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1. Introduction

The study of estimating a single structural equation in econometric models has
led to develop several estimation methods as the alternatives to the least squares esti-
mation method. The classical examples in the econometric literatures are the limited
information maximum likelihood (LIML) method and the instrumental variables (IV)
method including the two-stage least squares (TSLS) method. See Anderson, Kunit-
omo, and Sawa (1982) on the studies of their finite sample properties, for instance. Also
the generalized method of moments (GMM) estimation, originally proposed by Hansen
(1982), has been often used in econometric applications. The GMM estimation method
is essentially the same as the estimating equation (EE) method originally developed by
Godambe (1960) which has been mainly used in statistical applications.

In addition to these estimation methods, the maximum empirical likelihood (MEL)
method has been proposed and has gotten some attention recently in the statistical and
econometric literatures. It is probably because the MEL method gives an asymptoti-
cally efficient estimator in the semi-parametric sense and also improves the serious bias
problem known in the estimating equation (EE) method or the generalized method
of moments (GMM) method. See Owen (2001), Qin and Lawless (1994), Kitamura
(1997), and Kitamura et. al. (2001) on the details of the MEL method.

For sufficiently large sample sizes the GMM estimator and the MEL estimator have
approximately the same distribution, but their exact distributions can be quite different
for the sample sizes occurring in practice. The main purpose of this study is to give
numerical information to determine the small sample properties of the exact cumulative
distribution functions (cdf’s) of the MEL estimator and the GMM estimator for a wide
range of parameter values. Since it is quite difficult to obtain the exact densities and
cdf’s of these estimators, this information makes possible the comparison of properties
of two alternative estimation methods. Advice can be given as to when one is preferred
to the other. In this paper we use the classical estimation setting of a linear structural
equation when we have a set of instrumental variables in econometric models. It is our
intention that we can make precise comparison of alternative estimation procedures in
the possible simplest case which has many applications.

Another approach to the study of the finite sample properties of alternative estima-
tors is to obtain asymptotic expansions of their exact distributions in the normalized
forms. As noted before, the leading terms of their asymptotic expansions are the same,
but the higher-order terms are different. Kunitomo (2002), Kunitomo and Matsushita
(2003) have recently derived the asymptotic expansions of the distributions of the MEL
estimator and the GMM estimator for the linear structural equation case under a set
of assumptions. Newey and Smith (2001) has obtained some expressions of the asymp-
totic bias and the asymptotic mean squared errors for a class of estimators including
the MEL estimator and GMM estimator for the general nonlinear case.

It should be noted, however, that the mean and the mean squared errors of the
exact distributions of estimators are not necessarily the same as the mean and the mean
squared errors of the asymptotic expansions of the distributions of the estimators. In
fact we shall show that the MEL estimator does not posses any moments of positive
integer order under a set of reasonable assumptions. Although the analyses of bias and
the mean squared errors of the MEL estimator based on Monte Carlo experiments have
been reported in some studies, we suspect that many of them are not reliable. Therefore
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instead of moments we need to investigate the exact cumulative distribution of the MEL
estimator directly in a systematic way and it is precisely what we are going to explain
in this paper. The problem of non-existence of moments had been already discussed
in the econometric literatures because the limited information maximum likelihood
(LIML) estimator does not have any moments of positive integer orders under a set of
reasonable assumptions. For instance, see Phillips (1980) and Phillips (1983) on the
details of the finite sample properties of the traditional econometric estimators in the
parametric framework.

In Section 2 we state the formulation of models and two estimation methods of
unknown parameters. In Section 3 we shall give tables and figures of the distributions
of the estimators and then in Sections 4 we shall discuss the small sample properties
of two estimators. In Section 5 we show the non-existence of exact moments of the
MEL estimator under a set of assumptions. Finally, some conclusions will be given in
Section 6. Tables and Figures are gathered in Appendix.

2. Estimating a Single Structural Equation by the Empirical Likelihood
Method

Let a single linear structural equation in the econometric model be given by

y1i = (y
′
2i, z

′
1i)(

β
γ

) + ui (i = 1, · · · , n),(2.1)

where y1i and y2i are 1×1 and G1×1 (vector of) endogenous variables, z1i is a K1×1
vector of exogenous variables, θ is a p×1 (p = K1+G1) vector of unknown parameters,
and {ui} are mutually independent disturbance terms with E(ui) = 0 (i = 1, · · · , n).
We assume that (2.1) is the first equation in a system of (G1 + 1) structural equations
in which the vector of 1 + G1 endogenous variables y

′
i = (y1i, y

′
2i)

′
and the vector of

K (= K1 + K2) exogenous variables {zi} including {z1i} are related linearly with the
condition n > K . The set of exogenous variables {zi} are often called the instrumental
variables and we can write the orthogonal condition

E[ui zi] = 0 (i = 1, · · · , n) .(2.2)

Because we do not specify the equations except (2.1) and we only have the limited
information on the set of exogenous variables or instruments, we only consider the
limited information estimation methods. Furthermore, when all structural equations
in the econometric model are linear, the reduced form equations of y

′
i = (y1i, y

′
2i) can

be defined by
yi = Π

′
zi + vi (i = 1, · · · , n) ,(2.3)

where v
′
i = (v1i, v

′
2i) is a 1 × (1 + G1) disturbance terms with E[v

′
i] = 0

′
and

Π = (π1 , Π2) = (
π11 Π12

π21 Π22
)(2.4)

is a (K1 + K2) × (1 + G1) (K = K1 + K2) partitioned matrix of the reduced form
coefficients. By multiplying (1,−β

′
) to (2.3) from the left-hand side, we have the

relation ui = v1i − β
′
v2i (i = 1, · · · , n) and the restriction

(1,−β
′
)Π

′
= (γ

′
, 0

′
) .(2.5)
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The maximum empirical likelihood (MEL) estimator for the vector of parameters θ

in (2.1) is defined by maximizing the Lagrangian form

L∗
n(λ, θ) =

n∑
i=1

log pi − µ(
n∑

i=1

pi − 1) − nλ
′

n∑
i=1

pi zi[y1i − β
′
y2i − γ

′
z1i] ,(2.6)

where µ and λ are a scalar and a K × 1 vector of Lagrangian multipliers, and pi (i =
1, · · · , n) are the weighted probability functions to be chosen. It has been known (see
Qin and Lawles (1994) or Owen (2001)) that the above maximization problem is the
same as to maximize

Ln(λ, θ) = −
n∑

i=1

log{1 + λ
′
zi [y1i − β

′
y2i − γ

′
z1i]} ,(2.7)

where we have the conditions µ̂ = n , and

[np̂i]−1 = 1 + λ
′
zi[y1i − β̂

′
y2i − γ̂

′
z1i] .(2.8)

By differentiating (2.7) with respect to λ and combining the resulting equation with
(2.8), we have the relation

n∑
i=1

p̂izi [y1i − β
′
y2i − γ

′
z1i] = 0(2.9)

and

λ̂ = [
n∑

i=1

p̂iu
2
i (θ̂)ziz

′
i]
−1[

1
n

n∑
i=1

ui(θ̂)zi] ,(2.10)

where ui(θ̂) = y1i− β̂
′
y2i− γ̂

′
z1i and θ̂

′
= (β̂

′
, γ̂

′
) is the maximum empirical likelihood

(MEL) estimator for the vector of unknown parameters θ .
In the actual computation we first minimize (2.7) with respect to λ and then the MEL
estimator can be defined as the solution of constrained maximization of the criterion
function with respect to θ under the restrictions 0 < ε ≤ pi < 1 (i = 1, · · · , n), where
we take a sufficiently small (positive) ε . Alternatively, from (2.7) the MEL estimator
of {θ} can be written as the solution of the set of p equations

