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Abstract

Jones and Ostroy (1984) argue that money, as an asset of the least transaction cost, offers
flexibility to its holder, which other assets cannot provide. We extend the idea of Jones and
Ostroy into a truely dynamic framework of infinite horizon with a risk-neutral decision-maker.
We then investigate the effect of an increase in investment risk on the demand for liquidity
à la Jones and Ostroy. In particular, we prove that the opitmal strategy exists, that it has a
reservation property, and that the reservation value increases when investment risk increases
in the sense of a mean-preserving spread. While the effect of a mean-preserving spread on
the reservation value is unambiguous, its effect on money demand is ambiguous. We then
provide conditions on increasing investment risk under which money demand unambiguously
increases.
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1. Introduction

Without doubt, money is the most liquid asset. To convert money to other assets is

immediate and costless, whereas to convert non-money assets to other assets including money

involves time and substantial transaction costs. Thus, money enables prompt moves among

various investment, both financial and real. In a sense, money offers liquidity services. It is

natural to assume that these liquidity services are one of the most important determinants of

money demand. In fact, this is the heart of the speculative demand for money, as opposed to

transaction and precautionary demand for money. Unfortunately, however, there are relatively

few examinations of the liquidity or speculative motive of holding money, as compared with the

transaction and precautionary motives.

Among existing literature of the liquidity motive of holding money, Jones and Ostroy

(1984)’s formulation has attracted much attention. They argue that money, as an asset of the

least transaction cost, offers flexibility to its holder, which other assets cannot provide. Under

the presence of liquidation (transaction) costs on other assets, money is held to enable the option

of waiting for tomorrow to resolve uncertainty rather than investing today under uncertainty.

Thus, their formulation of liquidity services of money can be considered as an enabler of options.

Their argument suggests that if the degree of uncertainty about the future increases and

the resolution of uncertainty is still gradual, the value of waiting increases and hence the demand

for liquidity also increases in the spirit of Jones and Ostroy’s “liquidity as flexibility,” or money

as an enabler of options. In the current paper, we extend the idea of Jones and Ostroy into

a truly dynamic framework of infinite horizon with a risk-neutral decision-maker and we then

investigate the effect of an increase in investment risk on the demand for money.

To achieve this objective, we start from Taub’s (1988) model of pure-currency economy

where money is required to purchase commodities (which itself specifies Lucas’ (1980) model

by assuming that a decision-maker is risk-neutral) and extend it into Markovian economic en-

vironment. Instead of assuming that money is required to buy commodities, we assume that

money is required to make investment. This assumption of a liquidity constraint in investment,

which might be called a cash-in-advance constraint in investment, is rationalized when there are

sizable transaction costs and transaction delays in trading with other assets than money, and it
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substantiates Jones and Ostroy’s idea of “liquidity as flexibility” in our framework.

Specifically, we consider a behavior of a risk-neutral fund-manager who contemplates

in each period whether or not to make an irreversible investment which, if made, generates a

stochastic future return. We impose the liquidity constraint by assuming that the amount of

investment at one time is constrained by the fund-manager’s cash-holdings at that time. In fact,

this framework of dynamic setting can be reinterpreted as a variant of a real-option model, with

one additional assumption that money is required to make investment, either financial or real.

We formally prove that the optimal strategy for the fund-manager exists and that it

takes the form of a “trigger” strategy. It is called a trigger strategy because there exists a

function of the return realized in the current period and the fund-manager puts all his available

money into investment if and only if the return exceeds the value of this function. In general,

the trigger is a function of the return. We show that when the stochastic kernel which describes

the Markov process satisfies some regularity conditions, the trigger is constant. In such a case,

we say that the optimal strategy has a reservation property and the fund-manager makes an

investment if and only if the return exceeds the constant reservation value.

We then investigate effects of an increase in investment risk on the optimal strategy

and the resulting demand for money. Suppose that the stochastic kernel satisfies the conditions

which induce the reservation property of the optimal strategy and that the degree of uncertainty

increases in the sense of a mean-preserving spread. Then, the results of this paper show that a

new trigger level is always above the initial reservation value. Therefore, if making investment

is not an optimal strategy before the risk increases, it cannot be so after the risk has increased.

This result is totally consistent with a fact which is well-known in the theory of options: An

increase in risk or volatility increases the value of a waiting option. Since money as liquidity is

an enabler of this option, the value of money as liquidity increases when the risk increases.

Despite this fact, the demand for liquidity, which we define as a long-run time-average

cash-holdings of the fund-manager, may or may not increase as a result of a mean-preserving

spread. This ambiguity follows because while the trigger level increases by a mean-preserving

spread, the probability that the return exceeds the trigger level might also increase at the

same time. If the latter increase dominates the former one, the fund-manager becomes more
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likely to invest, and as a result, the demand for liquidity defined as an average cash-holdings

decreases. This result suggests that the mean-preserving spread as a concept of an increase

in risk is not strong enough for us to derive the unambiguous effect on money demand of an

increase in investment risk. We then present conditions under which an increase in investment

unambiguously increases the demand for money: When the return is distributed independently

and identically, an increase in investment risk characterized by a single-crossing property as well

as one additional regularity condition implies that the money demand increases unambiguously.

The organization of this paper is as follows. Section 2 gives a brief overview of the model

and then illustrates some of the results of this paper. In particular, we specify the distribution

of the state variable as the uniform distribution to construct an example in which both the

reservation value and the average cash-holdings increase by a mean-preserving spread in risk. In

Section 3, we formally develop a model of an investment-fund manager with uncertain investment

opportunities in the future. Money, or cash in our formulation, is assumed to be needed to make

investment in a form of liquidity constraint, which captures flexibility that liquidity provides.

We show that the optimal strategy for the fund-manager exists, that it can be characterized

by a trigger strategy and that it has a reservation property when the Markov process satisfies

some additional assumptions. We also define there the demand for liquidity as a long-run time-

average cash-holdings of the fund-manager. Section 4 conducts a sensitivity analysis in which

an increase in risk is examined in the framework described in Section 3. In particular, we show

that an increase in risk in the sense of a mean-preserving spread increases the trigger level. In

the same time, it turns out that the mean-preserving spread does not always imply that the

money demand also increases. We provide the conditions under which an increase in money

demand unambiguously follows. All proofs as well as some lemmas are given in Section 5.

We heavily draw on techniques of dynamic programming in order to prove the claims

made in the current paper. For such techniques, an approach based upon the contraction-

mapping theorem is common in the literature. However, we need to allow the possibility that

the money is accumulated without bound, and hence, a simple adaptation of the contraction-

mapping approach does not work here because it requires that the value function should be

bounded, which is not the case in our model. We, therefore, invoke the dynamic programming
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technique developed by Ozaki and Streufert (1996) for a wide class of objective functions which

includes unbounded ones. We adapt it for the framework of this paper and provide a series of

results along the line developed there. We do this in the Appendix. The proofs given in Section

5 rely on these results.

2. An Illustrative Example

This section gives a brief overview of the model and then illustrates some of the results

of this paper by specifying the distribution which governs state-variable’s evolution. The formal

analysis of the model starts in the next section.

2.1. Optimal Investment and Average Cash-holdings

Consider a manager of an investment fund, such as venture capital invested in venture

businesses, specialized in investing projects involving substantial fixed costs that are sunk after

investment. This fund has a constant (positive) cash inflow of y in each period. Competition is

intense to find good investment opportunities among such funds and the manager must be agile

in capturing these opportunities. This means that, at the time the manager has a promising

opportunity, he must have sufficient liquid assets ready to invest, rather than illiquid but higher-

return ones. In other word, the amount of investment at one time in those opportunities is

constrained by the fund’s holdings of liquid assets at that time. Since cash is the most liquid

asset, we hereafter consider cash as liquid assets, and to make analysis simple, we abstract away

from other less liquid financial assets. We assume for simplicity that the general price level is

constant over periods, so that there is neither inflation nor deflation.

Under these assumptions, the fund-manager has a choice between investing in particular

opportunities in this period or wait until the next period setting cash inflow aside. Let mt be

the (non-negative) amount of cash that the fund-manager has in the beginning of period t and

let xt be the (non-negative) amount of investment which is made in period t and sunk afterward.

Then, the fund-manager’s budget constraint is given by

(∀t ≥ 0) xt + mt+1 ≤ y + mt
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and his liquidity constraint in investment is given by

(∀t ≥ 0) xt ≤ mt . (1)

The latter condition may also be considered as a cash-in-advance constraint in investment.

Let r be a net rate of interest and suppose that a unit investment opportunity in period

t yields the same net return ẑt in each period in indefinite future starting at period t. Then,

the current value of all the future net returns on a unit investment made in period t is given by

zt ≡ (1 + r)ẑt/r. We assume that investment is uncertain, in the sense that zt is stochastic. For

simplicity, we assume that zt is distributed according to a distribution function F0 independently

and identically in each period. (We relax this assumption later.) The fund-manager maximizes

the expected present value of the future net returns on whole investment,

E

[ ∞∑
t=0

βtxtzt

]
, (2)

evaluated with a constant discount factor β ∈ (0, 1), by appropriately choosing an investment

strategy xt, taking account of both the budget constraint and the liquidity constraint. In the

above formula, E[·] denotes the expectation with respect to the infinite-dimensional product

probability measure constructed from F0. (The exact form of the objective function will be

presented below by (16)).1

We will show in Section 3 that the optimal investment x∗
t has a reservation property and

can be characterized by

(∀t ≥ 0) x∗
t =

{
0 if zt ≤ R

mt if zt > R ,
(3)

where R is a unique solution to the following equation:

R =
β

1 − β

∫ +∞

R
(1 − F0(z′)) dz′ (4)

(see Theorem 3 and the equation (25) below). The optimal investment strategy, (3), dictates the

investment of all available cash when the current shock (return) is greater than the reservation
1This model is also applicable for a financial fund with cash (perfectly liquid assets) and consols (less liquid

assets), so long as transaction of the less illiquid assets involves substantial fixed costs. There is no transaction cost
converting cash into the illiquid assets, while conversion of these assets into cash involves considerable transaction
costs. So long as these transaction costs are large, a portfolio manager does not sell the illiquid assets, and the
model is essentially the same as that in this section. See, for example, Leland (1999) for a recent treatment of
transaction costs in financial markets.
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level, R, and no investment at all if otherwise. Furthermore, the money demand, m∗
0, defined

as the average cash-holdings turns out to be given by

m∗
0 =

y

1 − F0(R)
(5)

(see (27) below).

