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Abstract

In this paper, it is shown that real indeterminacy of stationary equilibria generically arises
in most matching models with perfectly divisible media of exchange. In other words, the real
indeterminacy follows from the condition for stationarity of holdings of media of exchange. More-
over, we present a new technique to prove the existence of stationary equilibria; especially, it is
applicable to the case that both money and goods are perfectly divisible.
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1 Introduction

Recently, real indeterminacy of stationary equilibria has been found in matching models

with fiat money. (See, for example, Green and Zhou [6] [7], Matsui and Shimizu [15],

and Zhou [21].1) In this paper, it is shown that real indeterminacy generically arises

in most matching models with perfectly divisible media of exchange. In other words,

the real indeterminacy follows from the condition for stationarity of holdings of media

of exchange, and surprisingly it has nothing to do with the other specifications of the

models. Moreover, we present a new technique to prove the existence of stationary

equilibria applicable to a wide class of matching models.
∗The authors would like to acknowledge seminar participants at Hitotsubashi University, Kansai University, Osaka

University, and University of Tokyo, as well as Nobu Kiyotaki, Michihiro Kandori, Noritaka Kudoh, Akihiko Matsui,
Dolf Talman, and Akira Yamazaki for helpful comments and references. This research is financially supported by Grant-
in-Aid for Scientific Reaearch from JSPS and MEXT. The second author also acknowledges the financial support by
Zengin Foundation for studies on Economics and Finance. Of course, any remaining error is our own.
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1Green and Zhou [7] have found real indeterminacy of dynamic equilibria from an initial state as well.
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It is well known that some general equilibrium models have intrinsic multiplicity of

equilibria. (See, for example, Gale [4], Geanakoplos and Mas-Colell [5], Herings [9],

Samuelson [16], and van der Laan [20].) Overlapping generations models, for example,

have such real indeterminacy of equilibria; in the so-called Samuelson’s case, there is a

continuum of equilibria parameterized by the first period consumption. Nevertheless,

stationary equilibria are typically determinate in intertemporal general equilibrium

models; for example, overlapping generations models have generically a finite number

of stationary equilibria. (See Kehoe and Levine [14].)

However, it is recently shown that even stationary equilibria are indeterminate in

a few matching models with divisible money referred above. Though some authors

intuitively argued that specific bargaining procedures lead to the intrinsic multiplicity

of equilibria, the logic behind the real indeterminacy has not been found so far. In this

paper, it is shown that the real indeterminacy results from the condition for stationarity

of holdings of media of exchange, independently of the details of the models.

A sketch of our idea is as follows. Suppose the nominal stock of money is given.

When the price level is low, there is a lot of liquidity in the economy, the trade is

frequent, and therefore the welfare level is high. When the price level is high, there is

less liquidity in the economy, the trade is less frequent, and therefore the welfare level is

low. If we can find the corresponding equilibrium values of the other variables, such as

the money holdings distribution and the value function, as the price level continuously

varies, then the real indeterminacy follows. If the number of variables is larger than

that of equations, then by applying the implicit function theorem this property holds.

In this paper, we show that the stationary condition of money holdings, common to all

random matching models of media of exchange, has at least one more variable than the

number of equations. Thus the stationary equilibria in such models are indeterminate.

More specifically, we consider the case of one medium of exchange. Suppose it

is perfectly divisible and there is an upper bound of its holdings. We confine our

attention to stationary equilibria in which, for some positive number p, all trades

occur with its integer multiple amounts of the medium of exchange. Also, we focus on

stationary distributions on {0, . . . , N} expressed by h = (h(0), . . . , h(N)), where h(n)

is the measure of the set of agents with np amount of the medium of exchange, and

N < ∞ is the upper bound. In the condition for stationarity of holdings of the medium

of exchange, there are (N + 1) variables, h(n), n = 0, . . . , N . On the other hand, since∑N
n=0 On =

∑N
n=0 In always holds, where On (In) is the outflow (inflow resp.) at n, then,

2



at first glance, there seem to be (N +1) independent equations, On = In, n = 1, . . . , N ,

and
∑N

n=0 h(n) = 1. Thus it seems that the numbers of independent equations and

variables, h(n), n = 0, . . . , N , are the same. However, surprisingly it can be shown that

one more equation is always redundant and that the system of equations has always at

least one degree of freedom; namely,
∑N

n=1 nOn =
∑N

n=1 nIn always holds. This fact is

the key to the real indeterminacy of stationary equilibria.

We present the concept of a stationary quasi-equilibrium which is weaker than a

stationary equilibrium. It enables us to analyze matching models in a general way.

Note that, in most of the specific models, it can easily be shown that a stationary quasi-

equilibrium is indeed a stationary equilibrium. Let V = (V (0), . . . , V (N)) and β be a

value function and a proportion of actions, respectively, and (V ∗, h∗, β∗) be a stationary

quasi-equilibrium. Then, due to the indeterminacy of stationary distributions, it seems

that there exists another stationary quasi-equilibrium (V, h, β) in a small neighborhood

of (V ∗, h∗, β∗). Indeed, using differential topology, we can show that the existence of a

stationary quasi-equilibrium generically leads to the existence of a continuum of them.

It can also be shown that real allocations are generically not constant in a connected

set of the stationary quasi-equilibria.

We also present a sufficient condition that the indeterminacy of stationary quasi-

equilibria implies that of stationary equilibria. That is any model satisfying this con-

dition has a continuum of stationary equilibria as well as a continuum of stationary

quasi-equilibria. In some matching models with indivisible money, such as Camera

and Corbae [3], Shi [17], and Trejos and Wright [19], the stationary equilibria are de-

terminate. However, if once they are extended to the models with perfectly divisible

money, then real indeterminacy generically arises. Indeed, these models satisfy the

sufficient condition. Moreover, we directly show that the Camera and Corbae’s model

with divisible money has real indeterminacy of stationary equilibria.

Even if we maintain the assumption of indivisible money, the above arguments

suggest that the greater the divisibility of the medium of exchange, the larger the

number of equilibria. In other words, for a fixed money supply and a fixed upper

bound of money holdings, there are much larger number of equilibria in the case of one

unit of money being one cent than in the case of one hundred dollars.

By using the results we showed on indeterminacy, we present a new technique to

prove the existence of stationary equilibria in matching models with media of exchange.

Especially, the technique enables us to prove the existence of stationary equilibria in
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the case that both money and goods are perfectly divisible. It is worthwhile noting

that such existence theorems have not been known in the literature.2

In the technique, we first consider the case of h(0) = 1, i.e., the case that no agents

have the medium of exchange. Since, at h(0) = 1, the Bellman equation is typically

quite simple, then it is easy to obtain a solution with a positive value of the medium

of exchange. As discussed in the above, there exists a stationary quasi-equilibrium for

h(0) = 1 − ε, where ε is a small positive number. Note that
∑N

n=0 pnh(n) = M should

be satisfied in an equilibrium, where M is an exogenously given supply of the medium

of exchange. Although the stationary quasi-equilibrium with h(0) = 1 is not consistent

with the positive supply of the medium of exchange, the stationary quasi-equilibrium

with h(0) = 1 − ε is consistent with M > 0. In this paper, using this technique, we

prove the existence of stationary equilibria in a new model with divisible money and

goods.3

It is worth mentioning a policy implication of our indeterminacy results. In the

literature, the welfare effect of monetary policy has often been discussed in matching

models with money, and in most of these models, money is indivisible and the sta-

tionary equilibria are determinate. Thus the effects of the policies are determinate as

well. However, if we assume the divisibility of money in these models, the stationary

equilibria become indeterminate. Thus it is quite difficult to make accurate predictions

of the effects of simple monetary policies in such models. Instead, in the accompany-

ing paper [13], we show that, for any given stationary quasi-equilibrium, there exists

tax-subsidy systems that almost lead the economy to the equilibrium and, moreover

the government can select an efficient one.