λ̂
′

n∑
i=1

p̂izi[−(y
′
2i, z

′
1i)] = 0 ,(2.11)

which implies

[
n∑

i=1

p̂i(
y2i

z1i
)z

′
i][

n∑
i=1

p̂iui(θ̂)2ziz
′
i]
−1[

1
n

n∑
i=1

zi y1i](2.12)

= [
n∑

i=1

p̂i(
y2i

z1i
)z

′
i][

n∑
i=1

p̂iui(θ̂)2ziz
′
i]
−1[

1
n

n∑
i=1

zi(y
′
2i, z

′
1i)](

β̂

γ̂
) .
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On the other hand, the GMM estimator of θ
′
= (β

′
, γ

′
) can be given by the solution of

the equation 1

[
1
n

n∑
i=1

(
y2i

z1i
)z

′
i][

1
n

n∑
i=1

ui(θ̂)2ziz
′
i]
−1[

1
n

n∑
i=1

zi y1i](2.13)

= [
1
n

n∑
i=1

(
y2i

z1i
)z

′
i][

1
n

n∑
i=1

ui(θ̂)2ziz
′
i]
−1[

1
n

n∑
i=1

zi(y
′
2i, z

′
1i)](

β̂
γ̂

) ,

where θ̂ is a consistent initial estimator of θ .

By this representation the GMM estimator can be interpreted as the empirical like-
lihood estimator when we use the fixed probability weight functions as pi = 1

n (i =
1, · · · , n). In the actual computation we use the two-step efficient GMM procedure ex-
plained by Page 213 of Hayashi (2000), which seems to be standard in many empirical
analyses.

We shall consider the situation that the disturbances are homoscedastic random
variables although they can be conditionally heteroscedastic. Let the standardized
error of estimators be in the form of

ê =
√

n( β̂ − β
γ̂ − γ

) ,(2.14)

where θ̂
′
= (β̂

′
, γ̂

′
) and θ is the vector of unknown coefficient parameters. Under a set

of regularity conditions 2 , the inverse of the asymptotic variance-covariance matrix of
the asymptotically efficient estimators is given by

Q−1 = σ−2D
′
MD ,(2.15)

where

D = [Π2 , (
IK1

O
)] ,(2.16)

M = plimn→∞
1
n

n∑
i=1

ziz
′
i .(2.17)

provided that E(u2
i ) = σ2 (> 0), the constant matrix M is positive definite, and the

rank condition
rank(D) = p (= G1 + K1) .(2.18)

These conditions assure that the limiting variance-covariance matrix Q is non-degenerate.
The rank condition implies the order condition

L = K − p ≥ 0 ,(2.19)

which has been called the degrees of over-identification.
In the standard linear setting it is possible to obtain the convergence in probability
that np̂i → 1 (i = 1, · · · , n) when n → ∞ as Owen (1990) and Qin and Lawless (1994)

1 This formulation is different from the original one. See Hayashi (2000) on the details of the GMM
estimation method.

2 See Qin and Lawles (1994) on the details of sufficient conditions for the i.i.d. case, which can be
extended to more general situations.
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have shown. Then the MEL estimator and the GMM estimator are asymptotically
equivalent and their asymptotic variance-covariance matrix is given by Q . However,
this does not necessarily mean that their finite sample distributions are similar.

It is also straightforward to treat the multiple equation case in the present formu-
lation. If we have m equations, let ui = (u(j)

i ) be a sequence of m × 1 vectors of
disturbance terms. Then we write the orthogonal conditions as

E[ui ⊗ zi] = 0 (i = 1, · · · , n) ,(2.20)

and

u
(j)
i = y

(j)
1i − (y(j)′

2i , z(j)′
1i )(

β(j)

γ(j) ) (j = 1, · · · , m) ,(2.21)

where y(j)′
2i and z(j)′

1i are G
(j)
1 ×1 and K

(j)
1 ×1 vectors of variables, respectively, and β(j)

and γ(j) are the corresponding coefficient vectors. It is clear that the MEL estimaton
problem of the multiple equation case is parallel to the single equation case as we have
discussed with some complications in notation. Also it has been known that many
econometric models for panel data can be reduced to the above multiple equation
form. ( See Section 3 of Arellano and Honoré (2001) or Chapter 4 of Hsiao (2003) on
the related discussions, for instance.)

3. Evaluation of Distributions and Tables

3.1 Parameterizations

The estimation method of the cdf’s of estimators we have used in this study is based
on the simulation method since their analytical properties are difficult to be investi-
gated directly. In order to describe our estimation method, we need to introduce some
notations which are similar to the ones used by Anderson et. al. (1982) for the ease of
comparison. We shall concentrate on the comparison of the estimators of the coefficient
parameter on the endogenous variable when G1 = 1 in this section.

Let M be a K ×K matrix given by (2.17) and we partition the nonsingular matrix
M into (K1+K2)×(K1+K2) sub-matrices M = (Mij) (i, j = 1, 2) . Also let a K2×K2

matrix
M22.1 = M22 − M21M−1

11 M12 .(3.1)

When the disturbance terms are homoscedastic, the (1,1) element of the inverse of the
asymptotic variance-covariance matrix Q−1 is given by

Q11 =
1
σ2

Π′
22M22.1Π22 .

By multiplying n (the sample size) to this quantity, we rewrite

1
σ2

Π′
22A22.1Π22 ,(3.2)

where we have used the notation A22.1 = nM22.1 . This corresponds to the parameteri-
zation adopted by Anderson et. al. (1982) on the study of the finite sample properties
of the LIML and TSLS estimators in the classical parametric framework. In the rest
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of our study we shall consider the finite sample distribution for the coefficient of the
endogenous variable β because of the simplification. We expect that we have similar
results on other coefficients parameters.

We consider the distributions of the normalized estimator as√
Π′

22A22.1Π22

σ
(β̂ − β) .(3.3)

The distribution of (3.3) for each estimator depends on the parameterization of the
underlying econometric model in a rather complicated way. For the easiness of the re-
sulting interpretations we have adopted the notations used by Anderson et. al. (1982),
that is, L = K − p ,

δ2 =
Π

′
22A22.1Π22

ω22
,(3.4)

and

α =
ω22β − ω12

|Ω|1/2
.(3.5)

In these notations L is the difference between the number of restrictions and the num-
ber of parameters, which is the degrees of over-identification. In applied econometric
analyses L can be very large in some circumstances including Panel Data analyses. The
parameter α can be interpreted intuitively by transforming it into ρ = −α/

√
1 + α2 .

Then we can rewrite
ρ =

ω12 − ω22β

σ
√

ω22
,

which is the correlation coefficient between two random variables ui and v2i (or y2i).
It has been often called the coefficient of simultaneity in the structural equation of the
simultaneous equations system. Finally the non-centrality parameter δ2 plays a key role
in the subsequent analysis. The numerator of δ2 is the additional explanatory power
due to y2i over z1i in the structural equation and the denominator is the error variance
of y2i . Therefore δ2 determines how well the equation is defined in the simultaneous
equations system.