This result has a natural interpretation. Consider one unit of cash in the fund-manager’s

hand at period t. Recall that if he invests this cash in the current investment opportunity, this

decision yields ẑt from this period onward. If he postpones his decision, he foregoes ẑt this

period, but he may get better opportunity yielding net return z ≥ ẑt in the future. Suppose

that the fund-manager has only one unit of cash to invest and he has to determine the optimal

timing of investment. This is a special case of classical optimal stopping problems about when

to exercise an option (to invest a unit of cash, in this case). The optimal strategy for this

problem is well-known to be (under some assumptions) a reservation strategy such that: “stop

and invest” if ẑt > R̂ and “wait and continue to the next period” if otherwise, where R̂ is such

that

R̂ =
β

1 − β

∫ +∞

R̂
(1 − F̂ (z′)) dz′ (6)

and ẑt is assumed to be independently and identically distributed according to the distribu-

tion function, F̂ (see, for example, Lippman and McCall, 1976; Sargent, 1987). Notice (6)’s

resemblance to (4).2

In the optimal stopping problem of the previous paragraph, the fund-manager has an

option to invest only one unit of cash (that is, he has only two alternatives: to invest or not)

and he makes a once-and-for-all decision about when to exercise this option. In the model of

this paper, the fund-manager is allowed to invest any amount of money as long as the liquidity

constraint is met and he decides whether or not to invest not only once but also in every period.

Despite these differences, the similarity between (4) and (6) indicates that the two models have

2In fact, if we define R by (1 + r)R̂/r and F0 by (∀x) F0(x) = F̂ (rx/1 + r), then (6) is turned into

R =
β

1 − β

� +∞

R

(1 − F0(z
′)) dz′ ,

which is identical to (4).
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basically the very similar structure. This observation supports our view that cash is endowed

with a function of an “enabler” of the call option by the liquidity services it offers.3

We now turn back to the equation (4). To make our analysis as simple as possible,

we further specify F0 to be a uniform distribution over [a, b], where 0 < a < b. The uniform-

distribution assumption greatly reduces complexity and allows us to obtain an explicit solution

R to (4). We assume that the parameters of the model satisfy the following condition:

β >
2a

a + b
(7)

in order to assure that R ∈ (a, b) holds. If R ∈ (a, b) holds, then by (4), we have

R =
β

1 − β

∫ b

R

b − z′

b − a
dz′ =

β(b − R)2

2(1 − β)(b − a)
. (8)

By solving this quadratic equation, we get

R =
1
β

(
b − (1 − β)a − D1/2

)
(9)

where D ≡ (1 − β)(b − a) [b − a + β(a + b)] .

It can be verified that R ∈ (a, b) certainly holds under the assumption (7), which justifies (8).

2.2. An Increase in Risk

We now consider effects on the reservation level and average cash-holdings caused by an

increase in risk. To be more specific, suppose that the uniform distribution F0 is slightly more

dispersed by γ, over [a − γ, b + γ]. This is a mean-preserving spread, a way of characterizing

increased risk (see Rothschild and Stiglitz, 1970).

If this mean-preserving spread takes place, (8) is modified to

R =
β(b + γ − R)2

2(1 − β)(b − a + 2γ)
. (10)

3The liquidity constraint in investment, (1), certainly makes it easier for us to interpret money as a provider
of liquidity services. It is not, however, indispensable in order to derive the reservation property of the optimal
investment strategy (see Subsection 3.2.3). It is the assumption that investment is irreversible that is essential
to derive it. The existence of money makes it possible to postpone such irreversible investment and this is the
liquidity service money provides.
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Denote the solution R to this equation by R(γ) as a function of γ. Then, the implicit function

theorem shows that

dR(γ)
dγ

∣∣∣∣
γ=0

=
β(b − R)(R − a)

(b − a)[(1 − β)(b − a) + β(b − R)]
, (11)

where R (= R(0)) in the right-hand side is given by (9). Since a < R < b by (7), we conclude

that

dR(γ)
dγ

∣∣∣∣
γ=0

> 0 .

This result shows that increased risk in the form of a mean-preserving spread increases the

reservation level.

In Section 4, we formally show that basically the same result holds not only locally (that

is, at γ = 0) but also globally (that is, R(γ) > R(0) for any positive γ), and not only for the

uniform distribution but also for general distributions. Furthermore, it is shown that the result

can be extended to a Markovian setting under appropriate assumptions.

We now turn to the effect of a mean-preserving spread on the average cash-holdings.

Some algebra shows that

dF0(R(γ))
dγ

∣∣∣∣
γ=0

=
d

dγ

(
R(γ) − a + γ

b − a + 2γ

)∣∣∣∣
γ=0

=
R′(0)(b − a) + a + b − 2R

(b − a)2

=
(1 − β)(a + b)

(1 − β)(b − a)2 + β(b − a)(b − R)

where R(γ) is the solution to (10), R′(0) is given by (11) and R is given by (9). Since R < b by

(7), we conclude that

dF0(R(γ))
dγ

∣∣∣∣
γ=0

> 0 .

This and (5) together show that increased risk in the form of a mean-preserving spread increases

the money demand defined as the average cash-holdings.

It might seem that this result holds regardless of a specification of the distribution

function in the light of the fact that a mean-preserving spread always increases the reservation
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level. However, we provide an example (Example 1) in Section 4, which exhibits a decrease

in money demand when a mean-preserving spread takes place. Thus, the effect of a mean-

preserving spread on money demand is ambiguous in general. In the same section, we consider

another concept of being riskier which is stronger than the mean-preserving spread and show

that the money demand increases whenever a risk increases according to this concept under an

appropriate condition (see Proposition 2 below).

3. The Formal Model

3.1. Stochastic Kernel

The stochastic environment of the model is governed by a stochastic kernel, which we

discuss in this subsection. Let Z be a subset of R+ and let BZ be the Borel σ-algebra on Z.

We assume that Z is compact and convex, and hence, we may write as Z = [z, z̄] where z and

z̄ are defined by z = min Z and z̄ = maxZ, respectively. We assume that z < z̄. The net

rate of returns on investment made in period t, zt, is a random variable on (Z,BZ). In our

model, zt also serves as a state variable. We assume that zt is distributed according to a Markov

process and we let P0(·|·) : BZ × Z → [0, 1] be a stochastic kernel which governs the transition

of zt. That is, P0 is such that (∀z) P0(·|z) is a probability measure on BZ and (∀E) P0(E|·) is a

BZ-measurable function. We denote by F0 the (cumulative) distribution function derived from

P0, that is, (∀z′, z) F0(z′|z) = P0( [z, z′] | z ).

Throughout the paper, we assume that P0 is weakly continuous in the sense that for

any sequence 〈zn〉∞n=1 in Z which converges to z0, P0(·|zn) converges to P0(·|z0) in the weak

topology.4

Subsection 3.2.1 and Section 4 assume that P0 is stochastically increasing and stochas-

tically convex (Topkis, 1998). A stochastic kernel P0 is stochastically increasing if for each

4The convergence in the weak topology requires by definition that for any bounded continuous function h :
Z → �, �

Z

h(z′) P0(dz′|zn) →
�

Z

h(z′)P0(dz′|z0) .

The weak continuity of P0 is sometimes referred to as the Feller property (see, for example, Stokey and Lucas,
1989).
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nondecreasing function h : Z → R, the mapping defined on Z by

z 
→
∫

Z
h(z′)P0(dz′|z) (12)

is nondecreasing. A stochastic kernel P0 is stochastically convex if for each nondecreasing func-

tion h : Z → R, the mapping defined on Z by (12) is convex.

Section 3.3 assumes that P0 has a limiting probability measure. A stochastic kernel P0

has a limiting probability measure if there exists a probability measure π0 on (Z,BZ) such that

for any probability measure µ on (Z,BZ), the sequence of probability measures defined by
〈∫

Z

∫
Z
· · ·

∫
Z

P0(·|zt)P0(dzt|zt−1) · · ·P0(dz1|z0)µ(dz0)
〉∞

t=1

converges to π0 in the weak topology as t goes to +∞. Such a π0 is called a limiting probability

measure of P0 and is unique when it exists. Furthermore, under the maintained assumption

that P0 is weakly continuous, π0 satisfies5

(∀E ∈ BZ) π0(E) =
∫

Z
P0(E|z) dπ0(z) . (13)

We may think of π0, when it exists, as describing the long-run behavior of P0.

We say that zt is independently and identically distributed (i.i.d.) if P0(·|z) is independent

of z. In the i.i.d. case, it is clear that the properties of P0 introduced so far are all satisfied.

The next proposition provides another example of a stochastic kernel which satisfies all of them.

Proposition 1. Let Z = [0, 1] and let P0 be a stochastic kernel defined by

(∀z, z′ ∈ Z) F0(z′|z) = P0( [0, z′] | z ) =
∫ z′

0
(2 − z) dz .

That is, P0(·|z) is the uniform distribution on [0, 1/(2 − z)]. Then, P0 is weakly continuous,

stochastically increasing, stochastically convex and has a limiting probability measure.

3.2. Dynamic Programming Problem and Optimal Investment Strategy

Construct the t-fold self-product measurable space from (Z,BZ) and denote it by (Zt,BZt),

that is, (Zt,BZt) = (Z×· · ·×Z,BZ ⊗· · ·⊗BZ), where the products are t-fold. A generic element
5An argument similar to that of Stokey and Lucas (1989, p.376, Theorem 12.10) may be applied to prove this.
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of (Zt,BZt), which is denoted by (z1, . . . , zt) or 1zt, is a history of states’ realized up to period t.

