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Abstract

A model of self-feeding fear is presented. Suppose that an economic agent is (1-ε) ×

100% certain that uncertainty she faces is characterized by a particular probability measure,
but that she has a fear that, with ε × 100% chance, her conviction is completely wrong and
she is left perfectly ignorant about the true measure in the present as well as in the future.
We call this situation ε-contamination of confidence. In this situation, if the economic agent
follows Bayesian procedure or its variant, which is considered as rational in the theory of
economics, her confidence erodes after having new observation.
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1. Introduction and Summary

Consider a following cheap scenario that may be found in any of TV soap operas. “A

wife of a medical doctor in a wealthy suburb of a big city with a luxurious life style, has

developed a fear, though very small, that her husband may have an ongoing affair with someone

in his clinic. She is still almost sure that it is not true, but this small fear makes her cautious

about her husband’s daily activities. Then, she notices small things that might be overlooked

before: a tiny pinky stain on the collar of his shirt, slightly more than usual late returns home,

and seeming avoidance of her eyes. Although she still wants to believe his fidelity, they seem

to, though rather vaguely, suggest the opposite. Moreover, she is now gradually able to explain

previously overlooked, inexplicable behavior of her husband in the past. Her fear thus grows,

feeding on her fear itself. ...”

The behavior of this wife seems psychopathic, and not a good subject of economics:

after all, economics is a science of rational behavior, not of pathological one. However,

we argue that this kind of behavior may not at all be pathological, but a result of rational

information processing. In particular, we show the following: Suppose that an economic agent

is (1 − ε) × 100% certain that uncertainty she faces is characterized by a particular probability

measure, but that she has a fear that, with ε × 100% chance, her conviction is completely

wrong and she is left perfectly ignorant about the true measure in the present as well as in the

future. We call this situation ε-contamination of confidence. In this situation, if the economic

agent follows Bayesian procedure or its variant, which is considered as rational in the theory of

economics, her confidence erodes after having new observation. Thus confidence erodes and

fear feeds on itself. The reason of confidence erosion is very similar to the example of the

doctor’s wife. New information brings a new possibility which is not previously considered.

In this paper, the ε-cotamination is characterized as an example of Knightian uncertainty.

In contrast to the traditional approach, the Knightian uncertainty approach characterizes uncertainty

as a set of distributions, instead of a single distribution. Hence, learning is characterized by

an update process of the set of distributions after each of random sampling. Among update

rules under Knightian uncertainty, the maximum-likelihood update rule, which is often called

the Dempster-Shafer rule, and a generalized Bayesian update rule, which may be called the
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Fagin-Halpern rule, have attracted much attention since they seem intuitive and sensible.1 After

having new observation, the Dempster-Shafer rule chooses, among all distributions in the set

characterizing Knightian uncertainty, those that put the highest probability on the occurrence

of an actual observation, and updates the chosen distributions by using the Bayes rule (thus

narrowing of the range of probability measures takes place). The Fagin-Halpern rule updates all

distribution in the set by using the Bayes rule and keeps all of them in the set (thus there is no

narrowing). Both rules are based on Bayesian ideas. Since these rules are sensible, one may

expect that by using either or both of these rules, learning reduces Knightian uncertainty, in the

sense that the set of distributions that the decision maker faces “shrinks” after each observation.

However, we show the opposite is the case under ε-contamination. This is surprising particularly

in the case of the Dempster-Shafer rule, in which substantial narrowing seems to occur after

obtaining a new observation through the maximum-likelihood principle.

In fact, there are many anecdotes of self-feeding fear in the real world. In stock

markets, when confidence erodes, fear sometimes seems to feed on itself in bear markets even

though there are no particularly bad news. However, when fear goes away, the market quickly

stages a rally (sometimes a spectacular one) to return to the no-fear level. In currency markets,

if confidence in the will of a country’s authority to defend home currency diminishes, then fear

of depreciation in some cases may feed itself to accelerate depreciation to overshoot. These

phenomena may be a result of rational behavior of economic agents facing ε-contamination of

confidence.

In the statistics literature, Seidenfeld and Wasserman (1993) presented necessary and

sufficient conditions that dilation of uncertainty (which corresponds to an erosion of confidence)

take place in the case of the “no-narrowing” Fagin and Halpern rule. However, these conditions

are hard to explain and thus they are difficult to apply in economic problems of our interest.

The contribution of this paper is, firstly, to present an example that dilation still occurs in the

“range-narrowing” Dempster-Shafer rule, and second and most of all, to show that confidence

erosion or self-feeding fear can happen quite easily if such confidence erosion is ε-contamination.

1In fact, to our knowledge, there is no other update rule that has been discussed as widely and intensively as
these rules in the literature.
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This paper is organized as follows. In Section 2, we present a simple example of

self-feeding fear in a model of job search and learning developed by Rothschild (1974). A

general model of self-feeding fear is presented in Sections 3 through 5. In Section 3, we

formulate stochastic environment and the decision maker’s objective function, and define “dilation

of uncertainty”: a situation that “new observation reduces confidence.” Section 4 defines and

examines two “sensible” updating rules: the Dempster-Shafer and Fagin-Halpern rules. Section 5

contains the main results: In the case of ε-contamination, dilation of uncertainty occurs regardless

of whether the Dempster-Shafer rule or the Fagin-Halpern one is utilized.

2. Self-Feeding Fear in Rothschild’s Learning Model

Let us consider a case considered by Rothschild (1974), which has been one of the most

well-known examples in the economics of learning. An unemployed worker is searching for a

job. Different firms offer different wages. She takes a job interview sequentially and gets one

wage quotation each time. To make analysis simple and apparent, we consider a two-period

model.2

In Rothschild’s model, the unemployed worker is risk-neutral, and contemplates her

optimal policy in terms of expected income. She does not know the wage distribution,

and learns about the distribution from the wage observation. In particular, the unemployed

worker assumes that the wage-offer distribution is a multinomial distribution with a support of

W = {w1, . . . , wk} ⊆ R. However, she does not know probability pi of a particular wi.