The plan of this paper is as follows. In Section 2, we first present our basic model and

examples. In Section 3, the key feature of stationary distributions is proved, and then in

Section 4, the real indeterminacy is informally discussed; the rigorous discussion and the

proofs are given in Appendix A. Some models with a continuum of stationary equilibria

are also given. Moreover, we present a sufficient condition that the indeterminacy of

stationary quasi-equilibria implies that of stationary equilibria, and discuss the case of

indivisible money. In Section 5, we present our general technique to prove the existence

of equilibria and then prove the existence of equilibria in a new model with perfectly
2Shi [18] presented a model with divisible money and goods. However, each agent consists of a continuum of members

and, because of the average effect, the state of each agent is always the same in the steady state. In other words, there
is just one state in the equilibrium and thus the concept of a stationary distribution is meaningless in the model.

3Also, Kamiya et al. [12] shows a sufficient condition for the existence of single-price equilibria with an arbitrary
upper bound of money holdings in Zhou [21] model by using this technique.
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divisible money and goods. In Section 6, we relax some assumptions given in Section 2;

such as possibility of multiple media of exchange, possibility of the matchings not being

pairwise, possibility of holding medium of exchange gives some utility, and possibility

of discarding the upper bound of holdings of media of exchange.

2 The Basic Model and Examples

In this section, we present the basic model. Since our concern is mainly on the station-

arity of holdings of medium of exchange, the other aspects of the model are described in

a quite general way. For concrete examples of the basic model, see Zhou [21]’s model in

Section 2.2 and a divisible money version of Camera and Corbae [3]’s model in Section

2.3.

2.1 The Basic Model

We make the following assumptions in most parts of this paper for simplicity: there is

only one medium of exchange, the matching is pairwise, holdings of media of exchange

give no utility, and there is an upper bound of holdings of the medium of exchange.

All of these assumptions will be relaxed in Section 6.

Throughout this paper, we assume that there are infinitely lived agents with a

nonatomic mass of measure one. Our model can be considered both as a continuous-

time model and as a discrete-time model depending on the interpretations of the match-

ing technology presented below. There is one medium of exchange which is perfectly

durable and divisible. Here, the medium of exchange is for example fiat money. Al-

though the medium of exchange is traded for perishable goods, we do not explicitly

specify them; all the results in what follows can be obtained no matter what the spec-

ification is.

We confine our attention to stationary equilibria in which, for some positive number

p, all trades occur with its integer multiple amounts of the medium of exchange.4 In

what follows, we focus on stationary distributions on {0, . . . , N} expressed by h =

(h(0), . . . , h(N)), where h(n) is a measure of the set of agents with np amount of

the medium of exchange, and the upper bound N < ∞ can be either exogenous or

endogenous. Of course, h(n) ≥ 0 and
∑N

n=0 h(n) = 1 hold. Let M > 0 be a given supply

of the medium of exchange. Since p is uniquely determined by
∑N

n=0 pnh(n) = M for a
4Note that we do not exclude the case in which one good is traded for multiple prices, i.e., the case of price dispersion.

5



given h (unless h(0) = 1), then, deleting p from {0, p, 2p, . . . , Np}, the set {0, . . . , N}
can be considered as the state space.

An agent with n chooses an action in An = {a1, . . . , akn}. Note that we restrict

our attention to a finite action space. Let βnj ≥ 0 be the proportion of the agents

choosing an action aj among the agents with n, and β = (β01, . . . , βnj, . . . , βNkN
).

Thus
∑kn

j=1 βnj = 1 holds. Define h(n, j) as h(n, j) = βnjh(n). Let γ ∈ RL be the

parameter of the model.

The technology of pairwise matching is described by random matching process and

the following function f . When an agent with (n, j) meets an agent with (n′, j′), the

former’s and the latter’s states will be n + f((n, j), (n′, j′)) and n′ − f((n, j), (n′, j′)),
respectively.5 That is f maps an ordered pair ((n, j), (n′, j′)) to a non-negative integer

f((n, j), (n′, j′)). Here “ordered” means, for example, that the former is a seller and

the latter is a buyer. When N is exogenously determined, we assume

N ≥ n + f((n, j), (n′, j′)) and n′ − f((n, j), (n′, j′)) ≥ 0.

When N is endogenously determined, we assume the latter condition while the former

one should be satisfied on the equilibrium path.

By random matching process, the rate of matching between agents with (n, j) and

(n′, j′) is written as αh(n, j)h(n′, j′) for some α > 0. Note that α is a parameter and is

included in γ. Needless to say, in discrete time cases, the proportion αh(n, j)h(n′, j′) of

agents move from n to n+f((n, j), (n′, j′) and n′ to n′−f((n, j), (n′, j′)) in each period.

In continuous time cases, αh(n, j)h(n′, j′) is the time derivative of the proportion of

such movements.

We adopt a Bellman equation approach. Let V (n) be the value of state n, n =

0, . . . , N . The variables in the model are denoted by x = (V, h, β). Let Wnj(x, γ) be

the value of action j at state n. Thus, in equilibria, Wnj(x, γ) = V (n) holds for j such

that βnj > 0. Note that Wnj(x, γ) includes the utility and/or the production cost of

perishable goods.

Remark 1 One may think that our model is too restrictive in two points: confining our

attention to stationary equilibria in which all trades occur with some integer multiple

of p and to a finite action space. Moreover, some might think that such an equilibrium

does not exist in Camera and Corbae [3]’s model or in Trejos and Wright [19]’s model if
5In this formulation it is implicitly assumed that the bargaining immediately ends on the equilibrium path. However,

it is not a substantial drawback of our model, because we could analyze a situation in which the bargaining delays by
extending the state space.
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money is divisible. However, we will later show that it really exists. Also, as for finite

action space, we will later show that many matching models with divisible money can

be converted into the models with finite action spaces. More specifically, see Section

2.2 and 4.1 for Zhou [21]’s model, and see Section 2.3 and 4.2 for the divisible money

version of Camera and Corbae [3]’s model. For Trejos and Wright [19]’s model and a

general discussion, see Section 4.4.

Remark 2 The rate of matching can be much more general. That is even if it is some

function of (n, j), (n′, j′), h, and β, the arguments in what follows do not change. The

general model, for example, includes so-called “directed search” models such as Matsui

and Shimizu [15].

Remark 3 It is worthwhile noting that, in the case of time-additive expected utility

in discrete time, Wnj can be for example written as:

Wnj(x, γ) = U(h, β, j, γ) + κE(V (n′)|h, β, j, n),

where κ is a discount factor, U is the temporal utility, and E(V (n′)|h, β, j, n) is the

expectation of V (n′) conditional on h, β, j, n. We can also analyze the case that U

depends on the amount of money. For the details, see Section 6.

Remark 4 We can easily extend our model to the case that prices are not neces-

sarily nonnegative integer multiples of p. For example, suppose the state space is

{0, p,√2p, . . . , (n1 + n2

√
2)p, . . . , (N1 + N2

√
2)p}, and p and

√
2p are the equilibrium

prices. Then we can obtain the same results as in the case of nonnegative integer

multiples of p. In fact, our argument is applicable to any finite state space.