An investment strategy is any R+-valued, 〈BZt〉-adapted stochastic process and denoted by 0x or

〈xt〉∞t=0. Here, the 〈BZt〉-adaptedness requires that x0 ∈ R+ and (∀t ≥ 1) xt : Zt → R+ should be

BZt-measurable. Similarly, a money-holding strategy , denoted 1m or 〈mt〉∞t=1, is any R+-valued,

〈BZt−1〉-adapted stochastic process. That is, m1 ∈ R+ and (∀t ≥ 2) mt is BZt−1-measurable.

Given m0 ≥ 0, an investment strategy 0x is feasible from m0 if there exists a money-holding

strategy 1m such that the budget constraint :

(∀t ≥ 0) xt + mt+1 ≤ y + mt , (14)

and the liquidity constraint in investment (or, the cash-in-advance constraint in investment):

(∀t ≥ 0) xt ≤ mt (15)

are both met.

Let β = 1/(1 + r), where r is the net rate of interest. The fund-manager maximizes the

expected present value of all the future net returns on investment, which is given by

Iz0(0x) ≡ lim
T→+∞

x0z0 + β

∫
Z
· · ·

β

∫
Z

(
xT−1zT−1 + β

∫
Z

xT zT P0(dzT |zT−1)
)

P0(dzT−1|zT−2) · · ·P0(dz1|z0) , (16)

when the initial state is z0 and the investment strategy 0x is chosen.6 Since each component

of the sequence is well-defined and the sequence is non-decreasing, the limit exists (allowing

+∞). Note that the monotone convergence theorem shows that this objective function satisfies

Koopmans’ equation:

(∀z0)(∀0x) Iz0(0x) = x0z0 + β

∫
Z

Iz1(1x)P0(dz1|z0) ,

6Let (Z∞,BZ∞) be the infinite-dimensional self-product measurable space constructed from (Z,BZ) and let its
generic element be denoted by 1� = (z1, z2, . . . ). If we construct the probability measure P∞

0 (·|z0) on (Z∞,BZ∞ )
from P0 and z0 ∈ Z (for such a construction, see Stokey and Lucas, 1989), the objective (16) turns out to be
equal to �

Z∞

∞�
t=0

βtxtzt P∞
0 (d 1�|z0) ,

which may be simply denoted by E
��∞

t=0 βtxtzt

�� z0

�
(see (2)).
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where 1x is a continuation of 0x after the realization of z1.

In order to describe the optimal investment strategy, we need some definitions. A func-

tion v∗ : R+ × Z → R is the value function for the fund-manager’s problem if it satisfies

(∀m, z) v∗(m, z) = max { Iz(0x) | 0x is feasible from m } .

An investment strategy 0x is optimal from (m, z) ∈ R+ ×Z if it is feasible from m and satisfies

Iz(0x) = v∗(m, z). Define the feasibility correspondence Γ : R+ →→ R
2
+ by

(∀m) Γ(m) =
{

(x,m′) ∈ R
2
+

∣∣ x + m′ ≤ y + m and x ≤ m
}

.

When v∗ exists, we define the policy correspondence g : R+ × Z → R
2
+ by

(∀m, z) g(m, z) = arg max
{

xz + β

∫
Z

v∗(m′, z′)P0(dz′|z)
∣∣∣∣ (x,m′) ∈ Γ(m)

}
. (17)

For the policy correspondence to be well-defined, v∗ must be such that (∀m′) v∗(m′, ·) is BZ-

measurable and the right-hand side of (17) is nonempty, which turns out to be the case for

the current model (see Theorem 1). An investment strategy 0x is recursively optimal from

(m, z) ∈ R+ × Z if there exists a money-holding strategy 1m such that7

(x0,m1) ∈ g(m, z) and (∀t ≥ 1) (xt,mt+1) ∈ g(mt, zt) .

Now, let us define the “trigger” level of z. (The reason this is called a trigger shall be

apparent later in Theorem 1.) Suppose that R : Z → R is a BZ-measurable function and define

the operator T which maps such a function R to another BZ-measurable function TR by

(∀R)(∀z) TR(z) = β

∫
Z

max
{
z′, R(z′)

}
P0(dz′|z) . (18)

Lemma 1 (Section 5) proves that there exists a solution R to the functional equation defined by

R = TR (that is, a fixed point of T ) which satisfies (∀z) 0 ≤ R(z) ≤ z̄. Lemma 1 also shows

that such a function R is unique and we denote it by R∗.

Given t ≥ 1, z ∈ Z and a BZ -measurable function h : Z → R, we denote by Et
0[h|z] the

t-fold iterated expectation of h with respect to P0:

Et
0[h|z] =

∫
Z
· · ·

∫
Z

∫
Z

h(zt)P0(dzt|zt−1)P0(dzt−1|zt−2) · · ·P0(dz1|z) .

7Note that among the requirements of recursive optimality is the existence of a measurable selection of g.
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Also, we define E0
0 by (∀h, z) E0

0 [h|z] = h(z) and we often write E1
0 as E0. We then define a

function A : Z → R+ by

(∀z) A(z) = y

+∞∑
s=0

βsEs
0[R

∗|z] . (19)

Note that A is well-defined and finite-valued since R∗ is a BZ-measurable bounded function

and β ∈ (0, 1). Then, the following theorem characterizes the value function and the policy

correspondence for the fund-manager’s problem.

Theorem 1. The value function v∗ exists and is given by

(∀m, z) v∗(m, z) =

{
R∗(z)m + A(z) if z ≤ R∗(z)

zm + A(z) if z > R∗(z)
(20)

and the policy correspondence g exists and is given by

(∀m, z) g(m, z) =




{ (0,m + y) } if z < R∗(z)

{ (x,m′) ∈ Γ(m) |x + m′ = y + m } if z = R∗(z)

{ (m, y) } if z > R∗(z) .

(21)

Furthermore, recursive optimality implies optimality.

We now construct an investment strategy 0x
∗ (and its associated money-holding strategy

1m) which is recursively optimal from (m, z) as follows:

(∀t ≥ 0) (x∗
t ,mt+1) =

{
(0,mt + y) if zt ≤ R∗(zt)

(mt, y) if zt > R∗(zt)
(22)

where m0 ≡ m and z0 ≡ z. The stochastic process 0x
∗ thus defined is 〈BZt〉-adapted since

R∗ is BZ -measurable. Therefore, it is certainly an investment strategy and recursively optimal

from (m, z) by (21) and the definition of recursive optimality. By the last statement of Theorem

1, we know that 0x
∗ is an optimal investment strategy from (m, z). We define a function

g∗ : R+ × Z → R+ by (∀mt, zt) x∗
t = g∗(mt, zt), where 0x

∗ = 〈x∗
t 〉∞t=0 is constructed by (22).

The optimal investment strategy has a simple form described by (22). It is now clear

why R∗ is called a trigger. When the realized value of z is greater than R∗(z), the fund-manager

invests all cash available into current investment. On the contrary, if the value of z is no greater

than R∗(z), he does not invest and carries over the whole cash to the next period.
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The existence of cash reserve provides the fund-manager with an option not to invest in

the current period but to wait until next period. This shows that the fund-manager has a call

option when he has cash in hand. Here, cash is an “enabler” of this call option, or flexibility in

terms of Jones and Ostroy (1984). Cash is endowed with this function by the liquidity services

it provides, and ultimately by transaction costs implicit in the irreversibility of investment. This

observation will be further illustrated in the two special cases and in the case where the liquidity

constraint is absent.

3.2.1. Stochastically Increasing and Stochastically Convex Kernels

In general, the trigger level R∗ is a function, and hence, the shape of the “continuation

region,” { z ∈ Z | z ≤ R∗(z) }, depends on the shape of R∗. Depending on R∗, the shape of the

continuation region may be complicated. It may not be even a connected set. However, when

the Markov process under consideration meets some requirements, the continuation region is

largely simplified.

Specifically, assume that the kernel P0 is stochastically increasing and stochastically

convex (Section 3.1). In such a case, the optimal investment strategy, as well as the continuation

region, can be characterized in a simple manner. The optimal investment strategy 0x
∗ has a

reservation property if there exists a constant z∗ ≥ 0 such that

(∀t ≥ 0) (x∗
t ,mt+1) =

{
(0,mt + y) if zt ≤ z∗

(mt, y) if zt > z∗ .

Here, the constant z∗, which we call a reservation value, serves as a trigger for the investment:

if the value of zt is greater than z∗, the whole available cash is put into the current investment.

Theorem 2. Suppose that the kernel P0 is stochastically increasing and stochastically convex.

Then, the optimal investment strategy has a reservation property. Furthermore, if βE0[z′|z] ≥ z,

then there exists a unique z∗ ∈ Z such that z∗ = R∗(z∗) and the reservation level equals z∗.

The theorem shows that when the stochastic kernel satisfies the given conditions, the

reservation value z∗ exists in [0, z̄]. If z∗ < z, then the fund-manager always invests and the
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continuation region is given by the empty set. If an additional assumption of βE0[z′|z] ≥ z is

satisfied, such a case is ruled out and it holds that z∗ ≥ z, and hence, the continuation region is

given by [z, z∗].

3.2.2. I.i.d. Kernels

If the stochastic kernel is i.i.d., it is clearly stochastically increasing and stochastically

convex. Therefore, Theorem 2 shows that the trigger level R∗ is constant and that it equals the

reservation value z∗. In such an i.i.d. case, we can further characterize the constant trigger level

R∗ (or equivalently, the reservation value z∗) as a unique solution to some simple equation.

To be more precise, suppose that zt is i.i.d. according to P0 and that F0 is its associated

distribution function. The expectation of zt with respect to P0 (or F0) is denoted by E0[z]. In

this i.i.d. case, it turns out from (18) that the trigger level R∗ is a constant which satisfies both

0 ≤ R ≤ z̄ and

R = β

∫
Z

max
{
z′, R

}
P0(dz′) . (23)

By Lemma 1 (Section 5), such a constant exists and is unique.

There are two possible cases. First, assume that βE0[z] < z. Then, it is easy to see that

R = βE0[z] solves (23). Therefore, by Lemma 1 (Section 5) and the fact that 0 ≤ βE0[z] ≤ z̄,

R∗ = βE0[z]. In this case, it always holds that (∀t) zt > R∗, and hence, (22) implies that the

fund-manager always invests all the money available to him regardless of the realization of zt.