3.2 Simulation Procedures

By using a set of Monte Carlo simulations we can obtain the empirical cdf’s of the MEL
and GMM estimators for the coefficient of the endogenous variable in the structural
equation of our interest. First, we consider the case when both the disturbances and the
exogenous variables are normally distributed. We generate a set of random numbers
by using the two equations system

y1i = y2iβ
(0) + z1iγ

(0) + ui ,(3.6)

and
y2i = zi

′π(0)
2 + v2i ,(3.7)

where zi ∼ N (0, IK), ui ∼ N (0, 1), v2i ∼ N (0, 1) (i = 1, · · · , n), and we set the true
values 3 of parameters β(0) = γ(0) = 0 . We have controlled the values of δ2 by choosing

3 In order to examine whether our results strongly depend on the specific values of parameters
β(0) = γ(0) = 0, we have done the several simulations for the values of β(0) �= 0 and γ(0) �= 0 . These
experiments suggest that our results holds in the general situation.
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a real value of c and setting π
(0)
2 = c(1, · · · , 1)

′
. The model we have used has been

restricted to the special case when G1 = K1 = 1 because in general it takes prohibitively
long computational time to estimate the empirical cdf of the MEL estimator when the
number of parameters included the equation (3.6) is large. For each simulation we
have generated a set of random variables from the disturbance terms and exogenous
variables. In the simulation the number of repetitions were 5,000 and we consider the
representative cases when the combination of the underlying quantities are such as
n = 50, 100, 300 , L = 3, 10, 20, 30 , α = 0.0, 1.0, 5.0 , and δ2 = 30, 50, 100, 300 .

In order to investigate the effects of non-normal disturbances on the distributions of
estimators, we took two cases when the distributions of the disturbances are skewed or
fat-tailed. As the first case we have generated a set of random variables (y1i, y2i, zi) by
using (3.6), (3.7), and

ui = −χ2
i (3) − 3√

6
,(3.8)

where χ2
i (3) are χ2−random variables with the 3 degrees of freedom. As the second

case, we took the t-distribution with 5 degrees of freedom for the disturbance terms.

3.3 Tables and Figures

The empirical cdf’s of estimators are consistent for the corresponding true cdf’s. In
addition to the empirical cdf’s we have used a smoothing technique of cubic splines
to estimate the cdfs’ and their percentile points. The distributions are tabulated in
the standardized terms, that is, of (3.3), mainly because this form of tabulation makes
comparisons and interpolation easier. The tables includes the three quartiles, the 5
and 95 percentiles and the interquartile range of the distribution for each case. The
estimators which we wish to compare (the MEL estimator with the GMM estimator),
have the same asymptotic distribution. Therefore, the limiting distributions of (3.3)
are N (0, 1) as n → ∞ in all cases. We consider the normalized distributions because it
is often easy to make comparisons.

We have summarized our results on the cdf’s of two estimators as Tables 1-6, which
are the normal disturbance cases.

3.4 Accuracy of the Procedures

To evaluate the accuracy of our estimates based on the Monte Carlo experiments,
we compared the empirical and exact cdf’s of the Two-Stage Least Squares (TSLS)
estimator, which corresponds to the GMM estimator given by (2.13) when û2

i is replaced
by a constant (namely σ2), that is, the variance-covariance matrix is homoscedastic and
known. The exact distribution of the TSLS estimator has been studied and tabulated
extensively by Anderson and Sawa (1979).

We have chosen two cases among many and reported the exact cdf of the TSLS
estimator, our estimate of its cdf, and their differences in Table 9 and Table 10. The
differences are less than 0.005 in most cases and the maximum difference between the
exact cdf and its estimates is about 0.008. Hence we have found that our estimates of
the cdf’s are quite accurate and we have enough accuracy with two digits at least. This
does not necessarily mean that the simulated moments such as the mean and the mean
squared error in simulations are reliable as the same manner by the reason indicated
in the last part of Introduction.
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4. Discussions on Distributions

4.1 Distributions of the MEL Estimator

The distributions are tabulated in standardized terms, that is, of (3.3). The asymp-
totic standard deviation (ASD) of β̂ is given by

σ

δ
√

ω22
=

√
1 + α2

√|Ω|
δω22

.(4.1)

The spread of the distribution of the un-standardized estimator increases with |α| and
decreases with δ . Since the GMM estimator which we wish to compare the MEL
estimator has the same asymptotic standard deviation and in the remainder of the
discussion we consider the normalized distributions as tabulated. For α = 0, the
densities are close to symmetric. As α increases there is some slight asymmetry, but
the median is very close to zero. For given α, L, and n, the lack of symmetry decreases
as δ2 increases. For given α, δ2, and n, the asymmetry increases with L .

The main finding from Tables is that the distributions of the MEL estimator are
roughly symmetric around the true parameter value and they are almost median-
unbiased. This finite sample property does hold even when L is faily large. On the other
hand, the distributions of the MEL estimator have relatively long tails. As δ2 → ∞,

the distributions approach N (0, 1); however, for small values of δ2 there is an apprecia-
ble probability outside of 3 or 4 ASD’s. As δ2 increases, the spread of the normalized
distribution decreases. For given α,L, and δ2, the spread decreases as n increases and
it tends to increase with L and decrease with α . These observations about the spread
agree with the asymptotic expansion of the cdf of the MEL estimator.

When the disturbances are normally distributed with some additional regularity
conditions, it is possible to obtain the asymptotic expansion 4 of the distribution
function in a compact form, which is given by

(4.2)

P(
√

Π
′
22A22.1Π22

σ (β̂MEL − β) ≤ x )

= Φ(x) + {−α
µx2 − 1

2µ2 [(ν + L)x + (1 − 2α2)x3 + α2x5]}φ(x)

+O(µ−3) ,

where µ2 = (1 + α2)δ2 and Φ(·) and φ(·) are the cdf and the density function of the
standard normal distribution, respectively. In the above expression the parameter ν is
defined by

(4.3) ν = η(
1 + α2

ω22
)(1, 0

′
)Q−1

11 QNQQ−1
11 (1, 0

′
)
′
,

4 The formulae of (4.2) and (4.7) are the results of lengthy and laborious derivations and the details
of the asymptotic expansions of the distribution functions of non-parametric (or semi-parametric)
estimators are reported in Kunitomo and Matsushita (2003). (4.5) and (4.8) are valid when µ3 =
E(u3

i ) = 0 with regularity conditions, but η = 2 + κ in (4.2) and (4.6) while η = 2 − κ in (4.7) and
(4.9) with κ(= E(u4

i )/σ4 − 3) being the 4-th order cumulant.
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where we use the notations η = 2 (for the normal disturbance case), Q11 = σ2(Π
′
22M22.1Π22)−1,

the K × K matrix

(4.4) N = plimn→+∞
1

nσ2

n∑
i=1

ziz
′
iM

−1/2P̄EM−1/2ziz
′
i ,

and P̄E = Ip −EQE
′
is the projection operator for E = (1/σ)M1/2D .

We note that the asymptotic expansion in (4.2) was made in terms of µ−1 under the
situation when the noncentrality parameter δ2 (or µ2) is proportional to the sample size
and we have the condition of (2.17). Then (4.2) can be equivalently rewritten as the
asymptotic expansion with respect to the standard normal distribution, the terms of
O(n−1/2), and the terms of O(n−1) . We report only the results in this situation because
it can be regarded as the standard case and other cases can be similarly developed.

By using (4.2), the asymptotic mean (AMn) and the asymptotic mean squared
errors (AMSEn) are defined as the mean and the mean squared errors based on the
asymptotic expansion to orders O(δ−1) and O(δ−2), respectively. Afer some calcula-
tions, they are given by

(4.5) AMn(β̂MEL) =
α

µ
=

α

δ
√

1 + α2
,

and

(4.6) AMSEn(β̂MEL) = 1 +
1
µ2

[ν + L + 3 + 9α2] ,

where we have the notation µ2 = (1 + α2)δ2 .

In the more general disturbance case the formula for AMn does not depend on
any higher order moments and is not changed. However, in that case the formula for
AMSEn does depends on the fourth order cumulant and there is an extra term in the
order O(µ−2). Newey and Smith (2001) has mentioned to the first point in the more
general nonlinear case although they used different notations.

