
2z1 − d2

1z2
z1 − z2

+ 2(d2
1 + d2

2)

]
.

Since (d2
2z1 − d2

1z2)/(z1 − z2) = d2
2 − (d2

1 − d2
2)z2/(z1 − z2), g(Σ) is represented by

g(Σ) =
1

(m− 2)(m− 3)
E

[
(m− 3)d2

1 + (m− 1)d2
2 − 2(d2

1 − d2
2)

z2
z1 − z2

]
,

which is less than d1 + d2. Therefore, the inequality (5.6) is proved.

5.3 Other improved estimators

As another orthogonally equivariant estimator, Section 4 has treated the Efron-Morris
estimator

δEM = a0W
−1 +

b

trW
I,

for a0 = m − p − 1 and nonnegative constant b. Although it does not dominate the
James-Stein type estimator δJS

d , this type of estimators is one of standard procedures for
estimating the precision matrix. We thus obtain a condition on b for δEM to improve on
the unbiased estimator δ0 relative to the scale-invariant loss.

Proposition 5.2 The Efron-Morris estimator δEM dominates the unbiased one δ0 rela-
tive to the scale-invariant loss function L2(δ,Σ) if 0 < b ≤ 2(p− 1).

Proof. The risk of the Efron-Morris estimator δEB is given by

R2(Σ, δ
EM) = E

[
tr δEMWδEMΣ − 2tr δEMW + tr WΣ−1

]
. (5.7)

Since tr δEMW = a0p+ b and

tr δEMWδEMΣ = a2
0tr W−1Σ + 2a0b

trΣ

tr W
+ b2

tr WΣ

(tr W )2
,
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the difference of the risk functions of δ0 and δEM is written by

∆ = R2(Σ, δ
EM) − R2(Σ, δ0)

= −2b

(
1 − a0EΣ

[
trΣ

trW

])
+ b2EΣ

[
trWΣ

(trW )2

]
. (5.8)

We first evaluate the term EΣ[trΣ/trW ], which is rewritten by EI [trΣ/trV Σ] where
V has Wp(m, I) and Σ = diag (σ1, . . . , σp). Let vi be the (i, i) diagonal element of V for
i = 1, . . . , p, and let γi = σi/

∑p
j=1 σj . Then, trΣ/tr V Σ = (

∑p
i=1 viγi)

−1 ≤∑p
i=1 v

−1
i γi,

where the inequality follows from Schwarz’ inequality. Noting that E[1/vi] = 1/(m− 2)
for i = 1, . . . , p, we see that

EΣ

[
trΣ

trW

]
≤

p∑
i=1

E

[
1

vi

]
γi =

1

m− 2

p∑
i=1

γi =
1

m− 2
. (5.9)

We next evaluate the term EΣ[tr WΣ/(tr W )2], which is expressed by

EI

[
trV Σ2

(trV Σ)2

]
= EI

[ ∑p
i=1 viσ

2
i

(
∑p

i=1 viσi)2

]
≤ EI

[∑p
i=1 viηi∑p
i=1 v

2
i ηi

]
,

where ηi = σ2
i /
∑p

j=1 σ
2
j . Since

∑p
i=2 v

2
i ηi

∑p
i=2 ηi ≥ (

∑p
i=2 viηi)

2 as checked by using
Schwarz’ inequality, we observe that∑p

i=1 viηi∑p
i=1 v

2
i ηi

=
v1η1 + (1 − η1)

∑p
i=2 viηi/(1 − η1)

v2
1η1 + (1 − η1)

∑p
i=2 v

2
i ηi/(1 − η1)

≤ v1η1 + A(1 − η1)

v2
1η1 + A2(1 − η1)

≤ 1

v1
η1 +

1

A
(1 − η1),

where the second inequality is equivalently expressed by (v1 − A)2(v1 + A) ≥ 0. Recall
that A−1 = (

∑p
i=2 viθi)