Note that this case happens when the fund-manager discounts the future a lot (that is, when

the interest rate is quite high) and/or when the distribution of zt is largely skewed toward its

lower tail. Clearly, waiting is not a good strategy in such cases.

Second, assume that βE0[z] ≥ z. Then, any solution R to (23) satisfies that z ≤ R < z̄.8

Therefore, (23) is further simplified to

R = β

∫
Z

max
{
z′, R

}
P0(dz′)

8This is shown as follows. First, suppose that R < z. Then, (23) and the assumption that βE0[z] ≥ z imply
that R = βE0[z] ≥ z, which is a contradiction. Therefore, it holds that z ≤ R. Second, suppose that R ≥ z̄. Then,
(23) implies that R = βR, which in turn implies that R = 0 since β < 1. This contradicts that R ≥ z̄ > z ≥ 0,
where the strict inequality is assumed throughout the paper. Therefore, it holds that R < z̄.
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= β

∫
[z,R]

max
{
z′, R

}
P0(dz′) + β

∫
(R,z̄]

max
{
z′, R

}
P0(dz′)

= β

∫
[z,R]

R P0(dz′) + β

∫
(R,z̄]

z′ P0(dz′)

= βRF0(R) + β

∫
(R,z̄]

z′ dF0(z′)

= βRF0(R) + β

(
z̄F0(z̄) − RF0(R) −

∫ z̄

R
F0(z′) dz′

)

= βz̄ − β

∫ z̄

R
F0(z′) dz′

= βR + β

∫ z̄

R
(1 − F0(z′)) dz′ , (24)

where the fifth equality holds by the integration-by-parts formula (see, for example, Folland,

1984, p.100, Theorem 3.30). Finally, R∗ is characterized as a unique solution R to the following

equation:

R =
β

1 − β

∫ z̄

R
(1 − F0(z′)) dz′ . (25)

In a summary, we have the following theorem.

Theorem 3. Suppose that the kernel P0 is i.i.d. and assume that βE0[z] ≥ z holds. Then, the

value function v∗ for the fund-manager is given by

(∀m, z) v∗(m, z) =




R∗m +
R∗y
1 − β

if z ≤ R∗

zm +
R∗y
1 − β

if z > R∗

and an optimal investment strategy 0x
∗ is given by

(∀t ≥ 0) (x∗
t ,mt+1) =

{
(0,mt + y) if zt ≤ R∗

(mt, y) if zt > R∗ ,

where a constant R∗ is a unique solution to the equation (25).

Theorem 3 derives (3) and (4) in Subsection 2.1 and it substantiates our discussion there.

Note that the condition (7) in the uniform-distribution example given in the same subsection

implies that βE0[z] ≥ z holds as assumed in Theorem 3.

3.2.3. Absence of Liquidity Constraint in Investment
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Consider the fund-manager’s investment problem which is the same as the one in Subsec-

tion 3.2.2 except that the liquidity constraint in investment (or, the cash-in-advance constraint

in investment), (15), is absent. That is, suppose that the fund-manager may invest any amount

of money as long as only the budget constraint (14) is satisfied. In such a case, an optimal

investment strategy is characterized by the following theorem.

Theorem 4. Suppose that the liquidity constraint in investment, (15), is absent. Also assume

that the kernel P0 is i.i.d. and that βE0[z] ≥ z holds. Then, the value function v∗ for the

fund-manager is given by

(∀m, z) v∗(m, z) =




R∗m + R∗y +
R∗y
1 − β

if z ≤ R∗

zm + zy +
R∗y
1 − β

if z > R∗

and an optimal investment strategy 0x
∗ is given by

(∀t ≥ 0) (x∗
t ,mt+1) =

{
(0,mt + y) if zt ≤ R∗

(mt + y, 0) if zt > R∗ ,

where a constant R∗ is a unique solution to the equation (25).

Theorem 4 shows that the liquidity constraint in investment, (15), is not essential to

derive the reservation property of the optimal investment strategy. Furthermore, the reservation

values R∗ in Theorems 3 and 4 are identical. This shows that while the presence of the liquidity

constraint affects the value function and the optimal investment level, it does not affect the

reservation value at all. These facts indicate that the irreversibility of investment is the key

feature that determines the basic structure of the model. The liquidity constraint in investment

endows money with the role of an enabler of an option to postpone such irreversible investment.

3.3. Long-run Time-average Cash-holdings

We now turn to the issue of liquidity, or cash, demand. Throughout this subsection, we

assume that P0 has a limiting probability measure π0. By this, zt may be regarded as being

i.i.d. according to π0 in the long-run.
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We define the long-run time-average cash-holdings by the expectation of the optimal

cash-holdings with respect to its limiting probability measure. In view of (13), we consider the

limiting probability measure µ of the optimal cash-holdings to be characterized by

(∀B ∈ B�+) µ(B) =
∫

Z

∫
�+

χ{ g∗(m,z)∈B }(m, z) dµ(m)dπ0(z) ,

where χ is the indicator function.9 It turns out10 that such a µ exists, its support is given by

M ≡ { iy | i = 1, 2, . . . } and it can be explicitly calculated as

µ({y}) = 1 − π∗
0 and (∀i ≥ 2) µ({iy}) = (1 − π∗

0)(π
∗
0)

i−1

as far as π∗
0 ∈ (0, 1), where we abbreviate π0 ({ z | z ≤ R∗(z) }) to π∗

0.

Alternatively, we can derive µ more constructively as the limiting probability measure

of the stochastic kernel which governs the transition of the optimal cash-holdings as follows.

First, we derive the stochastic kernel Q over R+×Z when the fund-manager follows the optimal

strategy (22) by

(∀B ∈ B�+)(∀E ∈ BZ)(∀m, z) Q(B × E |m, z) = χ{ g∗(m,z)∈B }(m, z)P0(E|z) .

It turns out that Q thus defined only over the measurable rectangles can be extended to the

unique stochastic kernel Q : (B�+ ⊗ BZ) × (R+ × Z) → [0, 1].11 Second, we define the long-run

stochastic kernel for the optimal money-holdings, QM : B�+ × R+ → [0, 1], to be the “marginal

probability” of Q with respect to π0, that is,

(∀B)(∀m) QM (B|m) =
∫

Z
Q(B × Z |m, z) dπ0(z)

=
∫

Z
χ{ g∗(m,z)∈B }(m, z) dπ0(z) ,

an equivalent and somewhat simpler expression of which is

(∀m 
= 0) QM ({m′}|m) =

{
π∗

0 if m′ = m + y

1 − π∗
0 if m′ = y .

9That is, χA : �+ × Z → {0, 1} is a function defined by

(∀m, z) χA(m, z) =

�
1 if (m, z) ∈ A

0 if (m, z) /∈ A .

10See Taub (1988).
11See, for example, Stokey and Lucas (1989, p.284), Theorem 9.13.
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Third, when π∗
0 ∈ (0, 1), the limiting probability measure of QM (in the sense defined in Sub-

section 3.1) uniquely exists and equals µ.12

Suppose that π∗
0 ∈ (0, 1). Then, the long-run time-average cash-holdings, m∗

0, is given

by

m∗
0 =

∑
m=y,2y,...

m µ({m}) =
y

1 − π∗
0

=
y

1 − π0 ({ z | z ≤ R∗(z) }) . (26)

If the probability that the investment is the optimal strategy measured by the limiting probability

measure π0 is higher, then the long-run average cash-holdings is smaller, as we would expect.

When zt is i.i.d., π0 always exists and equals P0 and R∗ is a constant which is charac-

terized by (25). Therefore, the long-run average cash-holdings, m∗
0, is given by

m∗
0 =

y

1 − P0 ({ z | z ≤ R∗ }) , (27)

which justifies (5) in Subsection 2.1.

4. An Increase in Risk

4.1. Effects on Trigger Level

This section investigates an increase in risk and its effects on the model’s outcomes.

We first consider the effect on the trigger level caused by an increase in risk in the sense of a

mean-preserving spread (Rothschild and Stiglitz, 1970). To be precise, let P0 and P1 be two

probability measures. We denote by E0 and E1 the expectations with respect to P0 and P1,

respectively and we denote by F0 and F1 the distribution functions associated with P0 and P1,

respectively. By definition, P1 is obtained from P0 by a mean-preserving spread if it holds that

E1[z] = E0[z] and (∀x ∈ R+)
∫ x

−∞
F1(z) dz ≥

∫ x

−∞
F0(z) dz . (28)

We say that a stochastic kernel P1 is obtained from P0 by a mean-preserving spread if (∀z ∈
Z) P1(·|z) is obtained from P0(·|z) by a mean-preserving spread.

12See, for example, Hoel, Port and Stone (1987, p.73), Theorem 7. Also note that µ satisfies

(∀m′ ∈ M) µ({m′}) =
�

m∈M

QM ({m′}|m)µ({m}) .
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The following theorem states that the increase in risk in the sense of a mean-preserving

spread raises (or at least unchanges) the trigger level, R∗.

Theorem 5. Let P0 be a stochastic kernel which is stochastically increasing and stochastically

convex and let P1 be a stochastic kernel which is obtained from P0 by the mean-preserving spread.

Then, (∀z ∈ Z) R∗
1(z) ≥ R∗

0(z), where R∗
i is the trigger level corresponding to Pi for each i = 0, 1.

Note that both P0 and P1 are assumed to be weakly continuous, which is a maintained

assumption throughout the paper. Also note that while the assumption that P0 is stochatically

increasing and stochastically convex is essential (see the proof of Theorem 5 in Section 5), P1

need to be neither stochastically increasing nor stochastically convex.

This theorem shows that the mean-preserving spread in the distribution of return shocks

increases the “trigger return level” that induces the fund-manager to invest. Theorem 2 implies

that under the assumption of Theorem 5, there exists the reservation value z∗0 . Suppose that

zt ≤ z∗0 . Then, it follows that zt ≤ R∗
1(zt) because zt ≤ R∗

0(zt) ≤ R∗
1(zt) where the first inequality

holds since zt ≤ z∗0 if and only if zt ≤ R∗
0(zt) by Theorem 2 and the second inequality holds by

Theorem 5. This shows that if making investment is not an optimal strategy before the risk

increases, it cannot be so after the risk has increased. Therefore, an increase in risk tends to

increase cash balances to be carried over to the next period in order to exploit potentially more

favorable future opportunities. Money cash balances work as a provider of this option, which is

more favorable under more risk.