The parameter ν in (4.2) is the key quantity in the semi-parametric estimation of
econometric models. This term appears because we estimate the conditional variance-
covariance matrix

C∗
n =

1
n

n∑
i=1

E[u2
i |zi]ziz

′
i ,

which has been incorporated in the MEL estimation method when we denote the con-
ditional variance by E[u2

i |zi] .
When we drop ν in (4.2), the resulting formula of (4.2) is identical to the asymptotic
expansion of the distribution function of the LIML estimator reported in Anderson
(1974) and Fujikoshi et. al. (1982). Hence it can be interpreted as the effect due to
the non-parametric estimation of a structural equation.

4.2 Distributions of the GMM Estimator

We have given tables of the distributions of the GMM estimator. The finite sample
properties of the distributions approximately agree with the asymptotic expansions
of the distribution functions and their moments. When the disturbance terms are
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normally distributed, the asymptotic expansion of the distribution function of the GMM
estimator can be given by
(4.7)

P(
√

Π
′
22A22.1Π22

σ (β̂GMM − β) ≤ x )

= Φ(x) + {−α
µ(x2 − L) − 1

2µ2 [(ν + L2α2 − L)x + (1 − 2(L + 1)α2)x3 + α2x5]}φ(x)

+O(µ−3) .

Then by using (4.7) the asymptotic mean (AMn) and the asymptotic mean squared
errors (AMSEn) of the GMM estimator are (up to orders O(δ−1) and O(δ−2), respec-
tively) given by

(4.8) AMn(β̂GMM) = −(L − 1)α
µ

=
−(L − 1)α
δ
√

1 + α2
,

and

(4.9) AMSEn(β̂GMM) = 1 +
1
µ2

[ν − (L− 3) − 4(L − 2)α2 + (L− 1)2α2] .

We note that in the general disturbance case AMn of β̂GMM depends on the third
order moments of the disturbances terms and there is an extra term in (4.8) for the
non-norma case. Also AMSEn of β̂GMM depends on the fourth order moments. These
facts could be seen by using the same arguments as Kunitomo and Matsushita (2003).
The ν terms in (4.7) and (4.9) are of the same form as the corresponding term in (4.2)
and (4.6). It can be interpreted as the effect due to non-parametric GMM estimation
in our setting. When we drop ν in (4.7), the resulting formula is identical to the
asymptotic expansion of the distribution function of the TSLS estimator originally
reported in Anderson and Sawa (1973). See Sargan and Mikhail (1971) on the classic
study of the related problem.

The most striking feature is that the distribution of the GMM estimator is skewed
towards the left for α > 0 (and towards the right for α < 0), and the distortion increases
with α and L . Figures 1, 2, and 3 show the estimated cdf’s of the MEL estimator and
the GMM estimator for three representative cases among our many results. The MEL
estimator is close to median-unbiased in each case while the GMM estimator is biased.
As L increases, this bias becomes more serious; for L = 10 and L = 30 , the median
is less than -1.0 ASD’s. If L is large, the GMM estimator substantially underestimates
the true parameter. The probability at x = 0 is about 1/2 + o(1/µ3) in (4.2) while it is
1/2 + αL/µ in (4.7), for instance. This fact definitely favors the MEL estimator over
the GMM estimator. However, when L is as small as 3, the GMM estimator is very
similar to the MEL and its distribution has tighter tails.

The distribution of the MEL estimator approaches normality faster than the dis-
tribution of the GMM estimator, due primarily to the bias of the latter. In particular
when α 	= 0 and L = 10, 30, the actual 95 percentiles of the GMM estimator are sub-
stantially different from 1.96 of the standard normal. This implies that the conventional
hypothesis testing about a structural coefficient based on the normal approximation is
very likely to seriously underestimate the actual significance. The 5 and 95 percentiles
of the MEL estimator are much closer to those of the standard normal distribution
even when L is large.
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4.3 Effects of Normality

Because the distributions of estimators depend on the distributions of the distur-
bance terms, we have investigated the effects of non-normality of disturbances. Tables
7 and 8 are the distribution functions of the MEL and the GMM estimators when the
disturbances follow the χ2 distribution and t(5) distribution, respectively. The former
represents the skewed distribution while the latter represents the distributions with
longer tails. From these tables the comparison of the distributions of the MEL and
GMM estimators are approximately valid even if the distributions of disturbances are
different from normal.

Also we have investigated the effects of exogenous variables on the distributions
of estimators both in the cases when they are deterministic variables and non-normal
stochastic variables. We have found that their effects are basically are negligible except
some extreme situations and they are usually within the range of sampling variations of
cdf estimates. This finding would be anticipated since the asymptotic expansions of the
distributions are in the form of (4.2) and (4.7) under a set of assumptions. Hence we
have omited to give the detailed discussions of these effects on our tables and figures.

5. Non-existence of Exact Moments of the MEL Estimator

As we have discussed in Section 4, we found that the finite sample distributions
of the MEL estimator has considerable probabilities in their tail areas. This lead us
to investigate the fundamental problem whether the MEL estimator does posses any
moments of positive integer orders or not.

We first take a special case and consider the non-existence problem of moments.
Let G1 = K = 1, K1 = 0, and we take z1i = 0, zi = z∗i (i = 1, · · · , n) . In this case,
because of the boundedness condition that 0 < ε ≤ p̂i < 1 (i = 1, · · · , n) and (2.11),
we have the Lagrangian mltiplier λ(θ) = 0 with probability one. Then we have the
estimated probabilities p̂i = 1/n (i = 1, · · · , n) and by using (2.9) the MEL estimator
for β becomes

β̂ =

n∑
i=1

z∗i y1i

n∑
i=1

z∗i y2i

.(5.1)

If we assume that (i) the seqence of random variables {y1i} and {y2i} are normally
distributed, (ii) their distributions are not degenerated, and (iii) the sequence {z∗i } are
strictly exogenous, then we can directly show that E[|β̂|] = +∞ because β̂ is a ratio
of two normal random variables.

More generally, it is possible to show the non-existence of exact moments of the
MEL estimator under a set of assumptions when G1 ≥ 1 .

Theorem 5.1 : In additon to the conditions in (2.18), (2.19), G1 ≥ 1 and n > K ,

assume the next conditions on the sequence of {zi} and {vi} .
[A1] The distributions of the sequences of random (vector) variables {vi} are abso-
lutely continuous with respect to the Lebesgue measure and their densities are positive
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everywhere in R1+G1 .
[A2] The sequence of {zi} are stochastic or non-stochastic vectors, which are indepen-
dent of {vi}, and the K × K moment matrix

Mn =
1
n

n∑
i=1

ziz
′
i(5.2)

is finite and positive definite with probability one. Then we have

E[|θ̂i|] = +∞ (i = 1, · · · , p) ,(5.3)

where θ̂ = (θ̂i) is the maximum empirical likelihood estimator of θ .

Proof of Theorem 5.1 : First we use [A2] and (2.18). Since 0 < ε ≤ pi < 1 (i =
1, · · · , n), we have the relation εnMn <

∑n
i=1 p̂iziz

′
i < nMn with probability one.

Then it is straightforward to show that

rank[
n∑

i=1

p̂iziz
′
i] = K , rank[

n∑
i=1

p̂izi(
y2i

z1i
)
′
] = p(5.4)

with probability one. By using (2.9) we have K equations
n∑

i=1

p̂iziy1i =
n∑

i=1

p̂izi(y
′
2i, z

′
1i)(

β̂
γ̂

) .(5.5)

Because of [A1] we can take some p × 1 vector sequence of variables {z∗i }, which is a
subset of vectors zi (i = 1, · · · , n), such that

θ̂ = [z∗1(
y21

z11
)
′
+

n∑
i=2

liz∗i (
y2i

z1i
)
′
]−1[z∗1y11 +

n∑
i=2

liz∗i y1i] ,(5.6)

where li = p̂i/p̂1 (i = 2, · · · , n) .

