
Discussion Papers are a series of manuscripts in their draft form. They are not intended for

circulation or distribution except as indicated by the author. For that reason Discussion Papers may

not be reproduced or distributed without the written consent of the author.

CIRJE-F-169

The Erosion and Sustainability of
Norms and Morale

Michihiro Kandori

University of Tokyo

September 2002



The Erosion and Sustainability of Norms and
Morale ∗

KANDORI, Michihiro†

Faculty of Economics, University of Tokyo

September 19, 2002

Abstract

The initially high performance of a socioeconomic organization is
quite often subject to gradual erosion over time. We present a simple
model which captures such a phenomenon. We assume that play-
ers are partly motivated by certain psychological factors, norms and
morale, and they are willing to exert extra effort if others do so. This
results in a ”continuum” of equilibrium effort levels, whose minimum
corresponds to the Nash equilibrium with respect to the material in-
centives. We show that repeated random shocks induce the erosion of
equilibrium effort levels, but they do not completely decay; in the long
run a certain range of efforts are sustainable. Our model shows that
different organizations typically enjoy diverse norms and morale, which
persist for a long time, in the vicinity of the equilibrium determined
by material incentives.
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1 Introduction

The initially high performance of a socioeconomic organization is quite often
subject to gradual erosion over time. The waiting time to obtain referee’s
reports for professional journals has been ever increasing (at least in eco-
nomics1), and a class tends to start later as a semester progresses2. In
the experimental studies of the voluntary contributions to public goods, it
has been repeatedly observed that contributions gradually decay over time.
In the present paper, we construct a simple model which captures such a
phenomenon. Our theory attributes the dynamics to certain psychological
factors, which might be phrased as norms and morale. An organization
may initially enjoy good performance due to high morale and effective work
norms. Those psychological factors have reciprocal nature in the sense that
one is able to maintain high morale and observe norms if others do so. How-
ever, one’s behavior is usually subject to random shocks, and as a result the
initial morale and norms are upset in due course. We show that a gradual
erosion of morale and norms results through the interplay of material (pe-
cuniary) incentives and the effectiveness of the psychological factors, under
perpetual random shocks. An interesting question is whether morale and
norms completely decay so that only material incentives matter in the long
run. Our model predicts that this is not the case, and it shows that a cer-
tain range of morale and norms are sustainable in the long run. Hence our
model shows that organizations enjoy diverse norms and morale, which per-
sist for a long time, in the vicinity of the equilibrium determined by material
incentives. Our model thus sheds light on the effectiveness, limitations, and
diversity of norms and morale in resource allocation problems.

There could be an alternative explanation for the decay of performance
in an organization, which is based on learning. The learning explanation
maintains that agents are not fully aware of material incentives in the short
run, but they gradually learn to behave as homo economicus: In the long
run, they play the equilibrium determined by the material incentives. While
learning is undeniably an important element in the dynamics of performance,
there are some evidences contradicting such an explanation. In the public
goods experiments where no contribution is the dominant strategy, a stylized
fact is that contributions decay over time but non-negligible contributions
remain even in the long run (Dawes and Thaler [6], Isaac, McCue, and Plott
[13] and Isaac, Walker, and Williams [14]). A particularly revealing result is

1Ellison [8] and [9]. See Section 5 and footnote 16 for more detailed discussion.
2At least in my experience.
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reported by Andreoni [4], who let subjects play the voluntary contributions
game ten rounds. The average contribution declined from 19.9 to 5.3 (zero
contribution is dominant). After the tenth round, the subjects are unex-
pectedly told to repeat the same experiment again. In the first round of
the new experiment, the average shot back to 19.7. This indicates that the
subjects are aware of material incentives, but there are non-material (i.e.,
psychological) factors which determine their behavior3.

What could be the nature of the relevant psychological factors? In the
growing literature on psychology and economics (or behavioral economics),
basically three different formulations have been proposed. One is called
pure altruism, which specifies that one’s utility is a weighed sum of her
own and others’ payoffs. Another formulation is referred to as warm glow,
which assumes that cooperative behavior per se provides positive utility.
The third formulation is what Rabin [19] called reciprocal altruism, which
is based on the idea that one is inclined to be nice to those who are nice to
himself4. The decay of morale and norms are most naturally captured by
this formulation, as we will see. Rabin [18] demonstrated a way to superim-
pose reciprocal altruism to material payoffs for 2× 2 games, building on the
notion of psychological games proposed by Geanakoplos, Pearce, and Stac-
chetti [12]. Levine [16] provided an alternative formulation, where attitude
towards other players is treated as a given but privately known parameter.
Lindbeck, Nyberg, and Weibull [17] presented a model of social welfare ben-
efits in which the embarrassment to live off a welfare benefit is a decreasing
function of the number of people on the benefit. Reciprocal altruism often
produces multiple equilibra (mutually nice and mutually hostile ones, for
example), but none of those papers address the dynamics of psychological
factors to examine the relative stability and sustainability of multiple psy-
chological equilibria. The purpose of the present paper is to complement
those works with an explicit model of dynamics.

Let us now sketch the structure of our model. We look at a ”social
dilemma” situation, where the dominant strategy is Pareto inefficient. The

3There are some differences between our model and the public goods experiments. In
the majority of experiments, material payoffs are linear in contributions, and individual
contributions are not disclosed to the subjects. Those conditions are not met in our
model. Also our model does not formally show how the initial norm of a (new) experiment
is determined. Our purpose here is to present a simple model to capture the erosion of
performance, and we believe that the basic logic and technique in this paper provide some
insights into the experimental results. Constructing a model that closely reproduces the
experimental results is an important future research adgenda.

4See also Fehr and Schmidt [10] for an important alternative formulation where one
cares his own payoff relative to others.

3



strategy of a player is interpreted as his effort level, and it takes on a number
of values. In addition to the material payoffs, we introduce psychological
payoffs, parametrized by two factors, a norm and its binding power. A
norm is the effort level that people expect themselves to exert, and a player
suffers from a negative payoff if his effort falls short of the norm. The
magnitude of the negative payoff, which we call the binding power of the
norm, is the greater, the closer they follow the norm. Once such effects are
introduced, the prisoner’s dilemma like situation turns into a coordination
game, as Rabin [18][19] stresses, and this is the first essential ingredient of
our model. Depending on the relative strength of the material and psy-
chological payoffs, the maximum equilibrium effort level is determined, and
there are ”continuum” of equilibrium effort levels, whose minimum corre-
sponds to the Nash equilibrium with respect to the material payoffs. This
is the second essential ingredient.