It is then assumed that the unemployed worker thinks that the probability of pi’s is

distributed according to a Dirichlet distribution over a set P,

P =

{
p = (p1, . . . , pk) ∈ R

k

∣∣∣∣∣ (∀i) pi > 0 and
k∑

i=1

pi = 1

}
,

whose density function is

f(p|α) =
Γ(α1 + · · ·+ αk)

Γ(α1) · · ·Γ(αk)
pα1−1
1

· · · p
αk−1−1

k−1
(1−
∑

k−1

i=1
pi)

αk−1 ,

2Rothschild (1974) considers an infinite horizon. We deviate from his work in this respect, in order to make our
argument simple and transparent.
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where α ∈ R
k
++ is a parameter vector and Γ(·) is the gamma function. The mean of each

marginal, pi (i = 1, . . . , k), is given by

E[pi] =
αi

∑k
�=1 α�

. (1)

Suppose that the decision-maker observed a wage offer wi in the first period. Then, by

DeGroot (1970, p.174, Theorem 1), the posterior distribution of wj’s, updated by Bayes’ rule

upon observing wi, turns out to be the Dirichlet distribution with the parameter vector

α = (α1, . . . , αi−1, αi + 1, αi+1, . . . , αk) . (2)

The learning process of the unemployed worker has the following interpretation. Suppose

that the agent has a “prior” wage distribution which is multinomial with parameters p
0 =

(p01, . . . , p
0
k) over the wage offer in the second period, where for each j, p0j is a probability

of wj’s occurrence and it is defined by p0j ≡ E[pj ]. Then, from (1), her “prior” second-period

expected wage income will be

k∑

j=1

wjp
0
j =

k∑

j=1

wjE[pj ] =

∑k
j=1 wjαj
∑k

�=1 α�

. (3)

Then, the worker gets the wage offer wi for some i in the first period. Upon observing wi,

she revises her prior distribution, p
0, to the posterior one, p = (p′

1(wi), . . . , p
′
k(wi)), where

p′
j(wi) = E[pj |wi]. Then, with some calculation3, her “prior” second-period expected income (3)

is revised to the “posterior” second-period expected income given the observation of the first

period:

k∑

j=1

wjp
′
j(wi) =

k∑

j=1

wjE[pj |wi] =

∑
j �=i wjαj

∑k
�=1 α� + 1

+
wi(αi + 1)
∑k

�=1 α� + 1
=

∑k
j=1wjαj + wi
∑k

�=1 α� + 1
.

The unemployed worker then uses this posterior second-period expected wage income in contem-

plating her optimal strategy: whether to stop searching now or to go on to the next period.

The above example of Rothschild assumes that the unemployed worker is perfectly certain

that the wage distribution is a multinomial one and the distribution of the wage-occurrence
3Letting E[·|wi] be the posterior mean, (1) and the paragraph containing (2) imply that

(∀j �= i) E[pj|wi] =
αj

k

�=1 α� + 1
and E [pi|wi] =

αi + 1
k

�=1 α� + 1
.
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probability is a Dirichlet distribution. However, there is no a priori rationale that the worker

assumes this particular combination.

Let us now deviate from Rothschild’s specification, and consider a case in which the

unemployed worker is almost certain that the true distribution is the multinomial distribution

with the known p
0 = (p0

1
, . . . , p

0

k
), but that she is not completely certain about that. Thus,

she fears that, with ε× 100% probability, the true distribution is different from this multinomial

distribution, and moreover, she may not have any information about the true parameter values

if p
0 is not the true one. Furthermore, she is even uncertain about the “stability” of the

true distribution. She thinks the parameter values may change from the first period to the

second. In other words, the unemployed worker is almost ((1− ε) × 100%) certain about the

wage distribution but has a ε× 100% fear that she is wrong and left completely ignorant about

the true distribution. In this setting, it is natural to call ε as a measure to gauge ignorance, or

equivalently, (1− ε) as the degree of confidence.

Since the unemployed worker is risk-neutral and thus maximizes expected income, her

situation is the same as that of a decision-maker facing the ε-contaminationof the distribution.4

Formally, let ε ∈ (0, 1) and let P× P be a set of pairs of p in the first period and p in the

second period5:

P× P =
{
(p,p )

∣
∣ p,p ∈ P

}
.

Then, the ε-contamination6 of (p,p ) = (p0,p0), denoted
{
(p0,p0)

}
ε

, is

{
(p0,p0)

}
ε

=
{
(1− ε) (p0,p0) + ε(q, q )

∣∣ (q, q ) ∈ P× P
}

.

Uncertainty which is not reduced to a single distribution and thus represented by a set of

4The concept of ε-contamination defined in this paper is first used in Nishimura and Ozaki (2001) who examine
search behavior under Knightian uncertainty.

5In other words, × is the set of all product measures of the form: ⊗ when we regard and as
probability measures on W . In the text, we denote ⊗ by ( , ).

6In this section’s definition of the ε-contamination, we restrict a contamination, ( , ), to be a product probability
measure. In the formal analysis in the following sections, we allow the contamination to be any probability measure
defined over the product space, which is not necessarily a product measure. See Eq (13) in Section 5.

The ε-contamination has been widely used in statistics literature to specify a set of measures (see, for example,
Berger, 1985). There, the sensitivity of an estimator to the assumed prior distribution (( 0

,
0) in the text) is the

main concern in the context of Bayesian estimation problems. While we also specify a set of measures or Knightian
uncertainty by the ε-contamination, our main concern is not such a robustness of a specfic prior or confidence but
the set itself, which reflects the decision-maker’s lack of confidence.
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distributions is called Knightian uncertainty. The ε-contanination defined above is one example

of Knightian uncertainty.