Without loss of generality we take any p×1 (constant) vector c1 satisfying the conditions
c1 	= 0 and c

′
1z

∗
1 	= 0 . Then we consider G1 equations with respect to the vectors y∗

21

and y∗
2i (i = 2, · · · , n) such that

y∗
21 = −

n∑
i=2

c
′
1z

∗
i

c
′
1z

∗
1

liy∗
2i .(5.7)

Because li (i = 2, · · · , n) are functions of y∗
21 and they are bounded by the conditions

on pi (i = 1, · · · , n), there exists at least one solution y∗
21 satisfying the above equations

given that the sequences y∗
2i (i = 2, · · · , n) and zi (i = 1, · · · , n) are held fixed. (We

can use the relations (2.7)-(2.12) for the linear case.) Also we notice that from [A1] the
conditional density of the G1 × 1 random vector y21 given y11 and y2i (i = 2, · · · , n) is
everywhere positive. Then for any real positive value ξ

P(‖c′
1z

∗
1y21 +

n∑
i=2

c
′
1z

∗
i liy2i‖ < ξ) > 0 .(5.8)

This means that we have positive probabilities around the singular points of the inverse
matrix on the right-hand side of (5.6). We notice that the determinant of the matrix

|z∗1(
y21

z11
)
′
+

n∑
i=2

liz∗i (
y2i

z1i
)
′ |
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is a linear combination of each components of y21 and other random variables. Since
li (i = 2, · · · , n) are bounded, the expected value of absolute value of each components
in (5.6) with respect to the random variavles y21 cannot be finite. Thus we have the
desired result on the non-existence of moments. (Q.E.D.)

The non-existence of moments of the MEL estimator can explain its finite sample
behaviors sometimes observed in Monte Carlo experiments. However, it should be
important to note that the non-existence of exact moments do not necessarily mean
that we should not use such estimation method. The classical simple example is the
estimation problem of reciprocal of mean parameter in the i.i.d. univariate normal
distribution, provided that it is not zero. The main issue is rather the choice of criteria
for evaluating alternative estimation methods and we should be careful to use the bias
and the mean squares error of estimators when they do not exist. Some related problems
in the context of classical esonometric estimation methods were discussed by Anderson
et. al. (1982).

In this paper we have discussed only the finite sample properties of alternative
estimators for the unknown parameters. However, our result in this section has also
an implication on the hypothesis testing problem. From our result it is likely that
the statistics based on the empirical likelihood approach do not have any moments of
positive integer orders. This problem has been previously pointed out by DiCiccio, Hall
and Romano (1991) for a simple testing problem although their arguments are related
but different from our arguments in this section.

6. Conclusions

First, the distributions of the MEL and GMM estimators are asymptotically equiv-
alent in the sense of the limiting distribution, but their exact distributions are substan-
tially different in finite samples. The MEL estimator is to be preferred to the GMM
estimator if L is large. In the multiple equation cases and econometric models on panel
data, for instance, it is often a common feature that L is fairly large. In such situations
the MEL estimation method is particularly recommended.

Second, the large-sample normal approximation is relatively accurate for the MEL
estimator. Hence the usual methods with asymptotic standard deviations gives reason-
able inferences. On the other hand, for the GMM estimator the sample size should be
very large to justify the use of procedures based on the normality when L is large, in
particular.

Third, it would be recommendable to use the probability of concentration as a
criterion of comparisons. It is because the MEL estimator does not posses any moments
of positive integer orders and hence we expect to have some large absolute values of
their bias and mean squares errors of estimators in the Monte Carlo simulations. In
order to make fair comparisons of alternative estimators we need to use their culumative
distribution functions and the concentration of probability.

To summarize the most important conclusion from the study of small sample dis-
tributions of the MEL and GMM estimators is that the GMM estimator can be badly
biased in some cases and in that sense its use is risky. The MEL estimator, on the
other hand, has a little more variability with some chance of extreme values, but its
distribution is centered at the true parameter value.
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It is interesting that this conclusion is quite similar to the one on the comparative
study of the LIML estimator over the TSLS (two-stage least squares) estimator in
the same setting of linear structural equation, but with the restrictive assumption of
the normal disturbances. ( See Section 5 of Anderson et. al. (1982).) This may
be because that the maximum empirical likelihood (MEL) estimation of a structural
equation can be interpreted as the semi-parametric analogue of the limited information
maximum likelihood (LIML) estimation developed by Anderson and Rubin (1949) while
the genaralized method of moments (GMM) estimation developed by Hansen (1982)
can be interpreted as the semi-parametric analogue of the instrumental variables (IV)
estimation developed by D.J. Sargan and H. Theil (see Sargan and Mikhail (1971), for
instance) in the late 1950’s.

Finally there could be some ways to improve the small sample properties of the MEL
estimation of structioral equations. Kunitomo (2002) and Kunitomo and Matsushita
(2003) have already suggested one possible approach to this problem, which should
be related to the issues investigated by Newey and Smith (2001). It should be an
important topic because we have found that the distribution of the MEL estimator has
fat-tails even in comparison with the LIML estimator in our study.
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APPENDIX : TABLES AND FIGURES

Notes on Tables 1-8

In Tables 1-8 the distributions are tabulated in the standardized terms, that is, of (3.3). The tables include

three quartiles, the 5 and 95 percentiles and the interquartile range of the distribution for each case. Since

the limiting distributions of (3.3) are N(0, 1) as n → ∞, we add the standard normal case as the bench

mark.

Notes on Tables 9-10

In Tables 9 and 10 the cdf of two estimators and their differences are tabulated in the standardized terms,

that is, of (3.3). The tables includes the three quartiles, the 2.5 and 97.5 percentiles and the interquartile

range of the distribution for each case.

Notes on Figures

In Figures 1-3 the cdf of the MEL and GMM estimators are shown in the standardized terms, that is, of

(3.3). The dotted line were used for the distributions of the GMM estimator. For the comparative purpose

we give the standard normal distribution as the bench mark for each case.
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Table 1: L = 3, α = 1

n = 100, L = 3, α = 1 n = 300, L = 3, α = 1
δ2 = 50 δ2 = 100 δ2 = 50 δ2 = 100

x normal MEL GMM MEL GMM MEL GMM MEL GMM
-3 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

-2.5 0.006 0.000 0.002 0.000 0.003 0.000 0.001 0.001 0.002
-2 0.023 0.013 0.023 0.014 0.022 0.009 0.016 0.012 0.019

-1.4 0.081 0.067 0.102 0.068 0.092 0.060 0.094 0.063 0.089
-1 0.159 0.146 0.209 0.145 0.191 0.143 0.212 0.141 0.192

-0.8 0.212 0.202 0.285 0.199 0.256 0.202 0.286 0.198 0.259
-0.6 0.274 0.268 0.368 0.261 0.330 0.271 0.369 0.266 0.337
-0.4 0.345 0.342 0.452 0.332 0.412 0.347 0.457 0.342 0.424
-0.2 0.421 0.420 0.533 0.411 0.493 0.429 0.542 0.422 0.508
0 0.500 0.498 0.612 0.491 0.572 0.506 0.624 0.506 0.587

0.2 0.579 0.571 0.686 0.567 0.647 0.581 0.702 0.587 0.664
0.4 0.655 0.641 0.753 0.638 0.715 0.654 0.766 0.657 0.729
0.6 0.726 0.705 0.806 0.703 0.774 0.719 0.818 0.717 0.786
0.8 0.788 0.761 0.847 0.762 0.824 0.773 0.861 0.771 0.833
1 0.841 0.808 0.883 0.811 0.868 0.818 0.895 0.820 0.873

1.4 0.919 0.880 0.937 0.887 0.928 0.888 0.944 0.895 0.933
2 0.977 0.945 0.977 0.950 0.973 0.950 0.980 0.960 0.975