Let us assume that zt is i.i.d. according to P0 and let P1 be an i.i.d. stochastic kernel

which is obtained from P0 by a mean-preserving spread. Since any i.i.d. kernel is stochasti-

cally increasing and stochastically convex, Theorem 5 implies that R∗
1 ≥ R∗

0, where R∗
i is the

reservation levels corresponding to Pi for each i = 1, 2.

Alternatively, we may verify this fact directly without invoking Theorem 5 as follows.

We need to consider two cases separately. First, assume that βE0[z] < z. In this case, we have

R∗
0 = βE0[z] (see Subsection 3.2.2). By the definition of the mean-preserving spread, it holds

that E0[z] = E1[z] and hence that R∗
1 = R∗

0. Therefore, an increase in risk does not alter the

trigger level in this case. Second, assume that βE0[z] ≥ z. In this case, for each i = 0, 1, R∗
i is
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characterized as a unique fixed point of a function Hi : Z → R, which is defined by13

(∀x) Hi(x) = βEi[z] + β

∫ x

z
Fi(z) dz . (29)

It is easy to see that for each i = 0, 1, Hi is continuous and nondecreasing. Furthermore, the slope

of Hi is less than unity everywhere.14 Therefore, Hi crosses the 45-degree line once from above

because Hi(z) = βEi[z] ≥ z by the assumption. The unique intersection of Hi and the 45-degree

line, which must be no less than z, is the trigger level R∗
i . Finally, note that (∀x) H1(x) ≥ H0(x)

by (28), (29) and the fact that P1 is obtained from P0 by the mean-preserving spread. We thus

conclude that R∗
1 ≥ R∗

0.

The argument of the previous paragraph verifies that the comparative-static analysis

made in Subsection 2.2 for the uniform-distribution example remains to be true also for any

specification of the distribution. Furthermore, Theorem 5 extends this to a Markovian setting

under the stated assumption on the original distribution.

4.2. Effects on Average Cash-holdings

13This is because

R∗
i = βR∗

i Fi(R
∗
i ) + β

�
(R∗

i ,z̄]

z dFi(z)

= βR∗
i Fi(R

∗
i ) + βEi[z] − β

�
[z,R∗

i ]

z dFi(z)

= βR∗
i Fi(R

∗
i ) + βEi[z] − β

�
R∗

i Fi(R
∗
i ) − z lim

z→z−
Fi(z) −

� R∗
i

z

Fi(z) dz

�

= βEi[z] + β

� R∗
i

z

Fi(z) dz ,

where the first equality holds by the fourth equality in (24), the third equality holds by a version of the integration-
by-parts formula (Folland, 1984, p.103, 34(b)) and the fourth equality holds by the fact that limz→z− Fi(z) = 0.

14This is because for any x1 and x2 such that x2 ≥ x1,	
β

� x2

z

Fi(z) dz − β

� x1

z

Fi(z) dz


�
(x2 − x1)

= β

� x2

x1

Fi(z) dz

�
(x2 − x1)

= β

�
Fi(x2)x2 − Fi(x1)x1 −

�
(x1,x2]

z dFi(z)

��
(x2 − x1)

≤ β (Fi(x2)x2 − Fi(x1)x1 − (Fi(x2) − Fi(x1))x1)/ (x2 − x1)

= βFi(x2) < 1 ,

where we invoked the integration-by-parts formula (see (24)) to show the inequality.



22

We now turn to a discussion of the effect of an increase in risk on the average cash-

holdings. To do this, suppose that the stochastic kernel P0 has a limiting probability measure

so that the long-run time-average cash-holdings m∗
0 may be well-defined. Theorem 5 in the

previous subsection proved that a mean-preserving spread in the distribution increases the trigger

level under the appropriate assumption. Furthermore, the comparative-static analysis made in

Subsection 2.2 for the uniform-distribution example showed that it increases the average cash-

holdings as well as the trigger level. Nevertheless, the effect of a mean-preserving spread on the

average cash-holdings is not clear in general for the following reasons.

First, we do not know whether or not a stochastic kernel P1, which is obtained from

another stochastic kernel P0 by a mean-preserving spread, has a limiting probability measure

even if P0 is assumed to have one, say π0. If P1 does not have it, the average cash-holdings

under P1 is not well-defined. Second, even if a limiting probability measure of P1, say π1, exists,

we do not know whether or not π1 can be obtained from π0 by a mean-preserving spread. Third

and most importantly, even if π1 is obtained from π0 by a mean-preserving spread, it might be

the case that the probability that the return exceeds the trigger level increases while the trigger

level also increases. Then, the average cash-holdings would decrease, rather than increase, in

response to the mean-preserving spread (see (26) above).

The third point made in the previous paragraph is essential while the others are not. In

fact, if we assume that P0 and P1 are i.i.d. and that P1 is obtained from P0 by a mean-preserving

spread, then the first two points become vacuous because in such a case, it holds trivially that

π0 = P0, π1 = P1 and π1 is obtained from π0 by a mean-preserving spread, but third point still

remains.

To see this point more closely, let P0 and P1 be i.i.d. stochastic kernels such that P1

is obtained from P0 by a mean-preserving spread and let R0 and R1 be the reservation levels

corresponding to P0 and P1, respectively. Recall that Theorem 5 shows that R∗
1 ≥ R∗

0. In view

of (27), if it were the case that P1 ({ z | z ≤ R∗
1 }) ≥ P0 ({ z | z ≤ R∗

0 }), then we would conclude

that an increase in risk in the form of mean-preserving spread increases (or at least, unchanges)

the average cash-holdings. Unfortunately, it is not always the case as the following example

illustrates.
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Example 1. Let Z = [0, 3], let β > 2/3, let P0 be such that P0({1}) = P0({2}) = 1/2, and let

P1 be such that P1({0}) = 1/4 and P1({2}) = 3/4. It can be shown that R∗
0 = 2β/(2 − β) and

R∗
1 = 6β/(4−β).15 It holds that R∗

1 > R∗
0 as we expect. (This holds true regardless of the value of

β as far as β ∈ (0, 1).) However, R∗
0 ∈ (1, 2) and R∗

1 < 2 when β > 2/3, and hence, F0(R∗
0) = 1/2

and F1(R∗
1) = 1/4. We thus have P1 ({ z | z ≤ R∗

1 }) = 1/4 < 1/2 = P0 ({ z | z ≤ R∗
0 }).

As this example suggests, in order to determine the effect of an increase in risk on the

average cash-holdings, we need a stronger concept of being riskier than the mean-preserving

spread. We say that P0 and P1 satisfy a single-crossing property (Sargent, 1987, p.64) if there

exists ẑ ∈ Z such that F1(z) ≥ F0(z) when z < ẑ and F1(z) ≤ F0(z) when z ≥ ẑ. It can be

seen immediately that if E0[z] = E1[z] and P0 and P1 satisfy a single-crossing property, then P1

is obtained from P0 by a mean-preserving spread. Therefore, we may regard the single-crossing

property as a stronger concept of being riskier than the mean-preserving spread. The single-

crossing property, however, is not yet strong enough to guarantee that the average cash-holdings

increase since P0 and P1 in Example 1 have the same expectation and satisfy the single-crossing

property. To guarantee it, we need a further assumption on P0, which is provided in the following

proposition.

Proposition 2. Suppose that two i.i.d. stochastic kernels P0 and P1 have the same expectation

and satisfy the single-crossing property with ẑ. Assume further that

βE0[z] + β

∫ ẑ

z
F0(z) dz < ẑ . (30)

Then, we have m∗
1 ≥ m∗

0, where m∗
i is the average cash-holdings under Pi for each i = 1, 2.

In Example 1, P0 and P1 have the same expectation which equals 3/2 and they also

satisfy the single-crossing property with ẑ = 1. The left-hand side of (30) is (3/2)β, and

hence, (30) is violated when β > 2/3 as assumed in Example 1. Now suppose that β < 2/3

in Example 1. Then, (30) holds true and both R∗
0 and R∗

1 would be less than 1. Therefore,

F ∗
1 (R∗

1) = 1/4 > 0 = F ∗
0 (R∗

0) as the proposition predicts.
15Conjecture that R∗

0 ∈ (1, 2). Then, it follows from (25) that R∗
0 = 2β/(2 − β), which certainly satisfies the

conjecture when β > 2/3. Since we know that (25) has a unique solution, we conclude that R∗
0 = 2β/(2 − β). A

similar argument applies for R∗
1 .
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Note that the condition (30) is sufficient but not necessary. In the uniform-distribution

example given in Subsection 2.2, (30) is not always satisfied.16 Nevertheless, it always holds

there that m∗
1 ≥ m∗

0 at least for a small change in risk which satisfies a single-crossing property.

5. Lemmas and Proofs

Proof of Proposition 1. (a) Weak continuity. Scheffé’s theorem (Billingsley, 1986, p.218,

Theorem 16.11) shows that ‖P0(·|zn)− P0(·|z0) ‖ → 0 as n → +∞ since the density function of

P0(·|zn) exists and converges to that of P0(·|z0) except at 0 and 1/(2 − z0), where ‖ · ‖ is the

total variation norm, which implies the weak continuity of P0. (b) Stochastic increase. Note

that

(∀z, z′) 1 − F0(z′|z) = max
{
0, 1 − (2 − z)z′

}
. (31)

Since 1 − F0(z′|z) is nondecreasing in z for each z′, the stochastic increase follows from Topkis

(1998, p.161, Lemma 3.9.1(b)). (c) Stochastic convexity. From (31), we see that 1 − F0(z′|z)

is convex in z for each z′. Hence, the stochastic convexity follows from Topkis (1998, p.161,

Lemma 3.9.1(d)). (d) Existence of a limiting probability measure. Note that Assumption 12.1

of Stokey and Lucas (1989, p.381) is now satisfied (say, let a = 0, b = 1, c = 1/4, ε = 1/4 and

N = 1). Also, note that their “monotonicity” is the equivalent of weak increase here and their

“Feller property” is the equivalent of weak continuity here. Therefore, by their Theorem 12.12

(Stokey and Lucas, 1989, p.381), P0 has a limiting probability measure. �

Lemma 1. There exists a unique fixed point R∗ to the operator T defined by (18) which satisfies

(∀z) 0 ≤ R∗(z) ≤ z̄. Furthermore, R∗ is upper semi-continuous (u.s.c.) and given by R∗ =

limn→∞ T nz̄ = limn→∞ T n0.