We now examine what happens to the degree of confidence when new observation

arrives. However, In order to proceed with our analysis, we should specify the decision

maker’s objective function and update procedure of priors in the case of Knightian uncertainty

or multiple probability distributions.

Firstly, it is known (see Schmeidler (1989) and Gilboa and Schmeidler (1989)) that in

multiple-probability cases of this kind, if the decision-maker’s behavior is in accordance with

certain sensible axioms, then her behavior is characterized as being uncertainty-averse: when the

decision-maker evaluates her position, she uses probability corresponding to the “worst” scenario.

Following this line of argument, we assume that the unemployed worker is uncertainty-averse.

Secondly, we extend Bayesian procedure to multiple priors by applying it to all probabilities in
{
(p0,p0)

}
ε

.7

Let us now consider this updating process. Let (wi, w
′

j) denote an event that the first-

period wage observation is wi and the second-period one is wj . Then, the probability of this

event measured by one element, (1− ε) (p0,p0) + ε(q, q ), of
{
(p0,p0)

}ε
is

Pr
(
wi, w

′

j

)
= (1− ε) p0i p

0

j + εqiq
′

j

and a corresponding second-period marginal probability is

Pr
(
w

′

j

)
= (1− ε) p0j + εq

′

j .

And hence, the set of the prior second-period probabilities is given by

{
(1− ε)p0 + εq

∣∣ q ∈ P
}
. (4)

Suppose as before that wi is observed. The unemployed worker updates each element

in the set of the prior second-period probabilities to their posterior, so that we have

Pr
(
w

′

j

∣∣wi

)
=

Pr(wi, w
′

j)

Pr (wi)
=
(
1− ε

′
)
p
0

j + ε
′
q

′

j (5)

7This happens to be the Fagin-Halpern rule defined in Section 4.
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where

ε
′ =

εqi

(1− ε) p0i + εqi
. (6)

The set of corresponding posteriors is the set of all these probabilities obtained by varying q

and q .

Let

ε̄
′ =

ε

(1− ε) p0i + ε
.

Then, we have

(
1− ε

′
)
p
0

j + ε
′
q

′

j =
(
1− ε̄

′
)
p
0

j + ε̄
′

((
1−

ε′

ε̄′

)
p
0

j +
ε′

ε̄′
q

′

j

)
.

Since ε̄′ ≥ ε′ and that P is the set of all conceivable q , we know
(
1−

ε′

ε̄′

)
p
0 +

ε′

ε̄′
q ∈ P .

Consequently, the set of corresponding posteriors is a subset of

{ (
1− ε̄

′
)
p
0 + ε̄

′
q

∣∣ q ∈ P
}
. (7)

Conversely, take one element of (7), (1− ε̄′)p0+ε̄′
q̄ . Then, it is always possible to find

ε′ ∈ [0, ε̄′] (and ultimately q ∈ P) and q ∈ P satisfying that (1− ε̄′)p0+ ε̄′
q̄ = (1− ε′)p0+ε′

q

and then qi ∈ [0, 1] satisfying (6). Since the set of posterior distributions corresponding to (4) is

characterized by (5) and (6) with q and q varying (see the paragraph containing (5) and (6)),

(7) is a subset of that set. Thus, all things considered, we conclude that the set of posteriors

after wi is observed is equal to (7).

Let us now compare the set of priors (4) and that of posteriors (7). The latter shows

that the unemployed worker is now (1 − ε̄′) × 100% certain about p
0: her fear of that her

conviction is wrong now increased from ε to ε̄′ (ε̄′ > ε as far as p0i < 1). The decision-maker’s

degree of confidence is decreased after the observation of wi. Note that there is no “surprise”

justifying a decrease in confidence. In other words, the fear of ignorance is feeding itself.

It is clear that dynamic feature of Knightian uncertainty plays a crucial role to obtain

this “self-feeding fear.” Here, Knightian uncertainty is dynamic in the sense that the decision-

maker thinks that the true distribution may change over time. Loosely speaking, the argument
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in the second to the last paragraph reveals that a new observation makes the decision-maker

“find” a combination of probabilities over two periods leading to a posterior probability that is

not considered by her before (probability outside her prior beliefs). To make an analogy of

the soap-opera story of the introduction, an event, which may be benign in a usual setup, may

nevertheless indicate a possibility that has never popped up to the mind of the decision-maker

before. Her rational reasoning in the form of Bayesian updating is ingenious to produce a story

that is inexistent in her minds before this observation is obtained.

In this section, we have presented an example that fear of ignorance is self-feeding: new

information reduces confidence of the decision-maker about uncertain world if her confidence

is ε-contaminated. However, the argument we have employed is heuristic, though intuitive.

Thus, one may question the generality and rigorousness of the result. In the next section,

we reformulate the basic problem of this section in a framework of behavior under dynamic

Knightian uncertainty having behavioral foundation. There are two updating rules commonly

utilized in the literature for this kind of problems. The formal exposition of these updating rules

is given in Section 4. In Section 5, we show that the same results as this section holds true for

general distributions and for both updating rules under ε-contamination: new information reduces

the decision-maker’s confidence.

3. The Two-Period Dynamic Model of Knightian Uncertainty

In order to make a formal analysis, we have to set up a dynamic model in which the

decision-maker have multiple probability measures about her economic environment. In the

following, we first specify stochastic environment and consider an update rule. We then incor-

porate the update rule into the decision-maker’s objective function to represent evolution of her

view of the world in the form of multiple probability measures over stochastic environment. We

exclusively consider a two-period model. An extension to multi-period cases is straightforward

but notationally cumbersome.