−1 ≤∑p
i=2 v

−1
i θi for θi = ηi/

∑p
j=2 ηj. Hence we get the inequality∑p

i=1 viηi∑p
i=1 v

2
i ηi

≤ 1

v1
η1 + (1 − η1)

p∑
i=2

1

vi
θi, (5.10)

which implies that

E

[∑p
i=1 viηi∑p
i=1 v

2
i ηi

]
≤ E[v−1

1 ]η1 + (1 − η1)

p∑
i=2

E[v−1
i ]θi =

1

m− 2
. (5.11)

Combining (5.8), (5.9) and (5.11) gives that

∆ ≤ −2b

(
1 − m− p− 1

m− 2

)
+

b2

m− 2
=

b

m− 2
[−2(p− 1) + b],

which is less than or equal to zero if b ≤ 2(p−1). The proof of Proposition 5.2 is therefore
complete.

We conclude this section with noting that the truncation rule (3.12) gives further
improvements under the invariant loss L2(δ,Σ).
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Proposition 5.3 The estimator δ = RΛRt is improved on by the truncated one δTR =
R[Λ]TRR under the scale-invariant loss L2(δ,Σ) if P [λi > 1 for some i] > 0.

This proposition follows from the fact that the risk difference can be written as

R2(Σ, δ) − R2(Σ, δ
TR)

=E

[
p∑

i=1

(λi − λTR
i )�i

{
(λi + λTR

i )(RtΣR)ii − 2
}]

≥E
[

p∑
i=1

(λi − 1)�i {(λi + 1) − 2} I(λi > 1)

]
,

where (RtΣR)ii is the (i, i) element of RtΣR, and (RtΣR)ii ≥ 1.

Using Proposition 5.3, we get improved truncated estimators

δSTR
d =H [DL−1]TRH t,

δEMTR =H

[
(m− p− 1)L−1 +

2(p− 1)

tr L
Ip

]TR

H t.

5.4 Simulation results

We now investigate the risk-performances of estimators of Σ−1 numerically under the loss
L2(Σ, δ). The estimators we want here to investigate are δ0, δJS

d , δS
d , δEM , δSTR

d and
δEMTR given above,

The risk functions of the above estimators are obtained from 5,000 replications through
simulation experiments, and the relative efficiencies R2(Σ, δ)/R2(Σ, δ0) of estimator δ
over δ0 are reported in Tables 3 and 4, where the simulation experiments are done in
the same cases as in Tables 1 and 2. The notations JS, ST , EM , STT and EMT ,
respectively, stand for the estimators δJS

d , δS
d , δEM , δSTR

d and δEMTR.
These tables show the following conclusions:

(1) Through the numerical results given in Tables 3 and 4, the truncated Stein type
estimator δS

d has the smallest risks except the case of p = 2 in Table 3.

(2) The Stein type estimator δS
d is the best of all the non-truncated estimators. The

risk-gains of the James-Stein type estimator δJS
d is quite small.

6 Concluding remarks

In this paper, we have considered the estimation of the precision matrix relative to the
non-scale-invariant loss function induced from the estimation of means. Using the methods
as in the estimation of the covariance matrix, we have derived not only the James-Stein
type and the Stein type estimators, but also a new type estimator, called improved Stein
type estimator. However, we have observed that several dominance properties known
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Table 3: Relative Efficiencies of the Estimators under the Loss L2(Σ, δ) in the Cases of
Σ = Hdiag (σ1, . . . , σp)H

t for σi = (i− 1) × k + 1, k = 0, . . . , 4, m = 10 and p = 2, 5, 7

p k JS ST EM STT EMT
0 0.9556 0.7806 0.8883 0.5725 0.4852
1 0.9555 0.8261 0.8954 0.6621 0.5817

p = 2 2 0.9554 0.8696 0.9063 0.7285 0.6467
3 0.9554 0.8940 0.9157 0.7640 0.6821
4 0.9554 0.9085 0.9234 0.7840 0.7048
0 0.8489 0.5511 0.7352 0.5114 0.4962
1 0.8486 0.6047 0.7467 0.5825 0.5905

p = 5 2 0.8486 0.6321 0.7520 0.6154 0.6321
3 0.8485 0.6472 0.7546 0.6327 0.6513
4 0.8485 0.6568 0.7561 0.6435 0.6618
0 0.7786 0.5145 0.6969 0.5070 0.5698
1 0.7788 0.5513 0.7071 0.5469 0.6125

p = 7 2 0.7788 0.5651 0.7103 0.5616 0.6316
3 0.7789 0.5721 0.7117 0.5689 0.6419
4 0.7789 0.5765 0.7125 0.5736 0.6484