Proof. First, define R+ by (∀z) R+(z) = z̄. Then, it follows that

(∀z) TR+(z) = β

∫
Z

max
{
z′, z̄

}
P0(dz′|z) ≤ β

∫
Z

z̄ P0(dz′|z) = βz̄ ≤ z̄ = R+(z) .

16In the uniform-distribution example in Subsection 2.2, ẑ = (a+b)/2 and the left-hand side of (30) is β((3/8)a+
(5/8)b), which is greater than ẑ when β is close to 1.
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Since T is monotonic in the sense that (∀R,R′) R ≥ R′ ⇒ TR ≥ TR′, 〈TnR+〉∞n=1, where T n

denotes the t-fold self-composition of T , is a nonincreasing sequence of functions. Hence, its

limit exists and BZ -measurable. We denote it by R∞. We now see that R∞ is a fixed point of

T because

(∀z) TR∞(z) = β

∫
Z

max
{
z′, R∞(z′)

}
P0(dz′|z)

= β

∫
Z

max
{

z′, lim
n→∞T nR+(z′)

}
P0(dz′|z)

= β

∫
Z

lim
n→∞max

{
z′, T nR+(z′)

}
P0(dz′|z)

= lim
n→∞β

∫
Z

max
{
z′, T nR+(z′)

}
P0(dz′|z)

= lim
n→∞T n+1R+(z)

= R∞(z) ,

where the fourth inequality holds by the monotone convergence theorem.

Second, define R− by (∀z) R−(z) = 0. Then, it follows that

(∀z) TR−(z) = β

∫
Z

max
{
z′, 0

}
P0(dz′|z) ≥ 0 = R−(z) .

Since (∀R,R′) R ≥ R′ ⇒ TR ≥ TR′, 〈TnR+〉∞n=1 is a nondecreasing sequence of functions.

Hence, its limit exists and BZ-measurable. We denote it by R∞. We now see that R∞ is a fixed

point of T because

(∀z) TR∞(z) = β

∫
Z

max
{
z′, R∞(z′)

}
P0(dz′|z)

= β

∫
Z

max
{

z′, lim
n→∞ T nR−(z′)

}
P0(dz′|z)

= β

∫
Z

lim
n→∞max

{
z′, T nR−(z′)

}
P0(dz′|z)

= lim
n→∞β

∫
Z

max
{
z′, T nR−(z′)

}
P0(dz′|z)

= lim
n→∞T n+1R−(z)

= R∞(z) ,

where the fourth inequality holds by the monotone convergence theorem.

This paragraph shows that R∞ = R∞. To this end, let z ∈ Z and let n ≥ 1. Then, we
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have

0 ≤ T nR+(z) − T nR−(z)

= β

∫
Z

(
T n−1R+(z1) − T n−1R−(z1)

)
P0(dz1|z)

= β2

∫
Z

∫
Z

(
T n−2R+(z2) − T n−2R−(z2)

)
P0(dz2|z1)P0(dz1|z)

= · · ·

= βn

∫
Z
· · ·

∫
Z

∫
Z

(
R+(zn) − R−(zn)

)
P0(dzn|zn−1)P0(dzn−1|zn−2) · · ·P0(dz1|z)

= βn

∫
Z
· · ·

∫
Z

∫
Z

z̄ P0(dzn|zn−1)P0(dzn−1|zn−2) · · ·P0(dz1|z)

= βnz̄ .

Since the whole inequality holds for any n, taking the limit proves the claim.

Let R be any fixed point of T such that R− = 0 ≤ R ≤ z̄ = R+. Then, it holds that

TR− ≤ TR = R ≤ TR+ by the monotonicity of T and the assumption that R is a fixed point

of T . By iterating this procedure, we have (∀n) T nR− ≤ R ≤ T nR+. Therefore, it follows that

R∞ = limn→∞ T nR− ≤ R ≤ limn→∞ T nR+ = R∞. This and the fact proven in the previous

paragraph show that R = R∞ = R∞, and hence, R∗ ≡ R∞ is the unique fixed point of T

satisfying 0 ≤ R∗ ≤ z̄.

Finally, we show that R∗ is u.s.c. The weak increase of P0 and Gihmann and Skorohod

(1979, Lemma 1.5) imply that (∀n) T nR+ is u.s.c. in z. Therefore, R∗ is u.s.c. since it is the

infimum of u.s.c. functions by R∗ = limn→∞ T nR+ = infn≥1〈TnR+〉. �

Lemma 2. The function A defined by (19) is u.s.c. and satisfies

(∀z) A(z) = R∗(z)y + βE0[A|z] = R∗(z)y + β

∫
Z

A(z′)P0(dz′|z) . (32)

Proof. (U.s.c.) Since R∗ is u.s.c. (Lemma 1) and bounded from above (by z̄), (∀s ≥ 0) Es
0[R

∗|z]

is u.s.c. in z by Gihmann and Skorohod (1979, Lemma 1.5). Let z0 ∈ Z and let ε > 0. Since

Es
0[R

∗|z] is uniformly bounded from above in s and z and since β < 1, there exits S ≥ 1 such

that y
∑+∞

s=S+1 βsEs
0 [R

∗|z] < ε/2. Furthermore, since
∑S

s=0 βsEs
0[R

∗|z] is u.s.c. in z (because

it is a finite sum of u.s.c. functions), there exists a neighborhood N of z0 such that (∀z ∈
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N) y
∑S

s=0 βsEs
0[R

∗|z] < A(z0) + ε/2. Finally, we have (∀z ∈ N) A(z) < A(z0) + ε, which

completes the proof.

(Equation (32)) The equation holds because

A(z) = y

+∞∑
s=0

βsEs
0[R

∗|z]

= R∗(z)y + βy

+∞∑
s=0

βsEs+1
0 [R∗|z]

= R∗(z)y + βy

+∞∑
s=0

βsE0 [Es
0[R

∗|z1]|z]

= R∗(z)y + βE0

[
y

+∞∑
s=0

βsEs
0[R

∗|z1]

∣∣∣∣∣ z
]

= R∗(z)y + βE0[A|z] ,

where the third equality holds by the law of iterated expectations and the fourth equality holds

by the monotone convergence theorem. �

Proof of Theorem 1. First, we show that the function v̂ : R+ × Z → R defined by

(∀m, z) v̂(m, z) = max
{
z,R∗(z)

}
m + A(z)

is the solution to Bellman’s equation:

(∀m, z) v(m, z) = max
{

xz + β

∫
Z

v(m′, z′)P0(dz′|z)
∣∣∣∣ (x,m′) ∈ Γ(m)

}
. (33)

We have

max
{

xz + β

∫
Z

v̂(m′, z′)P0(dz′|z)
∣∣∣∣ (x,m′) ∈ Γ(m)

}

= max
{

xz + m′β
∫

Z
max

{
z′, R∗(z′)

}
P0(dz′|z) + β

∫
Z

A(z′)P0(dz′|z)
∣∣∣∣ (x,m′) ∈ Γ(m)

}

= max
{

xz + m′TR∗(z) + βE0[A|z]
∣∣ (x,m′) ∈ Γ(m)

}
= max

{
xz + m′R∗(z) + βE0[A|z]

∣∣ (x,m′) ∈ Γ(m)
}

=

{
R∗(z)(m + y) + βE0[A|z] if z ≤ R∗(z)

mz + R∗(z)y + βE0[A|z] if z > R∗(z)
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=

{
R∗(z)m + R∗(z)y + βE0[A|z] if z ≤ R∗(z)

zm + R∗(z)y + βE0[A|z] if z > R∗(z)

=

{
R∗(z)m + A(z) if z ≤ R∗(z)

zm + A(z) if z > R∗(z)

= v̂(m, z) ,

where the third equality holds by the fact that R∗ is the fixed point of T and sixth equality

holds by Equation (32).

Second, we show that v̂ is admissible (the Appendix), that is, v̂ is u.s.c. and satisfies

(∀m, z) 0 ≤ v̂(m, z) ≤ mz̄

1 − β
+

βyz̄

(1 − β)2
.

That v̂ is u.s.c. follows since R∗ is u.s.c. (by Lemma 1) and A is u.s.c. (by Lemma 2). To show

the inequalities, note that R∗ ≤ TR+ ≤ βz̄ by (18). Therefore,

0 ≤ v̂(m, z) = max
{
z,R∗(z)

}
m + y

+∞∑
s=0

βsEs
0[R

∗|z]

≤ z̄m + y

+∞∑
s=0

βsβz̄

= z̄m + y
βz̄

1 − β

≤ mz̄

1 − β
+

βyz̄

(1 − β)2
.

Finally, since v̂ is an admissible solution to Bellman’s equation as shown in the preceding

paragraphs, we conclude that v∗ defined by (20), which equals v̂, is the value function by Theorem

A1. Furthermore, the first paragraph of this proof shows that g defined by (21) is the policy

correspondence. Finally, that recursive optimality implies optimality is among the conclusions

of Theorem A1. �

Lemma 3. Suppose that the kernel P0 is stochastically increasing and stochastically convex.

Then, R∗ is nondecreasing and convex in z.

Proof. First, we show that for each n ≥ 1, T nR+ is nondecreasing and convex in z. We prove

this by induction. The statement holds true when n = 0 since T 0R+ = R+ = v̄ is constant

and hence both nondecreasing and convex in z. Suppose that T n−1R+ is nondecreasing and
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convex in z. Then, max{z′, T n−1R+(z′)} is also nondecreasing and convex in z′. Therefore,

T nR+ is nondecreasing and convex by Topkis (1998, p.161, Corollary 3.9.1(a)(c)) since P0 is

stochastically increasing and stochastically convex.