Remark 5 Our model includes the case that both barter and monetary exchange are

possible, such as Shi [17]. It is worthwhile noting that, as far as some monetary

exchange exists in equilibria, our argument in the following sections are applicable.

2.2 Zhou Model

In Zhou [21], time is continuous, and pairwise random matchings take place according

to Poisson process with a parameter µ. There are k types of agents with equal fractions

and the same number of types of goods. Only one unit of good i can be produced and

held by a type i − 1 (mod k) agent. The production cost is c. A type i agent obtains

utility u > 0 only when she consumes one unit of good i. Fiat money is divisible and
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there is no inventory constraint on fiat money. For every matched pair, the seller posts

a take-it-or-leave-it price offer, ignorant of the buyer’s money holdings.

Zhou shows the existence of “single price equilibria” in which all trades occur with

a price p∗. In the equilibria, the support of money holdings distribution is endoge-

nously bounded. Let the support be {0, p∗, 2p∗, . . . , Np∗}, where N is endogenously

determined. Note that, as long as symmetric Markov equilibria concerned, the value

function depends only upon current money holdings. It is verified that this type of

equilibria is included in our model as follows:

• h (n) is the fraction of agents with np∗ amount of fiat money.

• An = {aj}j∈Kn
, where Kn = {(o, r) |o = 0, 1, . . . , N̂ , r = 0, 1, . . . , n} for some

finite N̂ , i.e., kn = #Kn (here, we have slightly abused the notations; j denotes

an action instead of an integer). An action aj = a(o,r) means that an agent offers

op∗ when she is a seller, and she accepts the partner’s offer if and only if the offer

price is less than or equal to rp∗ when she is a buyer.

• f ((n, j) , (n′, j′)) is the monetary transfer between a seller (n, j) and a buyer

(n′, j′). Thus

f ((n, (o, r)) , (n′, (o′, r′))) =

{
o if o ≤ r′

0 otherwise.

• The time derivative of the matching between a seller (n, j) and a buyer (n′, j′) is

(µ/k)h(n, j)h(n′, j′).

• V (n) is the value of np∗.

In order to discuss stationary equilibrium, we also need to consider actions excluded

from our action space, and the strategy and the value at η /∈ {0, p∗, . . . , Np∗}. In

Section 4.1, we will show that the above specifications are sufficient.

2.3 Divisible Money Version of Camera and Corbae Model

Camera and Corbae [3] (referred to below as CC) analyze a model in which fiat money

is indivisible, there is an exogenously given upper bound of money holdings, and goods

are perfectly divisible. In this subsection, we extend the model to the case of perfectly

divisible fiat money. Later we show that there is a continuum of stationary equilibria

of which strategies are similar to the strategy in CC.
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CC’s model is similar to Zhou’s. The differences are the divisibility of goods, the

bargaining procedure, and the specifications of fiat money. By consuming q unit of

goods, an agent obtains utility U (q) = q1−λ/ (1 − λ), where λ ∈ (0, 1) is a parameter.

The cost function is C(q) = q. After observing the seller’s money holdings, the buyer

posts a take-it-or-leave-it offer (d, q), where d and q are quantities of money and goods,

respectively.

In the original version of CC model, one unit is no longer divisible. Agents are under

a money holding constraint; N is the maximum unit they can hold. Let MS be the

total units of money supply. Note that N and MS are exogenously given in CC.

Let us turn to the case of divisible money. For a given p∗ > 0, we will later analyze

an equilibrium in which all trades occur with p∗ amount of fiat money. Agents behave

as if p∗ were the minimum unit of divisibility. Let N̄ and M be the upper bound of

money holdings and the total quantity of fiat money, respectively. Then let

N =
⌊
N̄/p∗

⌋
and Ms = M/p∗,

where �x� denotes the integer part of x, then the divisible money version looks similar

to the original version. The only difference is that N and MS are endogenously given

in the divisible version.

One might think that the divisible money version of CC model is not a special case of

our model, since the action space includes the choice of quantity offer in R+. However,

since a buyer can exploit all gains from trade, then the equilibrium quantity is uniquely

determined as the function of the offer price, the partner’s money holdings, and the

value function. Thus we can confine our attention to a simpler action space as in CC.

Now, we can check that our model includes that of the divisible money version of CC

model as follows:

• h (n) is the measure of the set of agents with np∗ amount of fiat money.

• An = {aj}j∈Kn
, where Kn = {(o0, o1, . . . , oN ) | on̂ = 0, . . . , max{n, N − n̂}, n̂ =

0, . . . , N}, i.e., kn = #Kn (here, we have slightly abused the notations; j denotes

an action instead of an integer). An action aj = a(o0,...,oN ) means that the agent

offers on̂p∗ amount of money when she is a buyer and the partner’s money holdings

are n̂p∗. Note that the set of a seller’s actions is a singleton, since all of his gain

from trade is extracted on the equilibrium path.

• f ((n, (o0, . . . , oN )) , (n′, (o′0, . . . , o
′
N ))) = on′ .
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• The time derivative of the matching between a seller (n, j) and a buyer (n′, j′) is

(µ/k)h(n, j)h(n′, j′).

• V (n) is the value of np∗.

Similarly as in Zhou model, although we also need to consider actions excluded from

our action space, and the strategy and the value at η /∈ {0, p∗, . . . , Np∗}, we will show

that the above specifications are sufficient. For the details, see Section 4.2.

3 Stationarity

By the definition of f , the outflow On and the inflow In at state n, functions of h, β,

and α, are defined as follows:

On(h, β, α) =
∑
j,i′,j′

αh(n, j)h(i′, j′) +
∑
i,j,j′

αh(i, j)h(n, j′),

In(h, β, α) =
∑

(i,j,i′,j′)∈Bn

αh(i, j)h(i′, j′) +
∑

(i,j,i′,j′)∈B ′
n

αh(i, j)h(i′, j′),

where

Bn = {(i, j, i′, j′) | i + f((i, j), (i′, j′)) = n},
B ′

n = {(i, j, i′, j′) | i′ − f((i, j), (i′, j′)) = n}.
The condition for stationarity is On = In, n = 0, . . . , N, and

∑N
n=0 h(n) = 1. In fact,

On (In) is the “gross” outflow (inflow resp.), since it includes the fraction of agents

who are matched with others but make no trade using the medium of exchange, i.e.,

the case of f((i, j), (i′, j′)) = 0, where i = n or i′ = n. Since such fractions are included

both in On and in In, then they are clearly canceled out. Thus even if we replace them

with the “net” outflow and inflow, the results in what follows do not change.

Clearly,
∑N

n=0(On − In) = 0 holds and thus at least one equation is redundant. At

first glance, both the numbers of linearly independent equations and of variables seem

to be N + 1. However, the following theorem shows that one more equation is always

redundant.