2.5 0.994 0.971 0.991 0.977 0.987 0.977 0.992 0.981 0.990
3 0.999 0.987 0.996 0.988 0.995 0.989 0.996 0.992 0.997

X05 -1.65 -1.53 -1.73 -1.54 -1.68 -1.47 -1.65 -1.49 -1.64
L.QT -0.67 -0.65 -0.89 -0.63 -0.82 -0.66 -0.90 -0.64 -0.83

MEDN 0.00 0.01 -0.28 0.02 -0.18 -0.02 -0.30 -0.01 -0.22
U.QT 0.67 0.76 0.39 0.76 0.52 0.71 0.35 0.72 0.47
X95 1.65 2.08 1.55 2.00 1.63 2.00 1.47 1.86 1.57
IQR 1.35 1.41 1.28 1.39 1.33 1.37 1.24 1.36 1.30
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Table 2: L = 10, α = 1

n = 100, L = 10, α = 1 n = 300, L = 10, α = 1
δ2 = 50 δ2 = 100 δ2 = 50 δ2 = 100

x normal MEL GMM MEL GMM MEL GMM MEL GMM
-3 0.001 0.001 0.004 0.000 0.002 0.000 0.000 0.000 0.002

-2.5 0.006 0.006 0.021 0.004 0.014 0.001 0.012 0.003 0.014
-2 0.023 0.023 0.082 0.017 0.055 0.015 0.070 0.018 0.055

-1.4 0.081 0.093 0.264 0.086 0.196 0.076 0.249 0.074 0.201
-1 0.159 0.186 0.432 0.165 0.350 0.160 0.429 0.158 0.359

-0.8 0.212 0.244 0.519 0.221 0.433 0.217 0.520 0.219 0.447
-0.6 0.274 0.308 0.609 0.286 0.517 0.283 0.610 0.286 0.536
-0.4 0.345 0.377 0.689 0.354 0.601 0.355 0.693 0.357 0.622
-0.2 0.421 0.445 0.762 0.429 0.675 0.430 0.769 0.434 0.700
0 0.500 0.510 0.822 0.506 0.738 0.503 0.830 0.514 0.764

0.2 0.579 0.576 0.871 0.574 0.796 0.574 0.877 0.588 0.821
0.4 0.655 0.639 0.909 0.636 0.845 0.640 0.912 0.655 0.868
0.6 0.726 0.696 0.936 0.695 0.882 0.703 0.939 0.718 0.904
0.8 0.788 0.748 0.957 0.747 0.914 0.758 0.960 0.772 0.931
1 0.841 0.792 0.971 0.792 0.938 0.802 0.974 0.819 0.950

1.4 0.919 0.860 0.986 0.865 0.968 0.874 0.989 0.889 0.977
2 0.977 0.924 0.997 0.934 0.990 0.935 0.997 0.952 0.994

2.5 0.994 0.952 0.999 0.964 0.997 0.961 0.999 0.977 0.999
3 0.999 0.970 1.000 0.981 0.999 0.977 1.000 0.991 1.000

X05 -1.65 -1.70 -2.19 -1.63 -2.04 -1.58 -2.11 -1.60 -2.04
L.QT -0.67 -0.78 -1.44 -0.71 -1.25 -0.70 -1.40 -0.70 -1.26

MEDN 0 -0.03 -0.84 -0.02 -0.64 -0.01 -0.84 -0.04 -0.68
U.QT 0.67 0.81 -0.23 0.81 0.04 0.77 -0.25 0.71 -0.05
X95 1.65 2.46 0.73 2.24 1.14 2.25 0.70 1.97 1.00
IQR 1.35 1.59 1.20 1.52 1.28 1.47 1.15 1.42 1.22
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Table 3: L = 20, 30, α = 1

n = 100, L = 20, α = 1 n = 300, L = 30, α = 1
δ2 = 100 δ2 = 300 δ2 = 100 δ2 = 300

x normal MEL GMM MEL GMM MEL GMM MEL GMM
-3 0.001 0.008 0.018 0.006 0.011 0.001 0.036 0.002 0.018

-2.5 0.006 0.021 0.066 0.019 0.038 0.006 0.133 0.008 0.061
-2 0.023 0.053 0.177 0.049 0.101 0.023 0.327 0.029 0.164

-1.4 0.081 0.138 0.407 0.126 0.262 0.091 0.616 0.093 0.383
-1 0.159 0.224 0.582 0.207 0.407 0.173 0.777 0.174 0.549

-0.8 0.212 0.273 0.666 0.257 0.486 0.231 0.837 0.225 0.632
-0.6 0.274 0.327 0.739 0.312 0.568 0.294 0.885 0.285 0.707
-0.4 0.345 0.387 0.803 0.374 0.644 0.360 0.922 0.356 0.769
-0.2 0.421 0.448 0.853 0.438 0.713 0.428 0.949 0.431 0.823
0 0.500 0.508 0.892 0.502 0.777 0.493 0.966 0.504 0.866

0.2 0.579 0.567 0.924 0.564 0.830 0.556 0.978 0.572 0.901
0.4 0.655 0.622 0.949 0.624 0.871 0.617 0.986 0.641 0.929
0.6 0.726 0.675 0.967 0.680 0.902 0.674 0.992 0.705 0.951
0.8 0.788 0.726 0.979 0.729 0.928 0.726 0.996 0.761 0.967
1 0.841 0.770 0.987 0.775 0.948 0.772 0.998 0.808 0.979

1.4 0.919 0.839 0.995 0.851 0.978 0.847 1.000 0.876 0.991
2 0.977 0.910 0.999 0.929 0.995 0.925 1.000 0.944 0.998

2.5 0.994 0.945 1.000 0.964 0.998 0.959 1.000 0.974 1.000
3 0.999 0.968 1.000 0.981 0.999 0.978 1.000 0.990 1.000

X05 -1.65 -2.03 -2.62 -1.99 -2.37 -1.69 -2.89 -1.73 -2.59
L.QT -0.67 -0.89 -1.79 -0.82 -1.44 -0.74 -2.17 -0.71 -1.74

MEDN 0 -0.03 -1.19 -0.01 -0.77 0.02 -1.64 -0.01 -1.12
U.QT 0.67 0.91 -0.57 0.89 -0.09 0.90 -1.08 0.76 -0.46
X95 1.65 2.59 0.41 2.25 1.02 2.33 -0.19 2.08 0.59
IQR 1.35 1.80 1.22 1.71 1.35 1.64 1.09 1.47 1.27
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Table 4: α = 0

n = 100, L = 3 n = 100, L = 20 n = 300, L = 10 n = 300, L = 30
α = 0, δ2 = 30 α = 0, δ2 = 100 α = 0, δ2 = 50 α = 0, δ2 = 100

x normal MEL GMM MEL GMM MEL GMM MEL GMM
-3 0.001 0.009 0.003 0.022 0.002 0.011 0.001 0.018 0.003

-2.5 0.006 0.021 0.009 0.045 0.008 0.022 0.006 0.036 0.007
-2 0.023 0.049 0.028 0.084 0.025 0.050 0.020 0.068 0.019

-1.4 0.081 0.117 0.089 0.161 0.082 0.119 0.071 0.145 0.068
-1 0.159 0.191 0.161 0.233 0.157 0.202 0.151 0.220 0.139

-0.8 0.212 0.243 0.216 0.274 0.211 0.254 0.206 0.268 0.191
-0.6 0.274 0.300 0.281 0.324 0.274 0.310 0.270 0.321 0.255
-0.4 0.345 0.367 0.353 0.377 0.345 0.368 0.339 0.380 0.333
-0.2 0.421 0.438 0.431 0.433 0.421 0.432 0.415 0.442 0.416
0 0.500 0.511 0.512 0.492 0.499 0.502 0.501 0.504 0.501