Since R∗ is a pointwise limit of a sequence of nondecreasaing and convex functions by

Lemma 1 and the fact proven in the previous paragraph, R∗ is nondecreasing and convex. �

Proof of Theorem 2. By Lemma 3, R∗ is convex and hence continuous on (z, z̄). Since

R∗ is u.s.c. by Lemma 1 and nondecreasing by Lemma 3, it is continuous on [z, z̄) with only

possible discontinuity occurring at z = z̄. Furthermore, note that R∗(z̄) ≤ TR+ = βz̄ < z̄.

Therefore, Lemma 3 implies that the graph of R∗ crosses the 45-degree line from above if and

only if R∗(z) ≥ z. First, suppose that R∗(z) < z. Then, any z∗ such that 0 ≤ z∗ < z serves as

a reservation level and the optimal strategy clearly has a reservation property. Second, suppose

that R∗(z) ≥ z. Then, there exists a unique z∗ ∈ Z such that z∗ = R∗(z∗) and the optimal

strategy has a reservation property since { z ∈ Z | z ≤ R∗(z) } = { z ∈ Z | z ≤ z∗ }.
We complete the proof by showing that when βE0[z′|z] ≥ z, it holds that R∗(z) ≥ z. To

see this, suppose that it does not. Then, since R∗ solves R∗ = TR∗, it follows from (18) that

R∗(z) = βE0[z′|z] ≥ z > R∗(z), which is a contradiction. �

Proof of Theorem 3. This follows immediately from Theorem 1 since A(z) = R∗y/(1 − β)

by (19). �

Proof of Theorem 4. Define a correspondence Γ̂ : R+ →→ R
2
+ by

(∀m) Γ̂(m) =
{

(x,m′) ∈ R
2
+

∣∣ x + m′ ≤ y + m
}

and let R∗ be a unique solution to (25). First, we show that the function v̂ : R+ × Z → R

defined by

(∀m, z) v̂(m, z) = max
{
z,R∗}(m + y) +

R∗y
1 − β
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is the solution to Bellman’s equation:

(∀m, z) v(m, z) = max
{

xz + β

∫
Z

v(m′, z′)P0(dz′)
∣∣∣∣ (x,m′) ∈ Γ̂(m)

}
.

We have

max
{

xz + β

∫
Z

v̂(m′, z′)P0(dz′)
∣∣∣∣ (x,m′) ∈ Γ̂(m)

}

= max
{

xz + (m′ + y)β
∫

Z
max

{
z′, R∗}P0(dz′) +

βR∗y
1 − β

∣∣∣∣ (x,m′) ∈ Γ̂(m)
}

= max
{

xz + (m′ + y)R∗ +
βR∗y
1 − β

∣∣∣∣ (x,m′) ∈ Γ̂(m)
}

=




R∗(y + m + y) +
βR∗y
1 − β

if z ≤ R∗

z(y + m) + R∗y +
βR∗y
1 − β

if z > R∗

= max
{
z,R∗}(y + m) + R∗y +

βR∗y
1 − β

= max
{
z,R∗}(m + y) +

R∗y
1 − β

= v̂(m, z) ,

where the second equality holds by the fact that R∗ is a solution to (23).

Second, we observe that all the results (in particular, Theorem A1) in the Appendix still

holds if we replace Γ there by Γ̂ here and v+ there by v̂+, which is defined by

(∀m) v̂+(m) =
mz̄

1 − β
+

yz̄

(1 − β)2
.

To do this, we only need to verify that Bv̂+ ≤ v̂+ (Lemma A2), which holds true because

(∀m, z) Bv̂+(m, z) = max
{

xz + β

∫
Z

v̂+(m′, z′)P0(dz′)
∣∣∣∣ (x,m′) ∈ Γ̂(m)

}

= max
{

xz + βv̂+(m′)
∣∣∣ (x,m′) ∈ Γ̂(m)

}

= max
{

xz +
βm′z̄
1 − β

+
βyz̄

(1 − β)2

∣∣∣∣ (x,m′) ∈ Γ̂(m)
}

≤ (m + y)z +
β(m + y)z̄

1 − β
+

βyz̄

(1 − β)2

≤ (m + y)z̄ +
β(m + y)z̄

1 − β
+

βyz̄

(1 − β)2

=
mz̄

1 − β
+

yz̄

(1 − β)2
= v̂+(m, z) .
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Third, we show that v̂ is admissible (the Appendix), that is, v̂ is u.s.c. and satisfies

v̂ ≤ v̂+. The former is immediate and the latter holds because

(∀m, z) v̂(m, z) = max
{
z,R∗(z)

}
(m + y) +

R∗y
1 − β

≤ z̄(m + y) +
βz̄y

1 − β

= z̄m +
z̄y

1 − β

≤ mz̄

1 − β
+

yz̄

(1 − β)2
= v̂+(m, z) ,

where the first inequality holds since R∗ ≤ βz̄ by (23).

Finally, note that v̂ is an admissible solution to Bellman’s equation as proven in the first

and third paragraphs of this proof. Therefore, Theorem A1 (the Appendix) completes the proof.

�

Proof of Theorem 5. For each i = 0, 1, let Ti be the operator defined from Pi by (18).

We show that for each n ≥ 1, T n
1 R+ ≥ T n

0 R+, which completes the proof since (∀i) R∗
i =

limn→∞ T n
i R+. We prove the claim by induction. The statement clearly holds true when n = 0

since T 0
1 R+ = R+ = T 0

0 R+. Suppose that T n−1
1 R+ ≥ T n−1

0 R+. Then,

T n
1 R+ = T1 ◦ T n−1

1 R+

≥ T1 ◦ T n−1
0 R+

= β

∫
Z

max
{
z′, T n−1

0 R+(z′)
}

P1(dz′|z)

≥ β

∫
Z

max
{
z′, T n−1

0 R+(z′)
}

P0(dz′|z)

= T0 ◦ T n−1
0 R+

= T n
0 R+ ,

where the first inequality holds by the induction hypothesis. To see that the second inequality

holds, note that max
{
z′, T n−1

0 R+(z′)
}

is convex in z′ by Lemma 3 and the fact that the maxi-

mum of two convex functions is convex. Therefore, the inequality holds true by Rothschild and

Stiglitz (1970) since P1(·|z) is obtained from P0(·|z) by the mean-preserving spread for each z.

�
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Proof of Proposition 2. Note that the left-hand side of (30) can be written as H0(ẑ), where a

function H0 : Z → R is defined by (29). We showed there that H0 crosses the 45-degree line once

from above at z = R∗
0. Therefore, (30) implies that R∗

0 < ẑ, and hence, that F1(R∗
0) ≥ F0(R∗

0) by

the single-crossing property. Since R∗
1 ≥ R∗

0 by Theorem 5, we have F1(R∗
1) ≥ F0(R∗

0). Finally,

(27) completes the proof. �

APPENDIX

This appendix provides a method of dynamic programming which can be applied to the

model in the current paper. The proofs given in Section 5 rely on the results in this appendix.

We start with some definitions. Define the function v+ : R+ → R+ by

(∀m) v+(m) = lim
T→+∞

mz̄ + · · · + βT−1 ((T − 1)y + m) z̄ + βT (Ty + m)z̄

=
∞∑

t=0

βtmz̄ +
∞∑
t=0

tβtyz̄

=
mz̄

1 − β
+

βyz̄

(1 − β)2
≡ B+m + A+ .

The function v+ may be called the overly-optimistic value function since for any investment

strategy 0x which is feasible from m, it holds that (∀z) Iz(0x) ≤ v+(m). A function v : R+×Z →
R is admissible if it is upper semi-continuous (u.s.c.) and satisfies (∀m, z) 0 ≤ v(m, z) ≤ v+(m).

Obviously, v+ is admissible. Define the Bellman operator , which maps an admissible function v

to another function Bv, by

(∀v)(∀m, z) Bv(m, z) = max
{

xz + β

∫
Z

v(m′, z′)P0(dz′|z)
∣∣∣∣ (x,m′) ∈ Γ(m)

}
, (34)

whose well-definition is proved below. We denote by Bn the n-fold self-composition of B,

B ◦ · · · ◦ B. Finally an admissible function v solves Bellman’s equation if v = Bv.

Lemma A1. The Bellman operator is well-defined.

Proof. First, we show that for any admissible function v, the mapping defined by

(m′, z) 
→
∫

Z
v(m′, z′)P0(dz′|z)
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is u.s.c. To do this, let v be an admissible function and let 〈(m′
n, zn)〉∞n=1 be a sequence in R+×Z

which converges to (m′
0, z0). Then, by the admissibility of v and the u.s.c. of v+, there exists

N ≥ 1 such that

(∀n ≥ N)(∀z ∈ Z) v(m′
n, zn) ≤ v+(m′

n) < v+(m′
0) + 1 .

Therefore, the weak continuity of P0, the u.s.c. of v and Lemma 1.5 of Gihman and Skorohod

(1979) show that

lim sup
n→∞

∫
Z

v(m′
n, z′)P0(dz′|zn) ≤

∫
Z

v(m′
0, z

′)P0(dz′|z0) ,

which proves the claim.

Second, we completes the proof by showing that for any admissible function v, Bv is

well-defined. However, this follows immediately because the maximand in (34) is u.s.c. by the

fact proven in the previous paragraph and because Γ is compact-valued. �

Lemma A2. Bv+ ≤ v+ and for any admissible function v, Bv is admissible.

Proof. The first half of the lemma follows because

(∀m, z) Bv+(m, z) = max
{

xz + βB+m′ + βA+
∣∣ (x,m′) ∈ Γ(m)

}
≤ mz + βB+(m + y) + βA+

≤ mz̄ + βB+(m + y) + βA+

=
mz̄

1 − β
+

βyz̄

(1 − β)2
= v+(m, z) .