Theorem 1
N∑

n=0

nOn =

N∑
n=0

nIn. (1)

(Note that the terms O0 and I0 are multiplied by 0.)
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Proof: Consider a pair of pairs (n, j) and (n′, j′). By the matchings between them,

the proportion αh(n, j)h(n′, j′) of agents move from n to n + f((n, j), (n′, j′)), and the

same proportion of agents move from n′ to n′ − f((n, j), (n′, j′)). Corresponding to the

moves, the following terms appear in the RHS and in the LHS of (1):

the LHS the RHS
nαh(n, j)h(n′, j′) (n + f((n, j), (n′, j′)))αh(n, j)h(n′, j′)
n′αh(n, j)h(n′, j′) (n′ − f((n, j), (n′, j′)))αh(n, j)h(n′, j′)

Clearly, the sum of the terms in the LHS is equal to that in the RHS. Since this holds

for any pair of pairs (n, j) and (n′, j′), (1) holds.

The interpretation of the theorem is simple. The LHS of (1) is the total amount of

money held by the agents involved in trading before the trade, while the RHS of (1) is

the total amount of money held by them after the trade. Clearly, they must coincide.

Note that (1) holds even in non-stationary and/or non-equilibrium situations.

By the above theorem,

0 =
N∑

n=0

nOn −
N∑

n=0

nIn =
N∑

n=1

n(On − In)

holds, i.e., On − In, n = 1, . . . , N, are linearly dependent. By
∑N

n=0(On − In) = 0,

without loss of generality, we can first delete O0 − I0 = 0 and then, by the above

theorem, can delete O1 − I1 = 0. Thus the distribution is stationary if and only if

On − In = 0, n = 2, . . . , N, and
∑N

n=0 h(n) − 1 = 0 hold. That is, for a given β, the

number of linearly independent equations is less than that of variables. Namely, the

condition for stationarity has at least one degree of freedom. In the next section, it is

shown that this is the main cause of the real indeterminacy.

4 Real Indeterminacy of Stationary Equilibria

In this section, we show that Theorem 1 implies the real indeterminacy of stationary

equilibria. First, without using Theorem 1, we directly show that there exits a con-

tinuum of stationary equilibria in Zhou [21]’s model and the divisible money version

of Camera and Corbae [3]’s model. Next, using Theorem 1, we present a general the-

ory of the real indeterminacy. More precisely, we define a stationary quasi-equilibrium

which is easy to deal with and show its real indeterminacy. Then we present a suf-

ficient condition that a stationary quasi-equilibrium is a stationary equilibrium. The
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rigorous discussion about real indeterminacy, based on differential topology, is given in

Appendix A. Moreover, the case of indivisible money is discussed.

4.1 Zhou Model

Zhou [21] shows the existence of “single price equilibria” having the following feature:

the stationary distribution has masses only at 0 and p∗, i.e., the endogenously de-

termined upper bound of money holdings N is 1, sellers without money always offer

p∗, sellers with p∗ always offer ∞, and thus trades occur only between sellers without

money and buyers with p∗.
In order to show that this can happen as an equilibrium phenomenon, we first

convert Zhou model into our framework as in Section 2.2. In this type of the equilibria,

sellers with p∗ cannot sell their production goods on the equilibrium path, since there

are no agents who afford to accept their offers. Then, even if we modify the equilibrium

strategy such that agents with p∗ offer N̂p∗, where N̂ ≥ 2, the value on the equilibrium

path does not change.

Since N = 1 is endogenously determined, we should check incentives at np∗, n ≥ 2.

As is the case of agents with p∗, we consider equilibrium strategy such that agents

with np∗ (n ≥ 2) offer N̂p∗, where N̂ ≥ 2. Thus this type of the equilibrium can be

expressed in our model as follows:

β∗
0j =

{
1 if j = (1, 0)

0 otherwise
β∗

nj =

{
1 if j = (N̂, 1)

0 otherwise
for n ≥ 1.

Let φ = kr/µ, where r is a discount rate. Then the Bellman equation is as follows:

V (0) =
1

φ + 2
[(1 − h (0)) (−c + V (1)) + h (0)V (0) + V (0)] ,

V (n) =
1

φ + 2
[V (n) + (1 − h (1)) (u + V (n − 1)) + h (1) V (n)] , n ≥ 1.

Let h (0) = 1 − m and h (1) = m for some m > 0. Then we obtain

V (n) =
1 − m

φ
u− Anφ + 1 −m

φ (1 + φ)
[(1 − m) u + mc] ,

where A = 1−m
φ+1−m

.

If an agent without money offers a price larger than p∗, she cannot trade. Thus she

prefers to offer p∗ if and only if V (0) ≥ 0. It is verified that this is equivalent to the

12



condition

u

c
≥ 1 +

φ

1 −m
.

Next, we check an incentive for agents with p∗ to offer N̂p∗, where N̂ ≥ 2. This is

equivalent to the condition that offering p∗ makes a loss, i.e., V (2) − c ≤ V (1). This

holds if and only if

u

c
≤ φ (1 + φ) (φ + 1 − m) − φm (1 −m)

φ (1 − m)2 .

And thus, if

1 + φ <
u

c
< (1 + φ)2 (2)

holds, then, for any sufficiently small m, any agent with np∗ has no incentive to deviate

by an action included in An.

Based on this result, we extend the distribution, the value, and the strategy to state

space [0,∞). More precisely, define the distribution h̃ as a natural extension of h.

Next, define the value function on [0,∞) such that Ṽ (η) = V (�η/p∗�). Lastly, define

the equilibrium strategy as follows: (i) when a seller’s money holding is less than 2p∗,
then she offers p∗, (ii) otherwise she offers N̂p∗, where N̂ is defined as the above, (iii)

when a buyer’s money holding is less than p∗, then he always rejects the seller’s offer,

and (iv) otherwise he has some reservation price larger than or equal to p∗.6

Let us consider a sufficient condition that the profile above indeed forms a stationary

equilibrium. First, it is clear that h̃ is a stationary distribution. Of course, p∗ is

determined by p∗h̃(p∗) = p∗m = M. Note that p∗ > M holds. Next, it is easily

verified that Ṽ is consistent with the equilibrium strategy. Lastly, we need to consider

a condition that an agent has no incentive to deviate from the equilibrium strategy.

However, we can show that (2) is sufficient. For, since Ṽ is a step function with the

steps of length p∗, a seller has no strict incentive to offer a price other than an integer

multiple of p∗.
In summary, if (2) holds, then, for any sufficiently small m > 0, there is no incentive

to deviate from the actions specified above. It follows that there is a continuum of

stationary equilibria with different m. Note that p∗ should also be different in equilibria,

since p∗m = M .
6Strictly speaking, the strategy that (iv) specifies at η �= p∗ is not a direct extension of β∗. But, this makes no

problem, since no price other than p∗ is ever offered on the equilibrium path.
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Remark 6 It may seem strange that our condition is different from that in Corollary

2.1 in Zhou [21]. The difference arises from the fact that we modify the equilibrium

strategy and thus the “weak undominatedness” in Zhou [21] is not necessarily satisfied.

Consider the case that parameters satisfy only our condition. If there were agents who

accept the offer, then there should be some offer prices more profitable than ∞; that

is, the offer ∞ is weakly dominated. However, there do not exist such agents on the

equilibrium path. Therefore the offer price ∞ can also be an equilibrium offer.

4.2 Divisible Money Version of Camera and Corbae Model

Some might think that the real indeterminacy result in Zhou [21] crucially depends

upon the assumptions held in the model: money holdings of a matched partner are

unobservable and a bargaining proceeds in a way like double auction. We try to refute

this. For this purpose, we show that there is also a continuum of stationary equilibria

in the divisible money version of CC model. Recall that CC assume that the money

holding of a partner is observable and a bargaining proceeds by buyer’s take-it-or-leave-

it offer. It suggests that the real indeterminacy is independent of the informational

setting and the bargaining procedure assumed in Zhou [21].