In the following, notations are somewhat involved, because of the complexity introduced

by dynamic Knghtian uncertainty: the decision-maker does not have perfect confidence not

only about a “true” probability measure each period but also how it changes over periods.
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Consequently, the model, including the objective function and updating rules, is specified in an

entire dynamic structure of the deicision-maker’s stochastic environment.

Information Structure. Let W be a state space for each single period and let Ω = W ×W

be the whole state space. A generic element of Ω is denoted by (w1, w2).

The information structure, which represents the basis of the decision-maker’s view of the

world, is exogenously given by a filtration F = 〈Ft〉t=0,1,2. We assume that F0 = {φ,Ω}, that

F1 is represented by a finite partition of Ω of the form: 〈Ei ×W 〉i for some finite partition

〈Ei〉
m
i=1 of W , and that F2 is represented by a finite partition of Ω of the form: 〈Ei × Fj〉i,j

for some finite partition 〈Fj〉
n
j=1 of W . Clearly, it holds that F0 ⊆ F1 ⊆ F2. We further

assume that m ≥ 2.

We abuse a notation to denote by (W, 〈Ei〉i) the measurable space on which the algebra

is generated by the partition 〈Ei〉i and we denote the set of all probability measures on it by

M(W, 〈Ei〉i). Similar notations apply to other cases in obvious manners.

Given p ∈ M(Ω,F2), we denote by p|1 its restriction on (Ω,F1). Although p|1 is

formally a measure on Ω, it can be naturally regarded as the one on (W, 〈Ei〉i) and in that

case, p|1(·) = p(· × W ). Thus viewed, p|1 can be considered as the first-period marginal

probability measure of p. Similarly, we define the second-period marginal probability measure,

p|2, of p. That is, let p|2 ∈M(W, 〈Fj〉j) be defined by p|2(·) = p(W × ·).

The decision-maker’s view of the world is represented by not a single probability measure

but a set of probability measures (Knightian uncertainty). Formally, we assume that the decision-

maker’s Knightian uncertainty is represented by P ⊆M(Ω,F2).

Finally, let us now define “priors.” Given P ⊆ M(Ω,F2), we define the (prior)

second-period marginal Knightian uncertainty, P|2, as a set of second-period marginal probability

measures such that

P|2 = { p|2 | p ∈ P } .

Here, the adjective prior emphasizes the fact that this is a set of the second-period marginal

probability measures before the decision-maker obtains an observation in the first period.
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Income Process. An income in each period, denoted y1 and y2, is a function from Ω =W×W

into R. We call (y1, y2) an income process if it is F-adapted, that is, (∀t) yt is Ft-measurable.

Given an income process (y1, y2), we write the value of y2 as y2|w1∈E,w2∈F if (w1, w2) ∈ E×F

for some E × F ∈ F2. The F-adaptedness allows us to write the value of y1 as y1|w1∈E if

w1 ∈ E for some E such that E ×W ∈ F1. We denote the set of F-adapted income processes

by Y (F).

Updating Rules. Let p be a probability measure on (Ω,F2), that is, let p ∈M(Ω,F2). After

observing Ei in the first period, the decision maker updates her probability measures.

Let us now first consider the ordinary Bayesian updating procedure. Given p and

Ei such that p(Ei × W ) > 0, we denote by p|2(·|Ei) the (posterior) probability measure on

(Ω,F2) conditional on the occurrence of Ei ×W . Here, the adjective posterior signifies the

fact that this is a probability measure after the decision-maker obtains an observation Ei. That

is, (∀i, j) p|2(Ei × Fj |Ei) = p(Ei × Fj)/p(Ei × W ). By writing p|2(·|Ei) = p|2(Ei × ·|Ei),

p|2(·|Ei) may be regarded as a probability measure on (W, 〈Fj〉j). (It should be noted here

that p|2(·) = p|2(·|W ).) The Bayesian procedure is defined as a function: (p,Ei) �→ p|2(·|Ei),

which maps a pair of measure p on (Ω,F2) and an event Ei in the first period, to the measure

on (W, 〈Fj〉j) according to the manner defined in this paragraph.

An updating rule we consider in this paper generalizes the function p|2 in the ordinary

Bayesian procedure to the case of multiple p’s, that is, where there exists Knightian uncertainty.

Formally, an updating rule is a function that maps a pair (P, E), where P is the decision-maker’s

Knightian uncertainty (a nonempty compact subset of M(Ω,F2)) and E is an 〈Ei〉i-measurable

event such that (∀p ∈ P) p(E ×W ) > 0, to a set of (posterior) probability measures, which is a

nonempty compact subset of M(W, 〈Fj〉j). We denote an updating rule by φ and its specific

value by φ(P, E). (This seemingly cumbersome notation is necessary for taking account of

dynamic Knightian uncertainty, as we will see later in this and following sections.)

There is one natural restriction on sensible updating rules. When P happens to be a

singleton, they should coincide with Bayes’ rule:

φ({p}, E) = { p|2(·|E) } . (8)
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Objective Function. Let us now turn to the issue of formulating the objective function of the

decision-maker. As in the previous section, we assume that the minimum of the “expected”

life-time income, V , is her objective function to be maximized, which is given by:

V (y1, y2) = min
p∈

m∑
i=1


(y1|w1∈Ei

) + β min
q∈φ( ,Ei)

n∑
j=1

(
y2|w1∈Ei, w2∈Fj

)
q(Fj)


 p(Ei ×W ) , (9)

where (y1, y2) ∈ Y (F), φ is a updating rule, β (> 0) is a discount factor and P is the

decision-maker’s Knightian uncertainty, which is a subset of M(Ω,F2). In order that this

definition is meaningful, P must be a nonempty compact subset of M(Ω,F2) satisfying (∀p ∈

P)(∀i) p(Ei ×W ) > 0.

Preferences represented by special cases of Eq (9), where the updating rules are further

specified, are axiomatized by Epstein and Schneider (2001) and Wang (2001) (see next section).