Now observe that each equilibrium is strict in the sense that a unilat-
eral deviation strictly reduces one’s payoff. Hence traditional equilibrium
refinements concepts are ineffective to discriminate them, but the stochas-
tic evolutionary game models proposed by Kandori, Mailath, and Rob [15]
and Young [24] can be fruitfully applied to address the dynamic stability
of equilibria. We will show that, due to random shocks, the system moves
from equilibria with higher efforts to the ones with lower efforts. This is
the third ingredient of our approach. Ellison [7] noted that the stochastic
evolutionary models are particularly relevant in the case where the long run
stochastically stable outcome is achieved via a series of small steps between
intermediate steady states, as the waiting time to see the stochastic evolu-
tion effects can be realistically short. The kind of psychological factors we
consider exactly produce such a game, a coordination game where the stable
outcomes are achieved through ”step-by-step” evolution over a ”continuum”
of equilibria.

2 The Social Dilemma with Norms and Morale

We consider an N-player version of the prisoner’s dilemma game affected by
psychological factors. We assume that player i’s payoff is given by

ui(e, k,m) =
NX
j=1

ej − c(ei)− k[m− ei]+, (1)

where ei ∈ {0, 1, 2, ..., L} represents player i’s effort level, e = (e1, ..., eN ) is
an effort profile, c is the cost of effort, and [x]+denotes max{x, 0}. As the
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effort level is discrete, define (downward) marginal cost of effort level for
e = 1, 2, ..., L by

∆c(e) ≡ c(e)− c(e− 1),
and assume that it is positive and strictly increasing. This is the marginal
benefit of reducing effort, and it plays a crucial role in what follows. The first
two terms of the right hand side of (1) captures the material (or pecuniary)
payoff, and the last term represents the psychological payoff. One of the
elements that determine the latter is m, which represents a norm among the
workers. It can be thought as the acceptable level of effort, or the effort level
that the players think they should exert. The player suffers from negative
psychological cost if his effort level falls short of m. Parameter k denotes
the strength of the psychological cost (or the binding power of the norm).
We assume that in the equilibrium or the steady state,

m = median{e1, ..., eN} and

k = K

Ã
NX
i=1

[m− ei]+
!
,

whereK(·) is a non-negative decreasing function5. For simplicity, we assume
that the number of players is odd, so that there is a player whose effort level
coincides with the median. One may interpret that (m,k) represents the
morale of the players, where a norm m close to the efficient action and a
strong binding power k correspond to high morale6.

A couple of comments are in order about the above specification. We
will consider the dynamic process where the norm m evolves over time,
according to the actual effort levels taken by the players. A simplest for-
mulation is that the norm at time t is determined by the effort levels at
t − 1. We may possibly use the average of the effort levels, but this suf-
fers from some drawbacks. For example, if the effort profile (e1, ..., eN )
changes from (10, 10, ..., 10) to (3, 10, 10, ..., 10), the norm would immedi-
ately fall from 10 if the norm were defined as the average. It would be
more natural, however, to suppose that the norm remains to be 10 and the

5 In the present formulation, the binding power of the norm is affected only when
players’ efforts fall short of the norm. One may also assume that the binding power
increases when some of the players exert higher levels of effort than the norm. Our
analysis below is unaffected by such reformulation.

6The players may well enjoy satisfaction of high morale per se. To capture this effect,
we may add to each player’s utility a term h(m,k), which is an increasing function of k
and maximized, for any given level of k, when m is equal to the efficient effort level. Our
analysis is unaffected by such reformulation.
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deviation by the first player reduces the credibility of the norm. Our formu-
lation captures such a mechanism; under our formulation, the norm remains
m = 10 but the binding power of the norm k decreases. Also consider the
case e = (0, 0, 2, 7, 7, 8, 8, 8, 9, 9, 10). It would be more natural to recog-
nize the cluster between 7 and 10 and expect the norm to be somewhere
in the cluster. Our use of median is in line with this observation, deriving
m = 8. In contrast, the average fails to recognize the cluster and provides
m = 6.1. By definition, median always chooses an effort level in a cluster
if a majority of the players are in the cluster7. Note that the average and
the median minimize8

PN
i=1(x− ei)2 and

PN
i=1 |x− ei| respectively, so that

the latter places less weights on ”outliers”. To see another property of
median, consider a change from (1, 5, 5, 5, 10) to (1, 5, 2, 5, 10). The median
remains unchanged. Unlike the average, the median is generally insensitive
to any single player’s effort, if there is a tight cluster of effort levels followed
by a majority of players. Hence it captures the inertia of the norm in a
simplest possible way. Finally, the median is always in the strategy space
{0, 1, ..., L} (under our assumption of odd number of players) and make our
analysis transparent.

Definition 1 Effort profile e∗ is a morale equilibrium if

∀i ∀ei ui(e∗, k,m) ≥ ui(e∗−i, ei, k,m),

m = median{e∗1, ..., e∗N} and

k = K

Ã
NX
i=1

[m− e∗i ]+
!
.

This is somewhat different from the standard definition of Nash equi-
librium of the game where i’s payoff is given by Ui(e) = ui(e, k(e),m(e)).
In our definition, each player takes k and m given when assessing the gain
from deviation. The parameters m and k, the norm and its binding power,
are psychological factors reflecting mutual expectations of players, which
are given at each moment (see the dynamics below for further motivation).

7This is true whatever the definition of cluster is, as long as it is a connected set of
effort levels (i.e., as long as the cluster consists of all effort levels between e0 and e”, for
some e0 < e”.)

8This is seen as follows. Let x 6= e1, ..., eN and let n be the number of players whose
efforts are below x. Denote the sum of the absolute value of the errors by E. Then we
have dE/dx = n − (N − n). Hence E is decreasing until x hits the median and then it
increases.
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The second and third conditions represent the self-confirming nature of those
psychological factors. The parametric treatment of the psychological fac-
tors is similar in spirit to the formulation of the psychological games of
Geanakoplos et. al. [12] and the fairness equilibrium of Rabin [18]. Before
characterizing the morale equilibria, let us introduce a simplifying assump-
tion to deal with the discreteness of effort level. As the utility function ui
is strictly concave in ei, there would be a unique maximizer for ui, if the
efforts were continuous. Similarly, there would be a unique effort profile
maximizing

P
i ui. When efforts are discrete, however, there may be two

maximizers adjacent to the ”true” maximizer in the continuous formulation.
As this causes inessential complication in exposition, we exclude such a case.
The necessary and sufficient conditions are the following.