To show the latter half of the lemma, let v be an admissible function. Then, the admis-

sibility of v, the fact that B is monotonically non-decreasing in v and the inequality proven in

the previous paragraph show that 0 ≤ B0 ≤ Bv ≤ Bv+ ≤ v+. Furthermore, Bv is u.s.c. by

the maximum theorem (Berge, 1963) because the maximand in (34) is u.s.c. by Lemma A1 and

because Γ is continuous. �

Lemma A3. For any m ≥ 0, any investment strategy 0x which is feasible from m and any

admissible function v, it holds that
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(∀z) Iz(0x) = lim
T→+∞

x0z + β

∫
Z
· · ·

β

∫
Z

(
xT−1zT−1 + β

∫
Z

v(Ty + m, zT )P0(dzT |zT−1)
)

P0(dzT−1|zT−2) · · ·P0(dz1|z)

Proof. Let (m, z) ∈ R+×Z, let 0x be an investment strategy which is feasible from m and let

v be an admissible function. The iterated applications of Koopmans’ equation to 0x shows that

(∀T ≥ 1) Iz(0x) = x0z + β

∫
Z
· · ·

β

∫
Z

(
xT−1zT−1 + β

∫
Z

IzT
(T x)P0(dzT |zT−1)

)
P0(dzT−1|zT−2) · · ·P0(dz1|z) ,

where T x is a continuation of 0x after the realization of 1zT . Therefore, for any T ≥ 1, it follows

that ∣∣∣∣Iz(0x) −
[
x0z + β

∫
Z
· · ·

β

∫
Z

(
xT−1zT−1 + β

∫
Z

v(Ty + m, zT )P0(dzT |zT−1)
)

P0(dzT−1|zT−2) · · ·P0(dz1|z)
]∣∣∣∣

= β

∣∣∣∣
∫

Z
· · · β

∫
Z

(
xT−1zT−1 + β

∫
Z

IzT
(T x)P0(dzT |zT−1)

)
P0(dzT−1|zT−2) · · ·P0(dz1|z)

−
∫

Z
· · · β

∫
Z

(
xT−1zT−1 + β

∫
Z

v(Ty + m, zT )P0(dzT |zT−1)
)

P0(dzT−1|zT−2) · · ·P0(dz1|z)
∣∣∣∣

≤ β

∫
Z

∣∣∣∣
(
· · · β

∫
Z

(
xT−1zT−1 + β

∫
Z

IzT
(T x)P0(dzT |zT−1)

)
P0(dzT−1|zT−2) · · ·

)

−
(
· · · β

∫
Z

(
xT−1zT−1 + β

∫
Z

v(Ty + m, zT )P0(dzT |zT−1)
)

P0(dzT−1|zT−2) · · ·
)∣∣∣∣P0(dz1|z)

≤ · · ·

≤ βT

∫
Z
· · ·

∫
Z

∫
Z
|IzT

(T x) − v(Ty + m, zT )|P0(dzT |zT−1)P0(dzT−1|zT−2) · · ·P0(dz1|z)

≤ βT

∫
Z
· · ·

∫
Z

∫
Z

max {IzT
(T x), v(Ty + m, zT )}P0(dzT |zT−1)P0(dzT−1|zT−2) · · ·P0(dz1|z)

≤ βT

∫
Z
· · ·

∫
Z

∫
Z

v+(Ty + m)P0(dzT |zT−1)P0(dzT−1|zT−2) · · ·P0(dz1|z)

= βT (B+Ty + B+m + A+) ,

where the fifth inequality holds since (∀zT ) IzT
(T x) ≤ v+(Ty + m) by the fact that for any

investment strategy 0x which is feasible from m, xT ≤ Ty +m. Since the last term of the above

inequalities goes to 0 as T → +∞, we have

lim
T→∞

∣∣∣∣Iz(0x) −
[
x0z + β

∫
Z
· · ·
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β

∫
Z

(
xT−1zT−1 + β

∫
Z

v(Ty + m, zT )P0(dzT |zT−1)
)

P0(dzT−1|zT−2) · · ·P0(dz1|z)
]∣∣∣∣ = 0 ,

which completes the proof. �

Lemma A4. Any admissible solution to Bellman’s equation is the value function.

Proof. Let v be an admissible function which solves Bellman’s equation and let (m, z) ∈
R+ ×Z. This paragraph shows that for any investment strategy 0x which is feasible from m, it

holds that v(m, z) ≥ Iz(0x). Let 0x be such an investment strategy and let 1m be its associated

money-holding strategy. Then,

Bv(m, z) ≥ x0z + β

∫
Z

v(m1, z1)P0(dz1|z)

≥ x0z + β

∫
Z

(
x1z1 + β

∫
Z

v(m2, z2)P0(dz2|z1)
)

P0(dz1|z)

≥ · · ·

≥ x0z + β

∫
Z

(
x1z1 + · · · β

∫
Z

v(mT , zT )P0(dzT |zT−1) · · ·
)

P0(dz1|z)

where the first inequality holds since v solves Bellman’s equation and (x0,m1) ∈ Γ(m) by the

feasibility, the second inequality holds since v solves Bellman’s equation and (x1,m2) ∈ Γ(m1)

by the feasibility, and so on. Since the whole inequality holds for any T ≥ 1, Lemma A3 proves

the claim.

This paragraph completes the proof by showing that there exists an investment strategy

0x which is feasible from m and satisfies v(m, z) = Iz(0x). Define the investment strategy 0x

and the money-holding strategy 1m recursively by

(x0,m1) ∈ arg max
{

xz + β

∫
Z

v(m′, z′)P0(dz′|z)
∣∣∣∣ (x,m′) ∈ Γ(m)

}
and

(∀t ≥ 1) (xt,mt+1) ∈ arg max
{

xz + β

∫
Z

v(m′, z′)P0(dz′|zt)
∣∣∣∣ (x,m′) ∈ Γ(mt)

}
.

Such strategies are well-defined by the measurable selection theorem (Wagner, 1977, p.880,

Theorem 9.1(ii)). Then,

Bv(m, z) = x0z + β

∫
Z

v(m1, z1)P0(dz1|z)

= x0z + β

∫
Z

(
x1z1 + β

∫
Z

v(m2, z2)P0(dz2|z1)
)

P0(dz1|z)
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= · · ·

= x0z + β

∫
Z

(
x1z1 + · · · β

∫
Z

v(mT , zT )P0(dzT |zT−1) · · ·
)

P0(dz1|z)

where the equalities hold by the definition of 0x and 1m and because v solves Bellman’s equation.

Since the whole inequality holds for any T ≥ 1, Lemma A3 proves the claim. �

Lemma A5. A function v∞ defined by v∞ ≡ limn→∞ Bnv+ is an admissible solution to Bell-

man’s equation.

Proof. Since by Lemma A2 and the fact that B is non-decreasing in v, 〈Bnv+〉∞n=1 is a non-

increasing sequence of u.s.c. functions which are bounded from below by 0, its limit exists and

is u.s.c. Therefore, v∞ is a well-defined admissible function. In the rest of this proof, we show

that v∞ solves Bellman’s equation.

Note that (∀n ≥ 1) Bn+1v+ = B ◦ Bnv+ ≥ B ◦ limn→∞ Bnv+ = Bv∞. Therefore, we

have v∞ = limn→∞ Bn+1v+ ≥ Bv∞.

To show the opposite inequality, let (m, z) ∈ R+×Z and let 〈(xn,m′
n)〉∞n=1 be a sequence

in R
2
+ such that

(∀n ≥ 1) (xn,m′
n) ∈ arg max

{
xz + β

∫
Z

Bnv+(m′, z′)P0(dz′|z)
∣∣∣∣ (x,m′) ∈ Γ(m)

}
.

Such a sequence exists since the right-hand side is nonempty by Lemma A1 and the admissibility

of Bnv+. Since Γ(m) is compact, there exists a subsequence 〈(xn(i),m
′
n(i))〉∞i=1 which converges

to (x0,m
′
0) ∈ Γ(m). Then,

Bv∞(m, z) = max
{

xz + β

∫
Z

v∞(m′, z′)P0(dz′|z)
∣∣∣∣ (x,m′) ∈ Γ(m)

}

≥ x0z + β

∫
Z

v∞(m′
0, z

′)P0(dz′|z)

= x0z + β

∫
Z

lim
n→∞Bnv+(m′

0, z
′)P0(dz′|z)

= x0z + β

∫
Z

lim
i→∞

Bn(i)v+(m′
0, z

′)P0(dz′|z)

≥ x0z + β

∫
Z

lim
i→∞

lim sup
j→∞

Bn(i)v+(m′
n(j), z

′)P0(dz′|z)

≥ x0z + β

∫
Z

lim
i→∞

lim sup
j→∞

Bn(j)v+(m′
n(j), z

′)P0(dz′|z)
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= x0z + β

∫
Z

lim sup
j→∞

Bn(j)v+(m′
n(j), z

′)P0(dz′|z)

≥ x0z + β lim sup
j→∞

∫
Z

Bn(j)v+(m′
n(j), z

′)P0(dz′|z)

= lim sup
j→∞

(
xn(j)z + β

∫
Z

Bn(j)v+(m′
n(j), z

′)P0(dz′|z)
)

= lim sup
j→∞

Bn(j)+1v+(m, z)

= lim
j→∞

Bn(j)+1v+(m, z)

= v∞(m, z) ,

where the second inequality holds by the u.s.c. of Bn(i)v+. To show the fourth inequality, let

J ≥ 1 be such that (∀j ≥ J) m′
n(j) < m′

0 + 1. Then, it follows that

(∀j ≥ J)(∀z′ ∈ Z) Bn(j)v+(m′
n(j), z

′) ≤ v+(m′
n(j), z

′) = B+m′
n(j) + A+ < B+(m′

0 + 1) + A+ .

Therefore, the desired inequality holds by Fatou’s lemma. �

Theorem A1. The value function exists, it is the unique admissible solution to Bellman’s equa-

tion, and recursive optimality implies optimality.

Proof. Lemmas A4 and A5 show that v∞ is a value function, and hence, the value function

certainly exists. Suppose that v and v′ are two admissible solutions to Bellman’s equation.

Then, it must be that v = v′ because both v and v′ must be the value function by Lemma A4

and because the value function is unique by its definition. Therefore, the admissible solution to

Bellman’s equation is unique and equals v∞ since v∞ is admissible by Lemma A5. Finally, the

second paragraph of the proof of Lemma A4 shows that recursive optimality implies optimality.

�
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