Dilation of Knightian Uncertainty. We now define “dilation” of (Knightian) uncertainty. Let

P ∈ M(Ω,F2) be Knightian uncertainty that the decision-maker faces and let φ be her update

rule. The dilation of (Knightian) uncertainty takes place upon the occurrence of E ∈ 〈Ei〉i if

the set of posterior probability measures generated by the update rule is strictly “greater” than

the set of prior probability measures, or equivalently if it holds that

φ(P, E) ⊃ P|2

where the set-inclusion is strict. In this case, the set of prior probability measures does

not shrink but dilates: the decision-maker faces larger uncertainty than before obtaining the

observation.8

8In the statistics literature, the dilation is defined with respect to lower- and upper-probabilities. To be more
precise, let ⊆ (Ω,F2) and let B ∈ F2 be such that (∀p ∈ ) p(B) > 0. Then, define the lower-probability,
denoted , by

(∀A ∈ F2) (A) = inf
p∈

p(A)

and define the conditional lower-probability, denoted (·|B), by

(∀A ∈ F2) (A|B) = inf
p∈

p(A ∩B)/p(B) .

The upper-probability and the conditional upper-probability (·|B) are defined symmetrically. Each of these
“probabilities” turns out to be non-additive probability measure, or capacity. It is said that B dilates A if the
following holds:

(A|B) < (A) ≤ (A) < (A|B) . (10)
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In contrast, if the opposite strict set-inclusion holds for some E ∈ 〈Ei〉i, we describe it

as the contraction of uncertainty upon the occurrence of E. In this case, the decision maker

faces smaller uncertainty than before obtaining the observation.

4. The Fagin-Halpern and Dempster-Shafer Rules

We consider two updating rules which have been extensively studied in the literature.9

The Fagin-Halpern updating rule (henceforth, the FH rule)10, which is also known as the

generalized Bayes’ rule, is denoted by φFH and is defined by

(∀P ⊆M(Ω,F2))(∀E ∈ 〈Ei〉i) φFH(P, E) = { p|2(·|E) | p ∈ P } . (11)

This means that the decision-maker updates all probability measures according to the ordinary

Bayesian procedure. In particular, she does not discard any of these measures after the ob-

servation. It is evident that the procedure we employed in Section 2 corresponds to this rule.

When φ is specified by φFH , the decision maker’s objective function becomes

V (y1, y2) = min
p∈

m∑
i=1


(y1|w1∈Ei

) + βmin
p∈

n∑
j=1

(
y2|w1∈Ei, w2∈Fj

)
p|2(Fj |Ei)


 p(Ei ×W ) .

A preference-theoretic foundation of this updating rule is given by Epstein and Schneider

(2001). They axiomatize the preference relation represented by (9) with P being “rectangular”

and φ being the FH rule (see Epstein and Schneider (2001) for details including the concept of

rectangularity).

For this concept of dilation and study of its properties, see Seidenfeld and Wasserman (1993). Herron, Seidenfeld
and Wasserman (1997) contains some additional analysis. Walley (1991) extensively studies the lower- and upper-
probabilities.

Seidenfeld and Wasserman (1993) derives a necessary and sufficient condition for the dilation to take place in the
sense of (10), for cases including the ε-contamination. Their condition, however, is based on a particular event A,
not on set of measures, so that its application to economic models is rather difficult if not impossible.

In Section 5, we derive a sufficient condition for the dilation to take place for the ε-contamination in the sense
defined in the text. Our definition is more general than (10) since it is applied directly to a set of measures, not to
a particular event A. We consider the Dempster-Shafer update rule as well as the Fagin-Halpern update rule (see the
next section) while (10) is related only to the Fagin-Halpern rule. Further, we consider dynamic nature of Knightian
uncertainty explicitly to derive economic intuition behind the dilation.

9See Dempster (1967, 1968); Shafer (1976); Fagin and Halpern (1990); Gilboa and Schmeidler (1993); and
Denneberg (1994).

10The Fagin-Halpern rule is originally proposed as an update rule for a non-additive measure. More precisely, the
rule was developed for which is characterized as the core of a non-additive measure (Fagin and Halpern, 1990;
Denneberg, 1994). The text use of the rule is its natural extension to the case of a more general .
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To define the Dempster-Shafer updating rule (henceforth, the DS rule)11, let P∗ be

defined by

(∀E ∈ 〈Ei〉i) P
∗(E) = argmax { p|1(E) | p ∈ P } .

Then, the DS rule, which is also known as the maximum-likelihood rule, is defined by

(∀P ⊆M(Ω,F2))(∀E ∈ 〈Ei〉i) φDS(P, E) = { p|2(·|E) | p ∈ P
∗(E) } . (12)

A preference-theoretic foundation of this updating rule is given by Wang (2001). He

axiomatizes the preference relation represented by (9) with P being the core of some convex

probability capacity and φ being the FH rule and the DS rule (see Wang (2001) for details

including the concept of probability capacity).12

Both the FH rule and the DS rule satisfy the requirement we impose on updating rules,

(8).

Lemma 1. Assume that P = {p} for some p ∈M(Ω,F2) such that (∀i) p(Ei ×W ) �= 0. Then,

(∀i) φFH(P, Ei) = φDS(P, Ei) = { p|2(·|Ei) } .

Proof. For the FH rule, the claim is immediate from (11). For the DS rule, the claim is also

immediate from (12) and the fact that (∀i) P∗(Ei) = {p}. �

This lemma shows that the both rules extend Bayes’ rule to the case where the prior is

not unique. Finally, it immediately follows from the definition that

(∀P)(∀i) φDS(P, Ei) ⊆ φFH(P, Ei) .

That is, the “degree of (Knightian) uncertainty” in the posteriors implied by the DS rule is no

more than that implied by the FH rule.