Let us start with considering the original version of CC in which fiat money is

indivisible. CC show that there exists a stationary equilibrium in which all trades

occur with one unit of fiat money in some region of parameters. More precisely, they

construct the strategy in which buyers with positive money holdings always offer one

unit of fiat money and the quantity of goods such that the seller is indifferent between

accept and reject. Let φ = kr/µ.7 Then their result (Proposition 2, [3]) is as follows:

Proposition 1 Suppose that fiat money is indivisible. There exists Φ(λ,N, MS) > 0

such that, for any N ≥ 1, any MS , any λ > 1− (1/(N−1)), and any φ < Φ(λ,N, MS),

the strategy stated above, together with some distribution of money holdings, forms a

stationary equilibrium.

Let us turn to the case of divisible money. Recall that N̄ is the upper bound of

money holdings. Then, by Proposition 1, we can construct the stationary equilibrium

in which all agents behave as if p∗ were the minimum unit for any p∗ ∈ (0, N̄ ].

Consider the discrete distribution with masses only at η = 0, p∗, 2p∗, . . . ,
⌊
N̄/p∗

⌋
p∗,

which is a natural extension of the distribution in Proposition 1. Define the equilibrium
7Then φ in this paper is the reciprocal of φ in CC [3].
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strategy as follows: (i) when a seller has an integer multiple of p∗, then the partner offers

p∗ quantity of money and the corresponding quantity of goods if his money holding is

more than or equal to p∗, and he does not trade if his money holding is less than p∗,
and (ii) the other cases, which happen with probability zero, are given below.

Below, we present conditions for the above profile of distribution and strategy to

form a stationary equilibrium. Clearly, the distribution is stationary. Similarly, the

incentive compatibility conditions for deviating from offering p∗ to another integer

multiple of p∗ are equivalent to those of the case of indivisible money. Below, we check

the other conditions, i.e., the incentive compatibility conditions for deviating to offering

non-integer multiple of p∗

First of all, by the above distribution and strategy, the (candidate for) value function

defined on [0, N̄ ], denoted by Ṽ , must be a step function with the steps of length p∗.8

Next, check the incentive of buyers. First, consider the case that a seller’s money

holding is an integer multiple of p∗. Let η (possibly non-integer multiple of p∗) be the

buyer’s money holdings, η′ be the quantity of money she offers, and np∗ be the seller’s

money holdings. Let q(np∗,η′) be the quantity of goods which the seller is indifferent

between accepting and rejecting, then

q(np∗,η′) = Ṽ (np∗ + η′) − Ṽ (np∗).

Next, let n′ = �η′/p∗�, then

Ṽ (np∗ + η′) = Ṽ ((n + n′)p∗),

since Ṽ is a step function with the steps of length p∗. Thus q(np∗,η′) = q(np∗,n′p∗). That is

offering n′p∗ is not less profitable than offering η′. Thus it suffices to check the incentive

compatibility conditions only for offering some integer multiple of p∗. Next, consider

the case that a seller’s money holding is not an integer multiple of p∗. In this case,

choose any buyer’s strategy which exploits all gains from trade. Note that this behavior

does not affect the value of buyers since the above matching occurs with probability

zero.

Also, given the strategy defined above, the seller’s value after trade is always the

same as the one before trade.

Thus the Bellman equation at η is the same as the one at �η/p∗�. Thus the Bellman

equation is satisfied for all η ∈ [0, N̄ ].
8In this paper, a value function defined on a certain interval in R is denoted by Ṽ whereas the one defined on

{0, 1, . . . , N} is denoted by V .
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For an intuitive illustration of the arguments, consider a buyer with money holding

of 1.5p∗. One might think that she has a strict incentive to offer .5p∗ instead of p∗.
However, the money holdings of her future partners will be some integer multiple of p∗

with probability 1, so that she does not appreciate smaller portion of money than p∗.
Thus the quantity in compensation for .5p∗ is the same as for 0, i.e., q(np∗,.5p∗) = q(np∗,0p∗).

Thus we obtain the following result:

Proposition 2 Suppose that fiat money is perfectly divisible. Then for p∗ ∈ (0, N̄ ],

any M , any λ > 1 − (1/(�N̄ /p∗� − 1)), and any φ < Φ(λ, �N̄/p∗�, M/p∗) where Φ

appears in Proposition 1, the profile of distribution and strategy stated above forms a

stationary equilibrium.

Since p∗ is an endogenous variable in the divisible money model, there is a continuum

of stationary equilibria with different p∗.

4.3 General Theory of the Real Indeterminacy

In this subsection, we present an informal discussion of the general theory of the real

indeterminacy by using Theorem 1. See Appendix A for the detailed presentation.

First, we present the definition of a stationary quasi-equilibrium.

Definition 1 A triple x∗ = (V ∗, h∗, β∗) ∈ RN+1 × RN+1
+ × R

�N
n=0 kn

+ is said to be a

stationary quasi-equilibrium for a given γ if

On(h∗, β∗, α) − In(h∗, β∗, α) = 0, n = 2, . . . , N, (3)
N∑

n=0

h∗(n) − 1 = 0, (4)

V ∗(n) − Wnj(x
∗, γ) = 0 if β∗

nj > 0, (5)

kn∑
j=1

β∗
nj − 1 = 0, n = 0, . . . , N, (6)

V ∗(n) − Wnj(x
∗, γ) ≥ 0 if β∗

nj = 0. (7)

Recall that α is included in γ.

Note that we do not require (3) for n = 0, 1; it suffices to define a stationary

distribution due to Theorem 1. We call x∗ a “quasi-equilibrium” because we need

some additional conditions in order for x∗ to be a real stationary equilibrium: (i) the
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existence of p > 0 satisfying
∑N

n=0 pnh(n) = M , which is equivalent to the condition

h(0) < 1, (ii) the incentive not to choose an action out of our action space, and (iii) the

existence of strategies at state η /∈ {0, p, . . . , Np} consistent with the given stationary

quasi-equilibrium. For the details, see Section 4.4.

Remark 7 In order for V ∗ to optimize the real objective function, the transversality

condition in dynamic programming should be satisfied. In the case of time additive

expected utility with a discount factor κ ∈ (0, 1), it is clearly satisfied.

First, we fix the set of equilibrium actions,9 denoted by b, i.e., b is a set of (n, j),

and we confine the domain of β to

Ωb = {(βnj)(n,j)∈b | βnj > 0 for (n, j) ∈ b}. (8)

In the previous section, we showed that two of On(h, β, α) − In(h, β, α), n = 0, . . . , N,

are redundant. Thus, for given b and β, h is determined up to at least one degree of

freedom. Suppose, for a given stationary quasi-equilibrium (V ∗, h∗, β∗), (7) is satisfied

with strict inequality for all (n, j) such that βnj = 0. Then all stationary quasi-

equilibria in a small neighborhood of (V ∗, h∗, β∗) are determined by (3)-(6), and, by

the above argument on stationary distributions, the number of equations and variables

are 2N+#b+1 and 2N +#b+2, respectively. Thus the set of equilibria is generically at

least one-dimensional. This means that the main cause of indeterminacy is the feature

of stationary distributions shown in Theorem 1.