Assumption: The cost function c is chosen generically so that ∆c(e)
is not equal to 1, N , or 1 + K(

PN
i=1[m − ei]+) for any e, e1, ..., eN ,m ∈

{0, 1, ..., L}.

Proposition 1 All morale equilibria are symmetric and the set of morale
equilibrium effort levels is E ≡ {e| em ≤ e ≤ e}, where em is the Nash
equilibrium with the material payoff, which is determined by

∆c(em) < 1 < ∆c(em + 1) (2)

and e is given by
∆c(e) < 1 +K(0) < ∆c(e+ 1). (3)

Proof. Any morale equilibrium is symmetric because for given k and
m, each player i maximizes the same function

v(ei) ≡ ei − c(ei)− k[m− ei]+. (4)

Hence in any morale equilibrium m = e∗ and k = K(0), where e∗ is the
symmetric effort level. As v is concave, e∗ is an morale equilibrium effort
level if the local incentive constraints v(e∗−1) < v(e∗) and v(e∗) > v(e∗+1)
are satisfied. They are expressed respectively as

∆c(e∗) < 1 +K(0) and (5)

1 < ∆c(e∗ + 1). (6)

Condition (2) identifies the smallest e∗ to satisfy the latter, while (3) provides
the largest e∗ to satisfy the former.
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Figure 1 shows a typical morale equilibrium e0 and how the material
Nash equilibrium em and the maximummorale equilibrium e are determined.
For expositional simplicity, we ignore in the Figure the discreteness of effort
and treat it as if it were a continuous variable. Note that the heavy line
represents the marginal cost of reducing effort, while c0 (corresponding to
∆c in the discrete formulation) represents the marginal benefit.

Note that, with psychological payoffs, we have a ”continuum” of equilib-
rium effort levels em ≤ e∗ ≤ e, each of which constitutes a strict equilibrium
(an equilibrium where unilateral deviation strictly decreases one’s payoff).
Hence the traditional refinements concepts, such as perfectness, properness,
or strategic stability, cannot tell which of them are most likely. We argue
that the long run stochastic stability (Kandori, Mailath, and Rob [15] and
Young [24]) is a natural concept to address stability of equilibrium in this
model. Also note that the smallest morale equilibrium effort level corre-
sponds to the ”material” Nash equilibrium. Morale equilibrium effort level
cannot be smaller, as providing more effort than the norm entails no psycho-
logical cost: at e < em, players want to increase their efforts. The maximum
morale equilibrium effort level, e, may be greater or smaller than the efficient
effort level e+, which maximizes the total material payoff

PN
i=1 (Nei − c(ei)).

The ”first order condition” is ∆c(e+) < N < ∆c(e+ + 1). Comparing this
with condition (3), we have:

Proposition 2 The efficient effort level is attained iff N ≤ 1 +K(0).

This is the first important property of norms and morale as resource
allocation devices; their effectiveness depends on the relative strength of
the psychological and material payoffs. The psychological factors can be
potentially effective, if the material payoff is not overwhelming. In the
next section, however, we show that high equilibrium norms and morale are
dynamically unstable and identify what is sustainable in the long run. This
is the second important property of norms and morale in resource allocation
problems.

3 The Dynamics of Norms and Efforts

Let us now introduce the dynamics. At time t, player i’s payoff is given by

ui =
NX
j=1

ej(t)− c(ei(t))− k(t)[m(t)− ei(t)]+,
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where
m(t) = median{e1(t− 1), ..., eN(t− 1)} and (7)

k(t) = K

Ã
NX
i=1

[m(t)− ei(t− 1)]+
!
. (8)

(We assume that m(0) and k(0) are exogenously given.) In each period,
each player maximizes the above payoff with probability 1 − ², and with
probability ² he takes any effort level with equal probability. The latter
eventuality is calledmutation, and ² is referred to as themutation rate. This
defines a Markov chain with a finite state space where the state represents
the current effort profile e(t).

Let us now consider the dynamic without mutation. At each time t,
each player i maximizes

vt(ei) ≡ ei − c(ei)− k(t)[m(t)− ei]+.

As players maximizes the same function vt, the strategy profile at t is sym-
metric for any given e(t − 1). (Recall that we have assumed the unique
maximizer of vt, thanks to the Assumption.) Given any profile e(t− 1), let
us examine how the symmetric effort level e at time t is determined. (Case
1: m(t) < em) In this case, the player’s payoff is maximized at e > m(t).
As only the material payoff matters for e > m(t), we reach the material
Nash equilibrium e = em. (Case 2: m(t) ≥ em) Effort level e is equal to
m(t), when ∆c(m(t)) < 1+ k(t), as a downward deviation from the present
norm m(t) does not pay. Otherwise deviation e < m(t) is beneficial and the
optimal level of deviation is determined by ∆c(e) < 1 + k(t) < ∆c(e + 1).
In any case, the new effort level e constitutes a morale equilibrium: As
0 ≤ k(t) ≤ K(0), e satisfies equilibrium conditions (5) and (6). We sum-
marize what we have obtained as follows.

Proposition 3 Suppose mutation rate ε is equal to 0. Given any e(t− 1),
m(t), and k(t), in the next period t players choose a morale equilibrium
effort level e(t), which is given as follows.

(Case 1) m(t) < em: e(t) = em.
(Case 2) m(t) > em: If ∆c(m(t)) < 1+ k(t), then e(t) = m(t). Other-

wise e(t) < m(t) and it is uniquely determined by

∆c(e(t)) < 1 + k(t) < ∆c(e(t) + 1).
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Hence, the dynamics without mutation works as follows. If the median
effort is lower than the material Nash effort em, then the material Nash
equilibrium arises. Otherwise, the players reach a morale equilibrium whose
effort level is smaller than or equal to the current median effort. This in
particular implies that process without mutation always ends up with a
morale equilibrium, which is formally stated as follows. (Recall that a limit
set is an absorbing set of states under no mutation9.)

Corollary 1 Each morale equilibrium constitutes a limit set as a single-
ton, and there is no other limit set; the family of limit sets is {{e}|e =
(e, ..., e), e ∈ E}.