11The Dempster-Shafer rule is originally proposed as an updating rule for a non-additive measure (Dempster, 1967,
1968; Shafer, 1976). Later, Gilboa and Schmeidler (1993) showed that this rule is identical to the maximum-likelihood
updating rule, which we extend to the case of a more general in the text.

12For a related work which provides some axiomatic foundation to the DS rule, see Gilboa and Schmeidler (1993).
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5. The ε-contamination and Dilation of Uncertainty

In this section, we consider the case where the decision-maker’s Knightian uncertainty,

P, is specified by ε-contamination. We give a simple and easily verifiable condition under

which dilation takes place. Using this condition, we then show that if ε-contamination under

consideration is the one of a product of probability measures (as in the case of Section 2),

the decision-maker always experiences dilation of uncertainty, regardless of whether the updating

rule is FH or DS.

Formally, let p0 be a probability measure on (Ω,F2) such that (∀i) p0(Ei ×W ) > 0,

and let ε ∈ (0, 1). We assume that the decision-maker’s P (⊆M(Ω,F2)) is characterized by the

ε-contamination of p0, such that

P =
{
p0
}ε

≡
{
(1− ε)p0 + εq

∣∣ q ∈M(Ω,F2)
}
. (13)

In the following analysis, the one-period counterpart of the two-period ε-contamination

(13) turns out to be important. Applying the same idea to the one-period case, we define for

each ε ∈ (0, 1) and each E ∈ 〈Ei〉i, the ε-contamination of p0|2(·|E) (∈M(W, 〈Fj〉j)) by

{
p0|2(·|E)

}ε
≡

{
(1− ε)p0|2(·|E) + εq2

∣
∣ q2 ∈M(W, 〈Fj〉j)

}
.

The following lemma shows that the second-period “restriction” of the ε-contamination

of p0 is the same as the ε-contamination of the second-period “restriction” of p0. In a sense,

the “operator” of taking ε-contamination and the “operator” of taking second-period “restriction”

or marginal are interchangeable with respect to p0, which is a probability measure on (Ω,F2)

such that (∀i) p0(Ei ×W ) > 0.

Formally,
{
p0
}ε∣∣

2
, the (prior) second-period marginal Knightian uncertainty of the ε-

contamination of p0, is equal to
{
p0|2

}ε
, the ε-contamination of the (prior) second-period

marginal probability measure p0|2 = p0|2(·|W ):

Lemma 2. Taking ristriction (or marginal), ·|
2
, and taking ε-contamination, {·}ε, are inter-

changeable with respect to p0: that is, (∀ε ∈ (0, 1))
{
p0
}ε∣∣

2
=

{
p0|2

}ε
.
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Proof. To show
{
p0
}ε∣∣

2
⊆

{
p0|2

}ε
, let p2 ∈

{
p0
}ε∣∣

2
. Then, there exists p ∈

{
p0
}ε

such

that p2 = p(W × ·). That p ∈
{
p0
}ε

in turn implies that there exists q ∈ M(Ω,F2) such that

p = (1−ε)p0+εq. Hence, p2 = p(W ×·) = (1−ε)p0|2(·)+εq|2(·). This shows that p2 ∈
{
p0|2

}ε

because q|2(·) ∈M(W, 〈Fj〉j).

To show
{
p0
}ε∣∣

2
⊇

{
p0|2

}ε
, let p2 ∈

{
p0|2

}ε
. Then, there exists q2 ∈M(W, 〈Fj〉j) such

that p2 = (1 − ε)p0|2 + εq2. Let q1 ∈ M(W, 〈Ei〉i) and let p = (1 − ε)p0 + ε(q1 × q2). Then,

p ∈
{
p0
}ε

and p|2 = (1− ε)p0|2 + εq2 = p2, and hence, p2 ∈
{
p0
}ε∣∣

2
. �

We now presents a result characterizing posterior second-period (marginal) Knightian

uncertainty derived by the two update rules in the case of ε-contamination.

Theorem 1. Let ε ∈ (0, 1) and let E ∈ 〈Ei〉i. Then,

φFH
({
p0
}ε

, E
)
= φDS

({
p0
}ε

, E
)
=

{
p0|2(·|E)

}ε′

where

ε′ = ε′(ε, E) ≡
ε

(1− ε)p0|1(E) + ε
> ε.

Proof. (a) The FH rule. Define R ⊆M(W, 〈Fj〉j) by

R =

{
(1− ε)p0|1(E)

(1− ε)p0|1(E) + εq1(E)
p0|2(·|E) +

εq1(E)

(1− ε)p0|1(E) + εq1(E)
q2

∣∣∣∣ q1 ∈M(W, 〈Ei〉i) ,
q2 ∈M(W, 〈Fj〉j)

}
.

We first show that

φFH
({
p0
}ε

, E
)
= R . (14)

By definition of φFH , it holds that

φFH
({
p0
}ε

, E
)
=
{
p|2(·|E) | p ∈

{
p0
}ε }

=

{
p(E × ·)

p(E ×W )

∣∣∣∣ p ∈ {
p0
}ε}

(15)

=

{
(1− ε)p0|1(E)

(1− ε)p0|1(E) + εq(E ×W )
p0|2(·|E) +

ε

(1− ε)p0|1(E) + εq(E ×W )
q(E × ·)

∣∣∣∣ q ∈M(Ω,F2)

}
,

where we invoked the fact that p0(E × ·) = p0|1(E) · p
0|2(·|E). Eq (15) shows that R ⊆

φFH
({
p0
}ε

, E
)

since q1 × q2 ∈M(Ω,F2).
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To show that the opposite inclusion also holds, let p ∈ φFH
({
p0
}ε

, E
)
. Then, there

exists q ∈M(Ω,F2) such that

p =
(1− ε)p0|1(E)

(1− ε)p0|1(E) + εq(E ×W )
p0|2(·|E) +

ε

(1− ε)p0|1(E) + εq(E ×W )
q(E × ·)

by (15). When q(E × W ) = 0, it follows that p = p0|2(·|E), and hence, p ∈ R (let q1

be such that q1(E) = 0 in the definition of R). When q(E × W ) �= 0, let q1 = q|1 and

q2 = q|2(·|E), which is now well-defined, in the definition of R. Then, q1 ∈ M(W, 〈Ei〉i) and

q2 ∈M(W, 〈Fj〉j), and hence, p ∈ R. Thus we have proved that (14) holds true.