To be more precise, consider a stationary quasi-equilibrium (V ∗, h∗, β∗) and the

corresponding b∗. Then

V ∗(n) − Wnj(x
∗, γ) ≥ 0 for (n, j) /∈ b∗ (9)

holds. Suppose in (9) all of inequalities are strict. Then, besides degenerate cases, it

follows from the implicit function theorem that the dimension of the set of stationary

quasi-equilibria around (V ∗, h∗, β∗) is at least one. Of course, V ∗(n) = Wnj(x
∗, γ) may

hold for some (n, j) /∈ b∗. However, under mild conditions, we can show that generically

only one of inequalities in (9) can be equal. If there is just one equality in (9), then it is

on the boundary of a connected set of stationary quasi-equilibria of which dimension is

more than or equal to one. Thus the dimension of the set of stationary quasi-equilibria

is generically more than or equal to one.
9Without fixing equilibrium actions, we can formulate the problem as a kind of nonlinear complementarity problems.

However, the special structure of the problem prevents us to use the standard technique. That is, without fixing it, the
dimension of equilibria may not be determinate. (See Appendix A.)
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The rigorous discussions of the above and several indeterminacy theorems will be

given in Appendix A. Below, we only present the most important theorems. For a

given γ, let Eb∗
γ be the set of stationary quasi-equilibria such that βnj can be positive

only if (n, j) ∈ b∗. Let gb∗ be the function expressed by the LHS of (3)-(6) and (9)

replacing “if β∗
nj > 0” in (5) by “if βnj ∈ b∗”. Let Cb∗ , Cb∗(n,j), and Cb∗(n,j)(n′,j′) be the

subsets in the final set10 corresponding to the set of stationary quasi-equilibria in which

all inequalities in (9) are strict, only the (n, j)th one is equal, and only the (n, j)th and

the (n′, j′)th ones are equal, respectively. (For the precise definitions, see Appendix A.)

Theorem 2 Let Γ ⊂ RL be a C2 manifold without boundary.11 For a given b∗, suppose

that Eb∗
γ 
= ∅ holds for all γ ∈ Γ, and that gb∗ is C2 and is transversal to Cb∗ , Cb∗(n,j),

and Cb∗(n,j)(n′,j′) for all (n, j), (n′, j′) /∈ b∗. Then, for almost every γ ∈ Γ, Eb∗
γ is a

one-dimensional manifold with boundary. Moreover, at any endpoint of the manifold,

only one V ∗(n) − Wnj(x
∗, γ) ≥ 0, (n, j) /∈ b∗, can be binding.

For simplicity, we assume that Γ is an open set in RL. For example, “gb∗ is transversal

to Cb∗” means if gb∗(x̂, γ̂) ∈ Cb∗ holds for some (x̂, γ̂), then, together with the tangent

space of Cb∗ at gb∗(x̂, γ̂), the space {Dgb∗
(x̂,γ̂)(x

T , γ)T | (x, γ) is in the domain} spans the

final set,12 where Dgb∗
(x̂,γ̂) is the Jacobian matrix at (x̂, γ̂) and T denotes transpose. As

shown in the examples in the following subsection and Section 5, the conditions in the

theorem are quite mild and can often be easily verified at least locally. Note that, by

verifying the condition locally, we can show that there is a continuum of equilibria.

We should verify the condition globally in order to find some features of the set of

equilibria. Using the features, we can numerically compute a connected component of

equilibria. (See Remark 8 in Section 5.)

Although we have shown that there is a kind of indeterminacy, it might not be a

real one. That is, in a connected component of the set of equilibria, the real variables

h and V might be the same. For real indeterminacy, it suffices to show that the welfare∑N
n=0 h(n)V (n) can be the same only in a set of measure zero in the set of stationary

quasi-equilibria. To see this, for a given b∗, we analyze
∑N

n=0 h(n)V (n) = a together

with (3)-(6) and (9) replacing “if β∗
nj > 0” in (5) by “if βnj ∈ b∗”. Fix a ∈ R. Then the

numbers of equations and variables are the same and thus the dimension of the set of
10For a function F : X → Y , X , Y , and {y ∈ Y |∃x ∈ X,F (x) = y} are called the domain, the final set, and the range,

respectively.
11Γ can be considered as the set of γ such that some strategies using actions in b∗ can be a stationary quasi-equilibrium.
12In general, the tangent space at gb∗(x̂, γ̂) should be spanned.
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stationary quasi-equilibria with welfare a is generically one dimension less than that of

the set of stationary quasi-equilibrium. The theorem can be stated as follows. First,

we modify gb∗ , denoted by gb∗
w , adding one equation

∑N
n=0 h(n)V (n) − a = 0 and one

variable a ∈ R. We should also modify Cb∗ , Cb∗(n,j), and Cb∗(n,j)(n′,j′) denoted by Cb∗
a ,

C
b∗(n,j)
a , and C

b∗(n,j)(n′,j′)
a , respectively; for example, Cb∗

a is the subsets in the final set

corresponding to the cases that all inequalities in (9) are strict and the welfare is a.

Theorem 3 Let Γ ⊂ RL be a manifold without boundary. For b∗, suppose that Eb∗
γ 
= ∅

holds for all γ ∈ Γ, and that, for any given a, gb∗
w (·, a) is C1 and is transversal to Cb∗

a ,

C
b∗(n,j)
a , and C

b∗(n,j)(n′,j′)
a for all (n, j), (n′, j′) /∈ b∗. Then, for almost every γ ∈ Γ,

Eb∗
γ ∩ {x|∑N

n=0 h(n)V (n) = a} is a zero-dimensional manifold.

4.4 Stationary Quasi-Equilibrium and Stationary Equilibrium

In the previous subsection, we focused on stationary quasi-equilibria instead of sta-

tionary equilibria, because the former is easier to deal with than the latter. In this

subsection, we discuss a sufficient condition that the indeterminacy of stationary quasi-

equilibria implies that of stationary equilibria. In general, the following three conditions

are sufficient; (i) the existence of p > 0 such that
∑N

n=0 pnh(n) = M , i.e., h(0) < 1, (ii)

the incentive not to choose an action out of our action space, and (iii) the existence

of strategies at state η /∈ {0, p, . . . , Np} consistent with the given stationary quasi-

equilibrium. (i) can be easily checked. We need to check (ii) and (iii) carefully. One

might think that an agent, for example, has strict incentive to offer .5p, since she may

obtain (pay) .5p later. However, under some reasonable assumptions, this is not true,

because such a trade cannot occur later on the equilibrium path. Below, we discuss

this point rigorously.

We focus on economies in which each matched agents observe the partners’ money

holdings. We consider a model with the state space [0, N̄ ] for some positive real number

N̄ , the set of money holdings, and the action space Ã = Πη∈[0,N̄]Ãη, where each element

in Ãη is represented by a finite dimensional vector of amounts of money r = (ri)

transferred along with trade13 and the other factor t ∈ T related to the bargaining,

where T is a finite set.14 In other words, we focus on the case that the other factors in

trade, e.g., the amount of goods, can be considered to be determined by (r, t) and V .

(See examples below.) We first suppose that
13For example, r = (r1, r2) is the amounts of money offer when an agent is a seller and when she is a buyer.
14For example, T includes “replies” such as “accept” or “reject”.
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(∗) (a) a bargaining game between a matched pair15 has a pure strategy

Markov perfect equilibrium, and (b) the bargaining game immediately ends

on the equilibrium path.