If random shocks (mutations) are present (i.e., if the mutation rate ²
is positive), at each moment of time, each state is realized with a positive
probability, and it is known that in such a case there is a unique stationary
distribution, denoted µ(²). It represents the relative frequencies of states
in the long run and is independent of the initial state. The support of
µ∗ = lim²→0 µ(²) is called the set of long run stochastically stable (LSS)
states10, and this is the set of states on which the system spends most of
time in the long run, when the mutation rate is small but strictly positive.
It is known that the set of LSS states corresponds to a collection of limit
sets, and we call such a limit set (a limit set in the support of µ∗) a LSS limit
set. We now identify the LSS limit sets by the transition tree technique
developed by Freidlin and Wentzell [11], Kandori, Mailath, and Rob [15] and
Young [24]. This approach considers trees defined on the family of limit
sets and associated cost, and shows that the root of a minimum cost tree
corresponds to a LSS limit set.

A transition tree is a directed graph, the set of whose nodes is equal to
the family of all limit sets. Formally, it is a collection of directed branches
between limit sets, where (i) there is one node, called the root, without an
outgoing branch and (ii) any other node has a single outgoing branch, and
(iii) there is no closed loop. Given Corollary 1, we abuse notation to say the
”branch from e to e0” when we mean the ”branch from limit set {e} to {e0}”,
where e = (e, ..., e) and e0 = (e0, ..., e0) are (symmetric) equilibria. We also
say ”morale equilibrium” or ”state” e when we mean morale equilibrium or
state e = (e, ..., e). With this convention in mind, we now identify the cost

9A set of states is a limit set if, under no mutation, (i) any two states in the set are
mutually reachable (within a finite period) and (ii) no outside state is reachable from the
states within the set.
10We follow this terminology proposed by Ellison [7].
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of transition from equilibrium e to equilibrium e0, denoted by C(e, e0). Let
(e0, e1, ..., eT ) be a path in the state space from equilibrium e0 = (e, ..., e)
to another equilibrium eT = (e

0, ..., e0). Note that the intermediate states in
the path et (0 < t < T ) do not have to be equilibria. Let c(et−1, et) be the
cost of transition (the number of required mutations) from state et−1 to et,
and recall the definition of C(e, e0):

C(e, e0) = min
TX
t=1

c(et−1, et), (9)

where the minimum is taken over all paths (e0, e1, ..., eT ) such that e0 =
(e, ..., e) and eT = (e0, ..., e0), for any T = 1, 2, 3, .... The cost of a tree is the
sum of the cost of branches, where the cost of branch from e to e0 is defined
by (9). The Freidlin-Wentzell transition tree analysis shows that a limit set
is LSS if and only if it is the root of a minimum cost transition tree.

Now we determine the costs of ”upward” transitions (from e to e0 > e).
In what follows the proofs of lemmas are given in the Appendix. First, let
us show that upward transition requires that a majority (more than N/2)
of players mutate. Recall that the number of players N is odd, so that N/2
is not an integer.

Lemma 1 For any pair of morale equilibria e < e0, we have C(e, e0) > N/2.

The next lemma (and its proof) shows that equilibrium effort can ”creep
up” if more than the half of the players exert slightly more effort, provided
that original effort level is less than a certain threshold (denoted eU). Recall
again that N+12 is the smallest integer which is more than N

2 , as we assume
that N is odd.

Lemma 2 C(e, e+1) = N+1
2 if em ≤ e < eU , where eU is the unique morale

equilibrium effort level satisfying

∆c(eU ) < 1 +K(
N − 1
2

) < ∆c(eU + 1).

Note that eU is close to the maximum equilibrium effort level e, when
the grid size for the effort level is sufficiently fine:

Remark 1 If we introduce the grid size δ for effort level and suppose e ∈
{0, δ, 2δ, 3δ, ...}, eU is defined by ∆c(eU ) < 1+K(N−12 δ) < ∆c(eU +1). As
the largest equilibrium effort e is defined by condition (3) ∆c(e) < 1+K(0) <
∆c(e+ 1), we have

eU → e, as the grid size for effort δ → 0.
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Next we turn to identify the costs of ”downward” transitions (from e to
e0 < e) . Let us first define effort level eD to be the maximum effort level
that satisfies

∆c(eD) < 1 +K(
N − 1
2

eD). (10)

This condition represents the incentives of the players when a minority of
players shirk in the most effective way: i.e. when N−1

2 players deviate to
0. If this condition is satisfied, in the next period, everyone goes back to
eD, as the marginal benefit of reducing effort from eD (the left hand side)
is smaller than the marginal cost (the right hand side). Hence eD is the
maximum equilibrium effort level that cannot be ”pulled down” unless more
than the half of the players reduce their efforts. This turns out to be the
maximum effort level sustainable in the long run; Theorem 1 below shows
that the effort level between em and eD are long run stochastically stable.
By the definitions it is easy to see

em ≤ eD ≤ eU ≤ e.

Let us examine when the range of the long run sustainable effort levels is
non-degenerate (in other words, when we have strict inequality em < eD).
As the material payoff is concave, a small deviation from the material Nash
equilibrium entails minute cost, as Akerlof and Yellen [1] stressed. Hence
there is a range of effort levels near the material Nash equilibrium, which
are sustained by a modest binding power of the norm. The range is large
when the material payoff is relatively flat near the equilibrium. Formally,
recall that em is defined by ∆c(em) < 1 < ∆c(em + 1), and note that
∆c(em) ∼= 1 ∼= ∆c(em+1) when the grid size for the effort level is sufficiently
fine. In contrast, K(N−12 (em + 1)) does not vanish as the grid size tends
to zero, so that we have ∆c(em + 1) < 1 +K(N−12 (em + 1)). This means
that em < eD when the grid size is fine, as eD is the maximum effort level
satisfying ∆c(e) < 1 + K(N−12 e). Furthermore, if the material payoff is
relatively flat at the material Nash equilibrium, ∆c(e) < 1 + K(N−12 e) is
satisfied for a wide range of e, and therefore the set of LSS effort level
{e|em ≤ e ≤ eD} can be large. The next lemma briefly summarizes the
above discussion.

Lemma 3 em < eD if 1 + K(N−12 (em + 1)) > ∆c(em + 1). Otherwise,
em = eD.

The next lemma formally shows that any morale equilibrium e > eD can
be ”pulled down” when less than the half of the players shirk.
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Lemma 4 For any morale equilibrium e > eD, there is a morale equilibrium
e0 < e such that C(e, e0) < N/2.