We next show that

{
p0|2(·|E)

}ε′

= R

which completes the proof in the case of the FH rule.

It immediately follows that
{
p0|2(·|E)

}ε′
⊆ R (let q1 be such that q1(E) = 1). To

show that the opposite inclusion also holds, let p ∈ R. Then, there exist q1 ∈ M(W, 〈Ei〉i) and

q2 ∈M(W, 〈Fj〉j) such that

p =
(1− ε)p0|1(E)

(1− ε)p0|1(E) + εq1(E)
p0|2(·|E) +

εq1(E)

(1− ε)p0|1(E) + εq1(E)
q2

= (1− ε′)p0|2(·|E) + ε′
{
(1− ε̃)p0|2(·|E) + ε̃q2

}

where

ε̃ =
(1− ε)p0|1(E)q1(E) + εq1(E)

(1− ε)p0|1(E) + εq1(E)
.

Since (1 − ε̃)p0|2(·|E) + ε̃q2 ∈ M(W, 〈Fj〉j) by the fact that ε̃ ∈ [0, 1], it follows that p ∈

{
p0|2(·|E)

}ε′

as desired.

(b) The DS Rule. We only need to show that
{
p0|2(·|E)

}ε′
⊆ φDS

({
p0
}ε

, E
)

since

the opposite inclusion holds by (a) and the fact that φDS ⊆ φFH always holds.

To prove this, first note (see (12)) that (∀E ∈ 〈Ei〉i) we have

({
p0
}ε)∗

(E) =
{
(1− ε)p0 + εq

∣∣ q ∈M(Ω,F2) and q(E ×W ) = 1
}
,
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which in turn implies that

φDS
({
p0
}ε

, E
)
=
{
p|2(·|E)

∣∣∣ p ∈ ({
p0
}ε)∗

(E)
}

=

{
(1− ε)p0|1(E)

(1− ε)p0|1(E) + ε
p0|2(·|E) +

ε

(1− ε)p0|1(E) + ε
q(E × ·)

∣∣∣∣ q ∈M(W,F2) and q(E ×W ) = 1

}
.

Let p2 ∈
{
p0|2(·|E)

}
ε
′

. Then, there exists q2 ∈M(Ω, 〈Fj〉j) such that p2 = (1−ε′)p0|2(·|E)+ε
′q2.

Let q1 be the element of M(W, 〈Ei〉i) such that q1(E) = 1. Then, q1 × q2 ∈ M(Ω,F2),

(q1× q2)(E×W ) = 1 and p2 = (1− ε′)p0|2(·|E) + ε′q1(E)q2(·). Therefore, p2 ∈ φDS

({
p0
}ε
, E

)
as desired.

(c) To show ε′ > ε. Since we have assumed that (∀i : i = 1, ...m) p0(Ei ×W ) > 0 and

m ≥ 2 in Section 3, it follows that (∀i : i = 1, ...m) p0(Ei ×W ) = p0|1(Ei) < 1. Therefore, it

holds that ε′ > ε. �

Let us now define a measure of the “informational value” of the observation E with

respect to p0, the “pre-contamination” probability measure. Let E ∈ 〈Ei〉i and let δ (E) ∈ [0, 1]

be defined by

δ (E) = max
j=1, ... ,n

∣∣ p0|2(Fj |E)− p0|2(Fj)
∣∣ .

The real number δ (E) is the maximum of the “probability change” due to the observation E

with respect to the pre-contamination probability measure p0, which can be considered as a

measure of the informational value of the observation E for p0.

The next theorem shows that, if ε, the degree of contamination of p0, is sufficiently

large with respect to δ (E), the observation E’s information value with respect to p0, then the

dilation takes place.

Theorem 2. Let P be given by
{
p0
}ε

and let E ∈ 〈Ei〉i. Suppose that the degree of contam-

ination of p0 is sufficiently large compared with the informational value of the observation E

with respect to p0, that is, suppose that the following inequality holds:

ε >
p0|1(E)

(1− p0|1(E))minj p0|2(Fj)
δ (E) . (16)
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Then, the dilation occurs in the sense that it holds that

 φFH

({
p0
}ε

, E
)
= φDS

({
p0
}ε

, E
)
=


{p0|2(·|E)

}ε′

⊃
{
p0|2

}ε

 =

{
p0
}ε∣∣

2


 ,

where the inclusion is strict and ε′ is as defined in Theorem 1.

Proof. Note that the first two equalities in the left hand side were established by Theorem 1

and the last equality in the right hand side was established by Lemma 2, and hence, the theorem

claims that the strict inclusion holds.

We first prove
{
p0|2(·|E)

}
ε
′

⊇
{
p0|2

}
ε

, and then shows that inclusion is strict.

(a) Proof of
{
p0|2(·|E)

}
ε
′

⊇
{
p0|2

}
ε

. Let p2 ∈
{
p0|2

}
ε

. Then, there exists q2 ∈

M(W, 〈Fj〉j) such that p2 = (1− ε)p0|2 + εq2. Therefore, we have

p2 = (1− ε′)p0|2(·|E) + ε′

(
1− ε

ε′
p0|2 −

1− ε′

ε′
p0|2(·|E) +

ε

ε′
q2

)
(17)

= (1− ε′)p0|2(·|E) + ε′µ .

where

µ ≡
1− ε

ε′
p0|2 −

1− ε′

ε′
p0|2(·|E) +

ε

ε′
q2

It immediately follows that µ is an (additive) signed measure such that µ(φ) = 0 and µ(W ) = 1.