For a matched pair, let Vs0 = V (ηs) and Vb0 = V (ηb) be the seller’s and the buyer’s

values of their money holdings, respectively, and F ⊂ R2 be the feasible set of values

of their money holdings after trade. We further suppose that

(∗∗) (a) F does not directly depend on r but on (V (ηs+ri), V (ηb−ri)), where

(r, t) = ((ri), t) is in Ãηs or in Ãηb
for some t ∈ T , 16 and (b) an outcome of

bargaining game (Vs1, Vb1, y), where (Vs1, Vb1) are the values of the seller’s and

buyer’s money holdings after trade, and y is a vector of the other elements of

outcome,17 depends only on (Vs0, Vb0, F ).

By (∗), the bargaining game has an outcome, and thus (∗∗)(b) has meaning.

For a given N , we focus on a set of p > 0 such that N = � N̄
p
�. We restrict our

attention to the state space {0, 1, . . . , N} and the action space ΠN
n=0An, where An is a

finite set such that, for each p > 0, each element a ∈ An corresponds to (r, t) ∈ Ãnp

and all elements of r are integer multiples of p. For example, a = (n1, n2) corresponds

to r = (n1p, n2p), where n1p and n2p are the amounts of money offer when an agent

is a seller and when she is a buyer, respectively. Then a stationary quasi-equilibrium

(V ∗, h∗, β∗) with p∗ = M�
n nh∗(n)

is defined. Below, we show that it corresponds to

a stationary equilibrium if h∗(0) < 1. More precisely, define (Ṽ ∗, h̃∗, (β̃∗
np∗)

N
n=0) as

Ṽ ∗(η) = V ∗
(⌊

η
p∗

⌋)
, h̃∗ is the natural extension of h∗ to [0, N̄ ], and β̃∗

np∗ is naturally

defined from β∗
n. Then it will be shown that (Ṽ ∗, h̃∗, (β̃∗

np∗)
N
n=0) satisfies the following

two conditions: (ii’) each agent at np∗ has no strict incentive to choose actions out

of the support of β̃∗
np, and (iii’) for each η ∈ [0, N̄ ], which is not an integer multiple

of p∗, there exists some (β̃∗
η) consistent with Ṽ ∗. Note that (ii’), (iii’) corresponds to

(ii), (iii) stated above, respectively. Thus, (ii’) and (iii’) imply that (Ṽ ∗, h̃∗, β̃∗) forms

a stationary equilibrium.

First, since Ṽ ∗ is a step function with the steps of length p∗, we obtain the same

feasible set as V ∗ and thus, by the assumption (∗∗), (ii’) is satisfied.
15Here a bargaining game between a matched pair is defined as a sequential game in which the initial node is an

instant when they are matched and every terminal node is an instant when the pair dissolves.
16F does not necessarily consist of {(V (ηs+ri), V (ηb−ri))|(r, t) = ((ri), t) is in Ãηs or in Ãηb for some t ∈ T} . That

is some element in this set might be rejected in the bargaining. (∗∗)(a) simply means that F does not directly depend
on amounts of money but on the values after trades.

17For example, y includes the amount of the commodity goods.
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Next, we check (iii’). Consider an agent with η such that η/p∗ is not an integer.

Clearly, her partner holds np∗ for some n with probability one. Since Ṽ ∗(η) = V ∗(� η
p∗ �)

and the feasible set for this pair is the same as that of the pair of agents with � η
p∗ �p∗

and np∗, and thus, by the assumption (∗∗), the outcome of the bargaining game is the

same as that of the pair of agents with � η
p∗ �p∗ and np∗, and the value of η is indeed

V ∗(� η
p∗ �), i.e., the outcome is consistent with Ṽ ∗. For a pair of agents with η and

η′ such that both η/p∗ and η′/p∗ are not integers, we can choose any Markov perfect

equilibria of the bargaining game. In other words, the choice does not affect the value

function since η’s partner is np∗ for some n with probability one.

It is verified that the divisible money version of Camera and Corbae’s model satisfies

(∗) and (∗∗) as follows. In Camera and Corbae’s model, if the seller and the buyer

have η and η′, respectively, then the buyer’s offer η′′ maximizes U(q(η,η′′))+ V (η′ − η′′),
where q(η,η′′) is a solution to

Ṽ (η + η′′) − q = Ṽ (η). (10)

(∗) and (∗∗) are clearly satisfied. Note that the amount of goods in trade is determined

by (10), i.e., it is an element of the other outcome stated in (∗∗).
Similarly, we can deal with a divisible money version of Trejos and Wright [19]’s

model. Let us extend their model to the one with divisible fiat money in the same way

as we did in Section 2.3, and consider the distribution and the strategy in which agents

behave as if p∗ were the minimum unit of divisibility. Then the (candidate for) value

function is a step function with the steps of length p∗. Thus, if the seller and the buyer

have η and η′, respectively, and the amount of money d maximizes

max
d

(U(qd) + Ṽ (η′ − d))(−C(qd) + Ṽ (η + d)), (11)

where qd is a solution to

max
q

(U(q) + Ṽ (η′ − d))(−C(q) + Ṽ (η + d)), (12)

(see Trejos and Wright [19], p. 134.), then (∗) and (∗∗) are clearly satisfied. In other

words, some integer multiple of p∗ is necessarily one maximizer of the above, so, if

such a distribution and a strategy form a stationary quasi-equilibrium, they are also a

stationary equilibrium.18 A similar argument applies to Shi [18].
18Consider the following equilibrium candidate: Let N̄ be the upper bound of money holdings. Choose any p∗ such

that N̄/2 < p∗ ≤ N̄ , i.e., �N̄/p∗	 = 1. Let the money holdings distribution have masses only at 0 and p∗, and the
strategy specify that any agent offers a money quantity p∗ (if possible). Then, it is easy to show that this profile of the
distribution and the strategy form a stationary equilibrium since p∗ is necessarily a maximizer of (11).
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Although the discussion above depends upon the assumption that each matched

agent observes the partners’ money holdings, this is not a crucial assumption. For

example, Zhou’s model assumes that each matched agents cannot observe the partner’s

money holdings. It follows that a bargaining outcome depends upon a distribution of

(Vs0, Vb0, F ) determined by h and β. However, this would not virtually change the

analysis above.

4.5 Indivisible Money

In the case of indivisible medium of exchange, our results suggest that the greater the

divisibility of the medium of exchange, the larger the number of equilibria. Suppose

that p should be in a finite set P = {p1, p2, . . . , pL}, where p� < p�+1. For example,

p� = 	 dollars. Suppose p∗ in P is a solution to M =
∑N

n=0 pnh∗(n), where h∗ is an

equilibrium distribution. By the above arguments, all h in a neighborhood of h∗ can

be equilibrium distributions in the perfectly divisible case. If some p�̄ in P is a solution

to
∑N

n=0 pnh(n) = M , where h is in the neighborhood, then h is also an equilibrium

distribution in the indivisible case. Therefore, if p�+1 − p� is small, then there must be

a lot of equilibria. In other words, for a fixed money supply and a fixed upper bound

of money holdings, there are much larger number of equilibria in the case that one unit

of money is one cent compared with the case which the minimum unit is a hundred

dollar.

Formally, for a given b∗, we analyze
∑N

n=0 nh(n) = t together with (3)-(6) and (9)

replacing “if β∗
nj > 0” in (5) by “if βnj ∈ b∗”. The theorem can be stated as follows.