Although the above lemma is enough to prove our main result (Theorem
1 below), we can obtain a sharper characterization of the downwards costs,
which helps to understand the nature of the dynamics.

Definition 2 For n = 1, 2, ..., N−12 , define effort level en to be the maximum
effort level e satisfying

∆c(e) < 1 +K(ne).

As ∆c is increasing and K is decreasing, en is non-increasing in n, and
note that e

N−1
2 is equal to eD;

eD = e
N−1
2 ≤ · · · ≤ e2 ≤ e1.

Note that en is the maximum effort level that cannot be pulled down unless
(strictly) more than n players shirk (exert zero effort). The reasoning is
parallel to our discussion on eD. Those effort levels are (approximately)
given as in Figure 2, where we again assume for simplicity that e were a
continuous variable so that c0 in the figure plays the role of ∆c. From Figure
2 we can see that the above inequalities are strict when the grid size on effort
level (normalized as 1 in the current formulation) is sufficiently small. The
next lemma provides the exact characterization of the downwards costs for
e > eD (here e0 is defined to be e for convenience).

Lemma 5 For effort level e such that en < e ≤ en−1, n = 1, 2, ..., N−12 , we
have

min
e0∈EÂ{e}

C(e, e0) = n,

and the minimum cost is achieved by e0 ≤ en.

In other words, the most likely downward transition from e such that
en < e ≤ en−1 is to have downward mutation to zero effort level by n
players, and this achieves a new equilibrium with a lower effort level e0 ≤ en.
Note that, as the gain from downward deviation (∆c(e)) becomes larger as
e increases (increasing marginal cost), the current equilibrium is upset by
a small reduction of the binding power (i.e., by a relatively small number
of (downward) mutations away from the current work norm e), when e is
much larger than the material Nash effort level. As e becomes smaller
and approaches the material Nash effort em, in contrast, the material gain
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from downward deviation becomes smaller, as Akerlof and Yellen [1] noted.
This means that the current equilibrium is upset only when a majority of
the players shirk (in other words, only when the binding power becomes
sufficiently small). This is the crux of the matter that determines the
dynamics of norms and morale.

Hence we have shown that for any morale equilibrium e > eD, a down-
ward transition to a lower equilibrium effort level is possible when less than
the half of the players shirk (i.e., with transition cost less than N/2). The
next lemma shows that, for morale equilibrium e ≤ eD, the cost of a down-
ward transition is always equal to N+1

2 .

Lemma 6 For any pair of morale equilibria e and e0 such that e0 < e ≤ eD,
we have C(e, e0) = N+1

2 .

Let us summarize in the following table the most likely transition from
each state e, denoted by e0 (e0 ∈Arg mine0 6=eC(e, e0)), and its associated cost
(mine0 6=eC(e, e0)). This is obtained by the above Lemmas. In the table, it
should be understood that em ≤ e0. Note that e is displayed (from left to
right) in the increasing order. (Hence, for example, the rightmost column
indicates that the most likely transition from any state e1 < e ≤ e is to
move towards e0 ≤ e1, with associated cost 1.)

e em · · · · · · · · · eD · · · eN−12 −1 · · · · · · e2 · · · e1 · · · e
e0 e+ 1 or11

any e0 < e e0 ≤ eD · · · e0 ≤ e3 e0 ≤ e2 e0 ≤ e1

cost N+1
2

N−1
2 · · · 3 2 1

Note that the states in

E∗ ≡ {e|em ≤ e ≤ eD} (11)

are mutually reachable with cost N+1
2 , and also note that this is the min-

imum cost of transition from each state in this set. We are now ready to
state our main result; this ”component” E∗ corresponds to the set of the
long run stochastically stable states:

Theorem 1 The set of long run stochastically stable states is {e = (e, ..., e) | em ≤
e ≤ eD}.
11There may be another e0 ≥ e+ 1 that achieves the minimum cost.
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Proof. By Corollary 1, we need to consider trees defined over the set of
equilibria. Note that the following is true. For each node (equilibrium),
endow an outgoing branch with the minimum cost, and then from the re-
sulting graph delete a branch with the largest cost. If we obtain a tree,
then it is a minimum cost tree. Let us first prove this assertion. Define,
for each equilibrium e, the minimum cost of outgoing branch by

c∗(e) ≡ min
e0∈EÂ{e}

C(e, e0),

and also define c∗∗ = mine∈E c∗(e). Take any tree and let us denote its
root by e0. Its cost is at least

P
e∈E c

∗(e)− c∗(e0) ≥Pe∈E c
∗(e)− c∗∗, the

cost of the tree constructed by the above procedure. Hence our assertion
is proved. Let us now turn to the proof of the Theorem. Note first the
following characterization of the minimum cost outgoing branches. (In
what follows e and e0 should be understood as equilibrium effort levels)
For e > eD, we can find n < N/2 such that en < e ≤ en−1, and we have
c∗(e) = C(e, en) = n < N/2 (by Lemmas 1 and 5). For e ≤ eD, c∗(e) = N+1

2
and c∗(e) = C(e, e0) if e0 < e or e0 = e+ 1 (by Lemmas 1,2, and 6). Then,
we can construct a minimum cost tree whose root is any element e” in E∗

as follows. In the first step choose the minimum cost branches in E∗ as

em → em + 1→ · · ·→ e”− 1¿ e”← · · ·← eD.

For e /∈ E∗, (by Lemma 4) we can choose a minimum cost outgoing branch
(e, e0) such that e0 < e with cost less than N

2 . Then delete the outgoing
branch from e”, which has the maximum cost N+1

2 . The result is a tree
with root e”, because for each e /∈ E∗, there is a path leading to E∗. From
the above assertion this must be a minimum cost tree, and we conclude
that any e” ∈ E∗ is a long run stochastically stable state. Note that the
minimized cost of trees is equal to

P
e∈E c

∗(e)− N+1
2 . Furthermore, there

is no minimum cost tree whose root is e” ∈ EÂE∗. If so, the cost of the
tree is at least

P
e∈E c

∗(e)− c∗(e”) >Pe∈E c
∗(e)− N+1

2 , a contradiction.
The minimum cost tree constructed in the above proof and the above

table suggest that the efforts gradually decay until the long run stochastically
stable set E∗ is reached, and in the (very) long run the efforts drift in this
set. Simulation results confirm this observation. Figure 3 presents a sample
path for a particular stage game, with 7 players and mutation rate ² = 0.15.
The LSS set E∗ corresponds to the effort levels between 40 and 53, while
the maximum equilibrium effort level is e = 80. The median effort (the
norm) gradually erodes until it hits the LSS set. Note that the erosion is
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relatively quick. Figure 4 shows another sample path of the same model for
a much longer time span. The median effort mainly drifts in the LSS set.
A higher norm occasionally emerges, but it quickly erode until the LSS set
is reached again.