If µ ≥ 0, then µ ∈M(W, 〈Fj〉j) and hence p2 ∈
{
p0|2(·|E)

}ε′

implying
{
p0|2(·|E)

}ε′

⊇
{
p0|2

}ε
.

In the remaining of this subsection, we prove that µ ≥ 0. Note that if

(∀F ∈ 〈Fj〉j)
1− ε

ε′
p0|2(F )−

1− ε′

ε′
p0|2(F |E) ≥ 0 ,

then we have µ ≥ 0 since q2 ≥ 0. Therefore, it is sufficient to show the above relation.

If δ (E) = 0, it is straightforward to show

1− ε

ε′
p0|2(F )−

1− ε′

ε′
p0|2(F |E)

=
1− ε

ε′

(
p0|2(F )− p0|2(F |E)

)
−
ε− ε′

ε′
p0|2(F |E)

=
ε′ − ε

ε′
p0|2(F |E) ≥ 0 ,

since δ (E) = maxj
∣∣ p0|2(Fj |E)− p0|2(Fj)

∣∣ = 0 and ε′ ≥ ε.
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If δ (E) > 0, we have

1− ε

ε′
p0|2(F )−

1− ε′

ε′
p0|2(F |E) (18)

= (1− ε)

[(
1− ε

ε
p0|1(E) + 1

)
p0|2(F )−

1

ε
p0|1(E)p

0|2(F |E)

]

≥ (1− ε)

[(
1− ε

ε
p0|1(E) + 1

)
p0|2(F )−

1

ε
p0|1(E)

(
p0|2(F ) + δ (E)

)]

= (1− ε)

[(
1− p0|1(E)

)
p0|2(F )−

δ (E)

ε
p0|1(E)

]

≥ (1− ε)

[(
1− p0|1(E)

)
min
j

p0|2(Fj)−
δ (E)

ε
p0|1(E)

]

> (1− ε)

[(
1− p0|1(E)

)
min
j

p0|2(Fj)− δ (E) p0|1(E)

(
p0|1(E)

(1− p0|1(E))minj p0|2(Fj)
δ (E)

)
−1
]

= 0 ,

where the first equality holds by the definition of ε′; the first inequality holds by the definition

of δ; the second inequality holds by the min operator; and the strict inequality holds by (16)

and the assumptions that δ(E) > 0 and p0|1(E) > 0. This completes the first half of the proof.

(b) Proof of strict inclusion. Let F ∈ 〈Fj〉j be such that p0|2(F ) > 0 and let p̂2 ∈{
p0|2(·|E)

}ε′

be such that p̂2(F ) = (1− ε′)p0|2(F |E). We show p̂2 /∈
{
p0|2

}ε
.

If δ (E) = 0, we have for any p2 ∈
{
p0|2

}ε

p2 (F ) ≥ (1− ε)p0|2(F )

= (1− ε′)p0|2(F ) + (ε′ − ε) p0|2(F )

> (1− ε′)p0|2(F )

= (1− ε′)p0|2(F |E) = p̂2(F ) ,

where the strict inequality holds since ε′ > ε (Theorem 1) and p0|2(F ) > 0 by the assumption

of F , and its next equality holds since p0|2 (F ) = p0|2(F |E) by the assumption that δ(E) = 0.

Therefore, we have p̂2 /∈
{
p0|2

}ε
.

If δ (E) > 0, we have for any p2 ∈
{
p0|2

}ε

p2(F ) ≥ (1− ε′)p0|2(F |E) + ε′

(
1− ε

ε′
p0|2(F )−

1− ε′

ε′
p0|2(F |E)

)

> (1− ε′)p0|2(F |E) = p̂2(F )
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where the first inequality follows (17) and the second is implied by (18). Consequently, we

have p̂2 /∈
{
p0|2

}ε
. �

This theorem shows that the dilation occurs when the degree of confidence in p0 is

small (i.e., ε is large) compared with the informational value of the observation with respect to

p0 (i.e., δ (E)).

An important special case is the one in which we have p0 = p0
1
⊗ p0

2
for some p0

1
∈

M(W, 〈Ei〉i) and p0
2
∈ M(W, 〈Fj〉j), that is, p0 is a product of two probability measures. An

example of this case is analyzed in Section 2. In this example, there is no informational value

in observation E with respect to p0. To see this, note that we have p0|2(Fj |E) = p0|2(Fj) =

p0
2
(Fj) for all Fj . It is clear that we have δ (E) = 0 for all events E . Theorem 2 implies

the following corollary in this case.

Corollary 1. Suppose that p0 = p0
1
⊗p0

2
for some p0

1
∈M(W, 〈Ei〉i) and p0

2
∈M(W, 〈Fj〉j). Also,

suppose that P is given by
{
p0
}ε

. Then, for any E ∈ 〈Ei〉i, it holds that φFH(
{
p0
}ε

, Ei) =

φDS(
{
p0
}ε

, Ei) ⊃ P|
2
, where the inclusion is strict.

Proof. This follows immediately from Thoerem 2 since δ (E) = 0 when p0 = p0
1
⊗ p0

2
for some

p0
1

and p0
2
. �

This corollary shows a striking result. In the case of ε-contamination of a product

of probability measures, the FH rule and even DS rule, which are considered to have some

behavioral foundation and thus to be sensible in the multiple prior framework, actually increase,

rather than decrease, the degree of Knightian uncertainty. In a sense, new information worsens

the decision-maker’s confused state of confidence, rather than improves it.
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