0.2 0.579 0.583 0.590 0.550 0.575 0.574 0.584 0.564 0.582
0.4 0.655 0.651 0.662 0.604 0.649 0.639 0.662 0.619 0.662
0.6 0.726 0.712 0.731 0.656 0.719 0.698 0.733 0.671 0.737
0.8 0.788 0.766 0.792 0.706 0.781 0.753 0.799 0.724 0.801
1 0.841 0.815 0.842 0.756 0.835 0.801 0.852 0.772 0.858

1.4 0.919 0.895 0.920 0.835 0.918 0.881 0.927 0.852 0.932
2 0.977 0.962 0.979 0.915 0.974 0.951 0.981 0.932 0.982

2.5 0.994 0.983 0.992 0.956 0.993 0.979 0.996 0.965 0.995
3 0.999 0.990 0.997 0.976 0.998 0.990 1.000 0.984 0.999

X05 -1.65 -1.99 -1.73 -2.43 -1.67 -1.99 -1.56 -2.24 -1.54
L.QT -0.67 -0.77 -0.69 -0.91 -0.67 -0.82 -0.66 -0.87 -0.61

MEDN 0 -0.03 -0.03 0.03 0.00 -0.01 0.00 -0.01 0.00
U.QT 0.67 0.74 0.66 0.98 0.70 0.79 0.65 0.90 0.64
X95 1.65 1.85 1.64 2.40 1.68 1.98 1.59 2.23 1.55
IQR 1.35 1.51 1.35 1.89 1.37 1.61 1.31 1.77 1.25
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Table 5: α = 5

n = 100, L = 3 n = 100, L = 20 n = 300, L = 10 n = 300, L = 30
α = 5, δ2 = 50 α = 5, δ2 = 100 α = 5, δ2 = 50 α = 5, δ2 = 100

x normal MEL GMM MEL GMM MEL GMM MEL GMM
-3 0.001 0.000 0.000 0.001 0.031 0.000 0.000 0.000 0.124

-2.5 0.006 0.000 0.000 0.008 0.131 0.000 0.016 0.001 0.356
-2 0.023 0.004 0.014 0.029 0.326 0.004 0.098 0.013 0.634

-1.4 0.081 0.046 0.099 0.101 0.625 0.045 0.362 0.070 0.873
-1 0.159 0.129 0.231 0.185 0.781 0.127 0.588 0.155 0.948

-0.8 0.212 0.189 0.315 0.240 0.838 0.187 0.685 0.212 0.967
-0.6 0.274 0.260 0.406 0.305 0.885 0.258 0.761 0.274 0.980
-0.4 0.345 0.340 0.492 0.375 0.921 0.337 0.822 0.344 0.988
-0.2 0.421 0.415 0.573 0.444 0.946 0.415 0.873 0.420 0.993
0 0.500 0.492 0.654 0.508 0.965 0.493 0.912 0.498 0.996

0.2 0.579 0.570 0.725 0.568 0.978 0.571 0.939 0.575 0.998
0.4 0.655 0.638 0.780 0.628 0.986 0.643 0.957 0.639 1.000
0.6 0.726 0.697 0.824 0.681 0.991 0.701 0.971 0.697 1.000
0.8 0.788 0.749 0.862 0.728 0.994 0.754 0.981 0.752 1.000
1 0.841 0.798 0.894 0.772 0.996 0.801 0.988 0.799 1.000

1.4 0.919 0.872 0.939 0.850 0.998 0.875 0.996 0.870 1.000
2 0.977 0.939 0.976 0.917 1.000 0.937 0.999 0.935 1.000

2.5 0.994 0.968 0.988 0.951 1.000 0.962 1.000 0.966 1.000
3 0.999 0.981 0.994 0.970 1.000 0.978 1.000 0.983 1.000

X05 -1.65 -1.37 -1.64 -1.77 -2.86 -1.37 -2.22 -1.55 -3.31
L.QT -0.67 -0.63 -0.95 -0.77 -2.17 -0.62 -1.61 -0.68 -2.70

MEDN 0 0.02 -0.38 -0.03 -1.66 0.02 -1.16 0.00 -2.25
U.QT 0.67 0.80 0.29 0.90 -1.10 0.79 -0.63 0.79 -1.76
X95 1.65 2.14 1.54 2.48 -0.17 2.23 0.32 2.21 -0.98
IQR 1.35 1.43 1.24 1.67 1.07 1.41 0.98 1.47 0.95
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Table 6: n = 50

n = 50, L = 3 n = 50, L = 3 n = 50, L = 10 n = 50, L = 10
α = 1, δ2 = 50 α = 5, δ2 = 50 α = 1, δ2 = 100 α = 5, δ2 = 100

x normal MEL GMM MEL GMM MEL GMM MEL GMM
-3 0.001 0.000 0.000 0.000 0.000 0.005 0.004 0.001 0.004

-2.5 0.006 0.001 0.002 0.000 0.000 0.016 0.016 0.008 0.023
-2 0.023 0.012 0.020 0.004 0.014 0.042 0.064 0.028 0.088

-1.4 0.081 0.069 0.101 0.047 0.105 0.120 0.216 0.098 0.277
-1 0.159 0.153 0.214 0.132 0.239 0.205 0.365 0.183 0.448

-0.8 0.212 0.205 0.285 0.191 0.322 0.260 0.448 0.239 0.538
-0.6 0.274 0.271 0.368 0.260 0.413 0.326 0.534 0.302 0.624
-0.4 0.345 0.346 0.452 0.338 0.499 0.394 0.614 0.366 0.697
-0.2 0.421 0.424 0.536 0.418 0.582 0.461 0.682 0.438 0.761
0 0.500 0.502 0.615 0.496 0.656 0.526 0.743 0.511 0.816

0.2 0.579 0.575 0.683 0.572 0.719 0.589 0.801 0.575 0.859
0.4 0.655 0.640 0.746 0.640 0.777 0.649 0.850 0.635 0.893
0.6 0.726 0.701 0.803 0.700 0.826 0.702 0.886 0.685 0.920
0.8 0.788 0.758 0.851 0.756 0.864 0.748 0.914 0.732 0.941
1 0.841 0.806 0.886 0.803 0.893 0.788 0.937 0.774 0.958

1.4 0.919 0.878 0.935 0.868 0.938 0.852 0.968 0.843 0.978
2 0.977 0.942 0.975 0.934 0.976 0.918 0.990 0.913 0.992

2.5 0.994 0.968 0.990 0.961 0.988 0.951 0.997 0.948 0.997
3 0.999 0.981 0.995 0.977 0.995 0.972 0.999 0.969 0.999

X05 -1.65 -1.53 -1.70 -1.38 -1.66 -1.91 -2.09 -1.73 -2.23
L.QT -0.67 -0.66 -0.89 -0.63 -0.97 -0.83 -1.30 -0.76 -1.47

MEDN 0 0.00 -0.29 0.01 -0.40 -0.08 -0.68 -0.03 -0.88
U.QT 0.67 0.77 0.41 0.78 0.31 0.81 0.02 0.88 -0.24
X95 1.65 2.13 1.57 2.25 1.54 2.48 1.15 2.53 0.90
IQR 1.35 1.43 1.31 1.40 1.28 1.64 1.33 1.65 1.23
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Table 7: χ2
(3) case

n = 100, L = 3 n = 100, L = 20 n = 300, L = 10
α = 1, δ2 = 50 α = 1, δ2 = 100 α = 1, δ2 = 50

x normal MEL GMM MEL GMM MEL GMM
-3 0.001 0.000 0.000 0.004 0.008 0.001 0.001

-2.5 0.006 0.000 0.001 0.011 0.039 0.004 0.011
-2 0.023 0.008 0.013 0.031 0.123 0.013 0.050