4 Waiting Times

Let En = {e|em ≤ e ≤ en} for n = 1, 2, ..., N−12 . We now examine the
expected time to reach this set of equilibrium effort levels. Note that En

coincides with the set of the LSS states when n = N−1
2 . This issue can be

addressed by the notion of the radius and the modified coradius, powerful
analytical tools developed by Ellison [7]. Here, we present a simpler, self-
contained analysis, which is possible due to the special structure of the
dynamics. In particular, the following fact greatly simplifies the analysis.
From Proposition 3, we know that from any state e, an equilibrium e0 is
reached within one period, if there is no mutation. Suppose that players
1 and 2 mutate to e1 and e2, when the current state is e. The state in
the next period is (e1, e2, e0, ..., e0). The same state is obtained by the
same eventuality if the current state were e0. This observation shows the
following lemma, where the one period transition probability from state e
to e0 is denoted by p²(e, e0).

Lemma 7 For any state e, let e0 be the equilibrium reached in the next
period without mutation. Then, for any state e0, p²(e, e0) = p²(e0, e0).

This lemma shows that it is sufficient to consider transitions from equilib-
ria. The proof of Lemma 5 shows that, from any morale equilibrium e /∈ En,
an equilibrium e0 ≤ en (hence En) is achieved if n players mutate to zero
effort. Now let Dn be the set of states from which En is achieved with prob-
ability one, in the absence of mutation (the basin of attraction of En) and
let ∼Dn denote its complement. Lemma 7 implies that, to identify a lower
bound of the one period transition probabilities form the states in∼Dn to the
set Dn, we only need to consider the transition probabilities from the equi-
libria in ∼Dn (i.e., e /∈ En). The above argument shows that the probability
that n players mutate to zero effort, denoted by p, serves as a lower bound12.
Replace the one period transition probabilities from ∼Dn to Dn with their
lower bound p, and calculate the expected waiting time to reach from ∼Dn
12The probability of reaching En from e /∈ En in one period is larger than p, because

having n mutations to zero is not the only way of reaching En.
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to Dn, and denote it by W . (Note that, by construction, W is longer than
the true waiting time.) Then, W satisfies W = p× 1 + (1− p)(1 +W ), or
W = 1/p. As p = An²n +An+1²n+1 + · · ·+AN²N , an upper bound of the
expected waiting time to reach En is given by, for small enough ²,

W < A²−n,

for some constant A > 013. This shows that, for small n, En is reached
within a reasonable amount of time.

Let us now identify a lower bound of the expected waiting time to escape
from En (n > 1). For each state e ∈ Dn, let q(e) be the probability
of escaping from Dn in one period. Lemma 1 shows that to reach an
equilibrium e0 /∈ En from e ∈ En, it takes at least N+1

2 mutations. This

means that, when e ∈ En, for sufficiently small ², q(e) ≤ B²N+12 for some
constant B > 014. Lemma 7 implies that this is also true for all e ∈ Dn.
Hence, if we suppose that the one period probability of escaping Dn were
equal to its upper bound B²

N+1
2 for all e ∈ Dn, the resulting expected

waiting time, denoted W 0, is shorter than the true expected waiting time.
As we have W 0 = B²

N+1
2 × 1 + (1−B²N+12 )(1 +W 0), a lower bound of the

expected waiting time to escape form Dn is given by

W 0 = A0²−
N+1
2 ,

for A0 = 1/B > 0. Let us now summarize what we have obtained. Recall
that Dn is the basin of attraction of En, the interval of effort level between
the material Nash effort em and en, and ∼Dn is its complement. The
”threshold” effort levels en for n = 1, 2, ...N−12 are determined as in Figure

2, where em ≤ eD = eN−12 ≤ · · · ≤ e2 ≤ e1. Also recall that DN−1
2 coincides

with the basin of attraction of the LSS states.

Theorem 2 Let W (e,X, ²) be the expected waiting time to reach a set of
states X from state e. Then, there are constants A,A0 > 0 such that, for
all sufficiently small ², (i) W (e,Dn, ²) ≤ A²−n for all e ∈∼Dn, and (ii)
W (e,∼Dn, ²) ≥ A0²−N+1

2 for all e ∈ Dn.
13Choose A such that AAn > 1. Then, A²

−n
W

→ AAn > 1, as ²→ 0. In other words,
W < A²−n for small enough ².
14As escaping from Dn requires mutations more than or equal to N+1

2
, we have q(e) =PN

k=N+1
2
Bk(e)²

k, where Bk(e) ≥ 0. Choose B such that B > BN+1
2
(e) for all e ∈ En.

Then we have q(e)

B²
N+1
2

→
BN+1

2

(e)

B
< 1, as ² → 0. In other words, q(e) < B²

N+1
2 for

sufficiently small ².
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A couple of remarks are in order. First, we have essentially the same
waiting times if we replace Dn and ∼Dn with En and EÂEn. This is be-
cause once DnÂEn is reached, En is reached in the next period (Proposition
3). Hence W (e, En, ²) ≤ W (e,Dn, ²) + 1, and similarly, W (e, EÂEn, ²) ≤
W (e,∼Dn, ²) + 1. Secondly, and most importantly, the above Proposition
indicates that efforts typically erode over time. It shows that the waiting
time to reach En is in the order of ²−n, while escaping En requires waiting
time in the order of ²−

N+1
2 . As n < N+1

2 , the latter is much longer than the
former, for a small15 ². For example, suppose we have seven players and
² = 0.1. If we start with the maximum morale equilibrium e, the waiting
time to reach an effort level lower than e1 (or e2) is in the order of ²−1 = 10
(or ²−2 = 100), but coming back requires a fairly large amount of time in
the order of ²−4 = 10, 000. This means that the system gradually climbs
down the ladder of equilibrium effort levels, and it is an example of what
Ellison [7] called ”step-by-step evolution”. Such effects are observed in the
simulation results in Figures 3 and 4. Third, as E

N−1
2 coincides with the

LSS equilibria, the LSS may not be reached within a reasonable time span,
when N is large (the waiting time is in the order of ²−

N−1
2 ). However, our

argument above shows that we do observe the effects of stochastic evolution;
effort levels gradually erode, although they may not completely be reduced
to the LSS effort levels in the relevant time span.