Table 4: Relative Efficiencies of the Estimators under the Loss L2(Σ, δ) in the Cases of
Σ = Hdiag (σ1, . . . , σp)H

t for σi =
√

(p− i)k+1, k = 0, . . . , 4, m = 30 and p = 5, 10, 15

p k JS ST EM STT EMT
0 0.9546 0.6685 0.9149 0.4817 0.5065
1 0.9545 0.7452 0.9168 0.6969 0.7833

p = 5 2 0.9545 0.7639 0.9175 0.7261 0.8134
3 0.9544 0.7730 0.9179 0.7392 0.8252
4 0.9544 0.7786 0.9181 0.7470 0.8318
0 0.8977 0.5421 0.8916 0.4649 0.5806
1 0.8978 0.5953 0.8926 0.5835 0.7936

p = 10 2 0.8978 0.6081 0.8928 0.6004 0.8240
3 0.8978 0.6149 0.8930 0.6087 0.8360
4 0.8978 0.6193 0.8931 0.6139 0.8424
0 0.8405 0.4898 0.8831 0.4617 0.6501
1 0.8405 0.5242 0.8837 0.5207 0.7895

p = 15 2 0.8405 0.5321 0.8838 0.5300 0.8175
3 0.8405 0.5365 0.8839 0.5349 0.8305
4 0.8405 0.5394 0.8840 0.5381 0.8381
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in the estimation of the covariance matrix do not necessarily hold under the non-scale-
invariant loss, but still hold relative to the scale-invariant loss. The simulation studies
under the non-scale-invariant loss show that the truncated improved Stein type estimator
δISTR and the truncated Efron-Morris estimator have the best risk performances among
the competitors and much smaller risks for high dimension p than the unbiased estimator
δ0.

Although the ‘within’ component of covariance ΣE in the model (1.2) is assumed to
be known in this paper, this assumption needs to be removed in more practical situations
studied by Kubokawa and Srivastava (2003). Some results given in the previous sections
can be extended to the model with unknown error covariance matrix ΣE, and the same
method as in the derivation of δISTR can apply to the model for providing a superior
estimator.

Finally, we give some conjectures which we could not show here. For the non-scale-
invariant loss L1(δ,Σ), we conjecture that the unbiased estimator δ0 should be minimax.
It is also interesting to investigate whether the Stein type estimator is improved on by
the order-preserving estimator introduced by Sheena and Takemura (1992). For the scale-
invariant loss L2(δ,Σ), we have the Krishnamoorthy-Gupta conjecture that the James-
Stein type estimator is improved on the Stein type estimator for p ≥ 4, and the conjecture
that the Stein type estimator is dominated by the order-preserving one. It could be
interesting to show that the Stein type estimator dominates δ0.

The simulation studies demonstrates that the truncated procedures are much better
than the non-truncated, but applying the truncation rule given in Section 3 results in
non-smooth estimators. From Bayesian perspective, it is the most interesting issue to
find smooth or Bayesian estimators which exist on the parameter space of Σ−1 ≤ Ip and
dominate δ0 under the loss L1(δ,Σ). The estimators treated by Zheng (1986a,b) may be
helpful for the purpose. For a positive valued and absolutely continuous function f(�),
the Zheng type estimator is given by

δZ(f) = Hdiag

(
∂

∂�1
log f(�), . . . ,

∂

∂�p
log f(�)

)
H t,

which, for instance, includes the Stein type estimator δS
b and the Efron-Morris type one

δEM , derived by putting f(�) =
∏p

j=1 �
−bj

j and f(�) = (
∏p

j=1 �
−(m−p−1)
j )(

∑p
j=1 �j)

−(p−1)(p+2),
respectively. The interesting issue is how to find the function f(�) which yields a superior
estimator with the above requirements.
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