-1.4 0.081 0.057 0.083 0.098 0.337 0.068 0.211
-1 0.159 0.134 0.189 0.184 0.522 0.151 0.391

-0.8 0.212 0.194 0.264 0.236 0.617 0.209 0.488
-0.6 0.274 0.261 0.347 0.296 0.696 0.275 0.584
-0.4 0.345 0.338 0.436 0.360 0.769 0.349 0.676
-0.2 0.421 0.420 0.523 0.428 0.831 0.423 0.762
0 0.500 0.499 0.605 0.498 0.879 0.497 0.828

0.2 0.579 0.572 0.681 0.566 0.914 0.570 0.877
0.4 0.655 0.640 0.746 0.632 0.940 0.644 0.915
0.6 0.726 0.702 0.800 0.691 0.959 0.706 0.943
0.8 0.788 0.758 0.848 0.743 0.972 0.757 0.962
1 0.841 0.808 0.889 0.790 0.982 0.803 0.975

1.4 0.919 0.881 0.940 0.862 0.994 0.876 0.991
2 0.977 0.945 0.976 0.931 1.000 0.942 0.998

2.5 0.994 0.969 0.989 0.965 1.000 0.971 0.999
3 0.999 0.982 0.995 0.982 1.000 0.983 0.999

X05 -1.65 -1.46 -1.60 -1.77 -2.40 -1.52 -2.00
L.QT -0.67 -0.63 -0.84 -0.75 -1.60 -0.67 -1.30

MEDN 0 0.00 -0.25 0.01 -1.04 0.01 -0.78
U.QT 0.67 0.77 0.42 0.83 -0.46 0.77 -0.23
X95 1.65 2.10 1.52 2.26 0.50 2.10 0.66
IQR 1.35 1.40 1.25 1.58 1.15 1.44 1.07
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Table 8: t(5) case

n = 100, L = 3 n = 100, L = 20 n = 300, L = 10
α = 1, δ2 = 50 α = 1, δ2 = 100 α = 1, δ2 = 50

x normal MEL GMM MEL GMM MEL GMM
-3 0.001 0.000 0.000 0.004 0.010 0.000 0.000

-2.5 0.006 0.002 0.003 0.012 0.042 0.001 0.013
-2 0.023 0.012 0.018 0.037 0.144 0.012 0.065

-1.4 0.081 0.055 0.089 0.108 0.385 0.063 0.253
-1 0.159 0.136 0.208 0.199 0.576 0.148 0.444

-0.8 0.212 0.193 0.287 0.251 0.664 0.205 0.543
-0.6 0.274 0.266 0.372 0.307 0.747 0.271 0.638
-0.4 0.345 0.347 0.459 0.371 0.813 0.347 0.721
-0.2 0.421 0.428 0.550 0.439 0.863 0.427 0.791
0 0.500 0.510 0.634 0.511 0.904 0.505 0.848

0.2 0.579 0.586 0.705 0.580 0.936 0.579 0.890
0.4 0.655 0.655 0.767 0.642 0.959 0.646 0.921
0.6 0.726 0.715 0.818 0.698 0.974 0.702 0.945
0.8 0.788 0.769 0.862 0.748 0.983 0.754 0.964
1 0.841 0.816 0.897 0.794 0.990 0.800 0.977

1.4 0.919 0.885 0.945 0.861 0.997 0.871 0.990
2 0.977 0.944 0.979 0.928 1.000 0.935 0.996

2.5 0.994 0.971 0.991 0.957 1.000 0.965 0.998
3 0.999 0.983 0.996 0.976 1.000 0.978 1.000

X05 -1.65 -1.44 -1.61 -1.84 -2.44 -1.50 -2.09
L.QT -0.67 -0.64 -0.89 -0.80 -1.69 -0.66 -1.41

MEDN 0 -0.02 -0.31 -0.03 -1.17 -0.01 -0.89
U.QT 0.67 0.73 0.34 0.81 -0.59 0.79 -0.32
X95 1.65 2.09 1.46 2.37 0.31 2.20 0.65
IQR 1.35 1.37 1.23 1.61 1.10 1.44 1.09
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Table 9: Accuracy of the cdf of GMM (1)

n = 100, L = 2, α = 1
δ2 = 50 δ2 = 100

x Exact Our Method Difference Exact Our Method Difference
-3.0 0.000 0.000 0.000 0.000 0.000 0.000
-2.5 0.001 0.001 0.000 0.002 0.001 -0.001
-2.0 0.012 0.012 0.000 0.015 0.016 0.001
-1.5 0.061 0.054 -0.007 0.063 0.064 0.001
-1 0.181 0.178 -0.004 0.175 0.181 0.006

-0.8 0.251 0.250 -0.001 0.239 0.246 0.007
-0.6 0.331 0.332 0.001 0.313 0.316 0.003
-0.4 0.414 0.417 0.003 0.393 0.395 0.002
-0.2 0.498 0.503 0.005 0.476 0.480 0.004
0 0.580 0.587 0.007 0.557 0.565 0.008

0.2 0.655 0.661 0.006 0.633 0.641 0.008
0.5 0.752 0.752 0.000 0.735 0.741 0.006
1.0 0.868 0.870 0.002 0.860 0.857 -0.003
2.0 0.969 0.971 0.002 0.971 0.971 0.000
3.0 0.993 0.992 -0.001 0.995 0.995 0.000

X025 -1.80 -1.78 0.02 -1.84 -1.86 -0.02
L.QT -0.80 -0.80 0.00 -0.77 -0.79 -0.02

MEDN -0.20 -0.21 -0.01 -0.14 -0.15 -0.01
U.QT 0.49 0.49 0.00 0.55 0.53 -0.02
X975 2.14 2.12 -0.02 2.09 2.09 0.00
IQR 1.29 1.29 0.00 1.32 1.32 0.00
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Table 10: Accuracy of the cdf of GMM (2)

n = 300, L = 29
α = 1, δ2 = 100 α = 5, δ2 = 100

x Exact Our Method Difference Exact Our Method Difference
-3.0 0.024 0.024 0.000 0.090 0.095 0.005
-2.5 0.108 0.108 0.000 0.322 0.327 0.005
-2.0 0.295 0.290 -0.005 0.630 0.631 0.001
-1.5 0.551 0.545 -0.006 0.852 0.855 0.003
-1.0 0.776 0.772 -0.004 0.954 0.955 0.001
-0.8 0.841 0.841 0.000 0.973 0.974 0.001
-0.6 0.892 0.894 0.002 0.985 0.985 0.000
-0.4 0.929 0.931 0.002 0.991 0.991 0.000
-0.2 0.955 0.956 0.001 0.995 0.996 0.001
0 0.972 0.972 0.000 0.997 0.998 0.001

0.2 0.983 0.982 -0.001 0.999 1.000 0.001
0.5 0.992 0.992 0.000 1.000 1.000 0.000
1.0 0.998 0.999 0.001 1.000 1.000 0.000
2.0 1.000 1.000 0.000 1.000 1.000 0.000
3.0 1.000 1.000 0.000 1.000 1.000 0.000

X025 -2.99 -2.99 0.00 -3.32 -3.31 0.01
L.QT -2.10 -2.09 0.01 -2.63 -2.64 -0.01

MEDN -1.60 -1.59 0.01 -2.22 -2.22 0.00
U.QT -1.07 -1.06 0.01 -1.77 -1.77 0.00
X0975 0.05 0.05 0.01 -0.78 -0.78 -0.01
IQR 1.03 1.04 0.00 0.86 0.87 0.01
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Figure 1: n=300,L=3
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Figure 2: n=300,L=10
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Figure 3: n=300,L=30
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