5 Concluding Remarks

In this section, we discuss related literature and provide a couple of re-
marks, some of which are highly speculative. The social dilemma game
with norms and morale bears some similarity to the minimum effort game,
in which player i’s payoff is given by min{e1, ..., eN}− cei, with 0 < c < 1.
Any symmetric effort profile is an equilibrium in this game. Van Huyck,
Battalio, and Beil [22] reported experimental results showing that, with a
large N , effort level converges to its minimum level (0). Their 1991 pa-
per [23] considered the median game, where player i’s payoff is given by
m − b(m − ei)2, where m is the median of {e1, ..., eN}. They found that
the subjects invariably converge to the equilibrium determined by the ini-
tial median. Note that, unlike our model, the median always has the same
15The two quantities n and N+1

2
correspond to the modified coradius and the radius

of Dn, and Ellison’s theorem [7] shows that the LSS states are contained in En, as the
former is less than the latter, for each n = 1, ..., N−1

2
. Our analysis in the previous section

shows that all states in E
N−1
2 = E∗ are in fact LSS states.
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”binding power” b in their model, and there is no incentive to reduce ei, even
if the binding power b is equal to zero. Hence no erosion is likely to happen
in their game. Crawford [5] presented a model with adaptive expectations
of the minimum or median in those experiments to conduct econometric
analysis. Anderson, Goeree, and Holt [2] and [3] presented a stochastic
dynamic model for the minimum effort game and showed that a particular
equilibrium is selected in the long run. Unlike our model, they postulate
that (i) players rationally expects the current minimum effort distribution
and (ii) the adjustment dynamic is in continuous time and subject to the
shocks represented by a Brownian motion. Note that, in all of the works
cited above, the material payoff itself has the coordination game structure,
while in our model such a structure arises via the interaction of material and
psychological payoffs. Isaac, Walker, and Williams [14] conjectured that,
in their experiments where contributions to public good declined over time,
the subjects maintained some cooperation as long as the current payoff is
expected to be higher than the material Nash payoff, but no formal dynamic
model was presented.

The dynamics of norms and standards have been explored in somewhat
different contexts by Ellison [8], [9], and Sobel [21]. Ellison [8] provided
detailed accounts for the slowdown of academic publishing16. In the com-
panion paper [9] he considered a model where academic authors have two
tasks, developing a new idea and its execution, the latter of which is rele-
vant for the revision of a paper. The model shows that over time authors
gradually put more efforts for revision, because of the persistent small mis-
perception caused by the overconfidence in one’s own work. Sobel [21]
considered generations of players who wish to join a club. Each player
exerts a multi-dimensional effort vector, whose components are aggregated
into a one-dimensional performance index. One is accepted to the club if he
is comparable to the current members, in terms of the index. Sobel showed
quite generally that the fluctuations of the weights to compose the index
result in declining standards. The multi-dimensional nature of effort is es-
sential in those works, while our model is built on one-dimensional effort,
where the reciprocal nature of altruism plays a major role.

Now we turn to some remarks.
1. Strategic Placement of Highly Motivated Workers: Relative

strength of the material and psychological payoffs may vary across players.
16 His empirical paper [8] indicates that a substantial part of the slowdown is caused

by extensive revisions, and the delay of referee’s reports accounts for a quarter of the
slowdown. His model [9] sheds light on the former, while our work might be relevant for
the latter.
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Suppose that a firm consists of two factories, each of which is represented
by our model with seven workers. Among the fourteen workers in the firm,
six of them are highly motivated in the sense that they put higher weights
on the psychological payoffs. In particular, assume that their weights of
psychological payoffs are so high that they are willing to observe the norm,
as long as a majority of fellow workers do so. Also suppose that this is
the case even under random shocks (so that they do not mutate). How
should one allocate the six good citizens? If we split them equally to each
factory, a majority of workers in each factory behave as in our model. Then,
the transition costs in Section 3 and the order of waiting times in Section
4 are unaffected, as they involve mutations by less than the half of the
players. This means that the basic properties of the dynamics of norms
and morale are unaffected, unless we change the behavior of a majority of
players. Hence, the norm in each factory erodes in a similar way to our
model, although the erosion is somewhat slower. In particular, effort level
falls below e3 in both factories in the long run. On the other hand, if we
place all the six good citizens in one factory, we can sustain in that factory
the maximum equilibrium effort level e.

The past two decades witnessed the rigorous theoretical analysis of or-
ganizational design, based on game theory and economics of information.
Material incentives are the key elements in such an approach, but we are
left with the feeling that there are something other than incentives that
matter in organization. The above tentative analysis suggests that taking
psychological factors into consideration could be a fruitful way to go one
step further. However, a caution is in order. Recently, a variety of anom-
alous behavior rules have been justified as stylized facts and introduced to
economic analysis. We have to be cautious, however, to derive policy impli-
cations, unless we have enough information about the postulated behavioral
rules. Recall that the early macro policy based on the stability of the
Phillips curve, which was once conceived as a reliable stylized fact, spelled
disaster. To derive dependable policy implications, we have to dig deeper
into the black box of the anomalous behavior, as Rubinstein [20] argues.

2. A Catch in Economic Transition: Consider the situation where
the present system sustains a certain payoff level, and suppose a new sys-
tem, which is characterized by our social dilemma game, is proposed as an
alternative, with the initial equilibrium effort being e. If e induces a higher
payoff than the status quo, people may adopt the new system, expecting
that e is going to prevail. However, a gradual erosion may lead to a worse
outcome than the status quo. To assess the merit of economic transition,
one has to consider what is sustainable in the long run, where material
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payoffs play a larger role.
3. Diversity near the Neoclassical Equilibrium: Our analysis

shows that a certain range of effort levels can be sustained in the long run.
As our simulation result (Figure 4) illustrates, the median effort (the work
norm) changes in this range every once in a while. It is known that the
relative frequencies of the norms in this time series data must coincide with
those in the cross section data in the long run, as our system is ergodic.
Hence, in our formulation, different organizations with the same material
payoff structure typically exhibit different work norms, which persists for
a long time. This happens in the vicinity of the Neoclassical equilibrium
(i.e., the Nash equilibrium with respect to the material payoffs), where a
small change of efforts entails a minute cost. Akerlof and Yellen [1] stressed
that small deviations from optimization behavior can potentially explain a
variety of stylized facts. Our model is in line with this research program,
and it provides new insights into the diversity of performances of different
organizations and economies.

Appendix

We present the proofs of the Lemmas here.

Proof of Lemma 1: We suppose C(e, e0) < N/2 and show that this
leads to a contradiction. Let (e0, e1,...,eT ) be the minimum cost path which
achieves C(e, e0) and let met be the median effort level at et. Let BR(et)
be the (identical) effort level each player would exert under no mutation
when previous state was et. Proposition 3 shows how it is determined.
We claim met+1 = BR(et). Note that C(e, e0) < N/2 implies that less
than the half of the population mutate in the transition from et to et+1
(i.e., c(et, et+1) < N/2). Hence, by Proposition 3, more than half of the
population must be playing BR(et) at et+1, so that the median effort level at
et+1 is equal to BR(et), as claimed. We note that for all t = 0, ..., T ,met is a
morale equilibrium effort level. The reason is twofold; (i) met = BR(et−1),
for t = 1, ..., T and BR(et−1) is always a morale equilibrium effort level
(by Proposition 3), and (ii) m0 = e is a morale equilibrium effort level by
definition. Hence met ≥ em, as em is the smallest morale equilibrium effort.
Therefore, Case 2 of Proposition 3 applies and we have met ≥ BR(et). This
and the former claim shows e = me0 ≥ me1 ≥ ... ≥ meT = e0, which
contradicts e < e0.

Proof of Lemma 2: Suppose that, at equilibrium e, N+12 players’ effort
levels mutate towards e + 1. The median effort in the new state is e + 1,
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and the N−1
2 non-mutants are deviating downwards (by 1) from this new

norm. Hence the binding power of the new norm is K(N−12 × 1). By Case
2 in Proposition 3 and ∆c(e) < ∆c(eU) < 1 + K(N−12 ) (recall that ∆c is
increasing), in the following period equilibrium e+1 is achieved. By Lemma
1, this is the minimum cost path.

Proof of Lemma 4: We show that there is a path from e to e0 with
cost less than N/2. Let c be the minimum integer satisfying

∆c(e) > 1 +K(ce)

By the definition of eD, we must have17 ∆c(e) > 1 + K(N−12 e) for any
eD < e. As K is decreasing, we have c ≤ N−1

2 (< N/2). Now suppose
that, at equilibrium e, c players mutate into effort level 0. As c < N/2,
the median at the new state remains to be e, so that the sum of downward
deviations is equal to ce. Then, the displayed inequality above and Case 2
of Proposition 3 show that in the following state all players take a morale
equilibrium action e0 < e. As the cost of this path is equal to c, we have
C(e, e0) ≤ c < N/2.

Proof of Lemma 5: Suppose n players mutate to zero effort. In the
next period, all players choose effort level e0 defined by

∆c(e0) < 1 +K(ne) < ∆c(e0 + 1).

(See Case 2 of Proposition 3.) As en is defined to be the maximum effort
level satisfying ∆c(e) < 1 +K(ne), we must have

∆c(en + 1) ≥ 1 +K(n(en + 1)).

As e ≥ en + 1 and K(·) is decreasing, we have

∆c(en + 1) ≥ 1 +K(n(en + 1)) ≥ 1 +K(ne) > ∆c(e0).

Since ∆c is increasing, we conclude en + 1 > e0, or equivalently, en ≥ e0.
Hence e0 ≤ en is achieved with cost n. As n < N/2, there is no upward
transition with the same cost (Lemma 1). Suppose there is e0 < e such
that C(e, e0) < n. This leads us to a contradiction. Let (e0, ..., eT ) be
the minimum cost path which achieves C(e, e0) and let met be the median
effort level at et. Let BR(et) be the best reply effort level to et. As
17Note that, thanks to the Assumption, there is no integer e that satisfies ∆c(e) =

1 +K(N−1
2 e).
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C(e, e0) < n < N/2 implies that a majority of players are always taking the
best reply to the previous state, we have met+1 = BR(et), as in the proof
of Lemma 1. Now we argue met = e for all t = 0, ..., T . (This contradicts
the requirement meT = e0 < e.) The claim is shown by induction. As
the claim is true for t = 0 by definition (me0 = e), let us suppose met = e
is true and show met+1 = e, for any t = 0, ..., T − 1. The norm at t + 1,
defined to be met, is equal to e by the induction hypothesis. We now show
that the binding power of this norm is sufficiently strong to deter deviations.
Recall that c(et, et+1) is the number of mutations in the transition from et
to et+1 and c(et, et+1) ≤ n − 1 (as c(et, et+1) ≤ C(e, e0) < n). Note that
the sum of downward deviations from the norm at t is maximized (and
therefore the binding power is the weakest) when the mutants take effort
level 0, and the maximum total downward deviation is equal to c(et, et+1)
(the number of mutants) times (e − 0) (the maximum deviation). Hence,
if we denote the binding power of the current norm e by kt+1, we have
kt+1 ≥ K(c(et, et+1)e), as K is decreasing. By the definition of en−1 (see
Definition 2) and e ≤ en−1, together with c(et, et+1) ≤ n − 1 and the fact
that ∆c is increasing and K is decreasing, we have ∆c(e) ≤ ∆c(en−1) <
1 +K((n− 1)en−1) ≤ 1 +K(c(et, et+1)e) ≤ 1 + kt+1, or

∆c(e) < 1 + kt+1.

Case 2 in Proposition 3 then shows that BR(et) = e. As we have shown
met+1 = BR(et), the proof by induction is completed.

Proof of Lemma 6: The proof consists of two parts. First we prove
C(e, e0) ≥ N+1

2 , and then we show that generally for any e0 < e (e does not
have to be less than or equal to eD) there is a path from e to e0 with cost
N+1
2 .
Suppose, on the contrary, C(e, e0) < N/2. This leads to a contradiction.

The proof is similar to that of Lemma 5 and therefore omitted. Now
suppose, at equilibrium e, N+12 players mutate into a lower equilibrium effort
level e0 < e. Then, at the new state, the median effort is e0, and there is no
downward deviation from e0. Hence the best reply at this state is equal to
the best reply at equilibrium e0 (as each player maximizes (4) withm(t) = e0

and k(t) = K(0) both at this state and at equilibrium e0.). Therefore, in
the following state all players take effort level e0. The cost of this path from
e to e0 is equal to N+1

2 .
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