First, we modify gb∗ , denoted by gb∗
d , adding one equation

∑N
n=0 nh(n)− t = 0 and one

variable t ∈ R. We should also modify Cb∗ , Cb∗(n,j), and Cb∗(n,j)(n′,j′) denoted by Cb∗
d ,

C
b∗(n,j)
d , and C

b∗(n,j)(n′,j′)
d , respectively; for example, Cb∗

d is the subsets in the final set

corresponding to the cases that all inequalities in (9) are strict and
∑N

n=0 nh(n)−t = 0.

Theorem 4 Let M and N be given and Γ ⊂ RL be a manifold without boundary. For

b∗, suppose that Eb∗
γ 
= ∅ holds for all γ ∈ Γ, and that gb∗

d is C2 and is transversal to

Cb∗
d , C

b∗(n,j)
d , and C

b∗(n,j)(n′,j′)
d for all (n, j), (n′, j′) /∈ b∗. Then, for almost every γ ∈ Γ,

and for any positive integer I , there exists a positive integer L such that the number

of stationary quasi-equilibria with

p ∈ PL = {	1 +
	2

	3
| 	1 is a nonnegative integer, 	2 = 0, 1, . . . , L, 	3 = 1, 2, . . . , L, 	2 ≤ 	3}

is larger than I .
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Proof: Let x∗ = (V ∗, h∗, βb∗) be a stationary quasi-equilibrium. Let t∗ =∑N
n=0 nh∗(n). By the assumptions and implicit function theorem, there exists an ε > 0

and a function ϕ : (t∗ − ε, t∗ + ε) → Eb∗
γ . Thus for a large enough L, the number of

p ∈ PL such that M
p
∈ (t∗ − ε, t∗ + ε) is larger than I .

5 A New Technique for Proving the Existence of Stationary

Equilibrium

Our results in the previous sections enable us to prove the existence of stationary

equilibrium rather easily in some specific models. Our technique is simple but very

powerful. Indeed, we can prove the existence of stationary equilibria in some models

with divisible money and goods, although, in the literature, such existence theorems

have not been known. In Section 5.1, we discuss our technique in general and, in

Section 5.2, apply it to a new model.

5.1 The Technique

Let h(0) = 1 and h(1) = · · · = h(N) = 0. Then the conditions for a stationary quasi-

equilibrium (3)-(7) become very simple in some models. Thus we may easily obtain β∗

and V ∗ satisfying V ∗(n) > 0 for some n. Moreover, as we have shown in the previous

section, there exists a stationary quasi-equilibrium even for h(0) = 1 − ε if ε > 0 is

small enough.

As stated previously, three additional conditions are needed in order for (V ∗, h∗, β∗)
to be a stationary equilibrium: (i) the existence of p > 0 satisfying

∑N
n=0 pnh∗(n) = M ,

(ii) the incentive not to choose an action out of our action space, and (iii) the existence

of strategies at state η /∈ {0, p, . . . , Np} consistent with the given stationary quasi-

equilibrium. Most of the cases, setting Ṽ (η) = V (�η/p�), it is rather easy to show (ii)

and (iii). On the other hand, for a given stationary quasi-equilibrium (V ∗, h∗, β∗) such

that h∗(0) = 1, (i) is not satisfied, since
∑N

n=0 pnh∗(n) = 0. However the stationary

quasi-equilibrium (V ∗
ε , h∗

ε, β
∗
ε) such that h∗

ε(0) = 1 − ε is consistent with (i) for some

p > 0. Thus once we find a stationary quasi-equilibrium at h(0) = 1, then we can also

find a stationary equilibrium.

The above argument can be easily applied to models with indivisible money. As

Theorem 4, suppose L is large enough in

PL = {	1 +
	2

	3
| 	1 is a nonnegative integer, 	2 = 0, 1, . . . , L, 	3 = 1, 2, . . . , L, 	2 ≤ 	3}.
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Then the existence of a stationary quasi-equilibrium at h(0) = 1 implies the existence

of stationary equilibrium with p∗ ∈ PL.

5.2 Existence of Stationary Equilibria: An Example

In this subsection, the environment is the same as that of the divisible money version

of Camera and Corbae model presented in Section 2 besides:

• The utility function is U(q) = q
1
2 .

• When a type i agent meets a type i + 1 agent, (i) with probability 1
2
, the former

can post a take-it-or-leave-it offer (ds, qs), a pair of an amount of fiat money and

a quantity of good, and (ii) with probability 1
2
, the latter can post a take-it-or-

leave-it offer (db, qb).

Below, we show that, for sufficiently small search friction φ > 0, there exists a

stationary equilibrium in which equilibrium trades occur only with ds = p and db = p.

Clearly, a seller offers (p, qn
s ) such that

V (n − 1) + U(qn
s ) = V (n) (13)

when she meets a partner with n, and a buyer offers (p, qn
b ) such that

V (n + 1) − C(qn
b ) = V (n) (14)

when he meets a partner with n. Recall that C(q) = q.

The Bellman equation is as follows:

V (0) =
1

φ + 2

{
1

2

N∑
n′=1

h(n′)(V (1) − C(qn′
s )) +

1

2
h(0)V (0) +

1

2
V (0) + V (0)

}
...

...

V (n) =
1

φ + 2

{
1

2

N∑
n′=1

h(n′)(V (n + 1) −C(qn′
s )) +

1

2
h(0)V (n)

+
1

2
V (n) +

1

2

N−1∑
n′=0

h(n′)(V (n − 1) + U(qn′
b )) +

1

2
h(N)V (n) +

1

2
V (n)

}
...

...

V (N) =
1

φ + 2

{
V (N) +

1

2

N−1∑
n′=0

h(n′)(V (N − 1) + U(qn′
b )) +

1

2
h(N)V (N) +

1

2
V (N)

}
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Suppose h(0) = 1 which implies h(n) = 0, n = 1, . . . , N , in an equilibrium. Then, by

the Bellman equation and (14), we obtain q0
b = A2, V (0) = 0, and

V (n) =
1

2φ
A(1 − An) = A2

n−1∑
k=0

Ak, n = 1, . . . , N, (15)

where A =
(

1
2φ+1

)
.19

Next, we check the incentive at h(0) = 1. Suppose a buyer with n offers (jp, q) to a

seller with n′, where (jp, q) exploits all gains from trade. Then the gain of the buyer is

V (n − j) + U(q) − V (n) =

(
j−1∑
k=0

Ak

).5

A1+.5n′


1 − An−j+1−.5n′

(
j−1∑
k=0

Ak

).5

 .

Since A < 1 and limφ→0 A = limφ→0
1

2φ+1
= 1, then, if j ≥ 2,

1 − An−j+1−.5n′
j−1∑
k=0

Ak < 0

holds for sufficiently small φ. Thus, for sufficiently small φ, the buyer does not offer

j ≥ 2. On the other hand, for j = 1,

1 −An−j+1−.5n′
j−1∑
k=0

Ak = 1 − An−.5n′ ≥ 0

holds if and only if n ≥ .5n′. That is the buyer offers j = 1 in this case and j = 0

otherwise; more precisely, if n = .5n′, the buyer is indifferent between j = 0 and j = 1.

Suppose a seller with n offers (ip, q) to a buyer with n′, where (ip, q) exploits all

gains from trade. Then, by similar arguments as in the above, the seller does not offer

i ≥ 2 for sufficiently small φ > 0. Moreover, she offers i = 1 in the case of 2n′ ≥ n and

i = 0 otherwise; more precisely, if 2n′ = n, the seller is indifferent between i = 0 and

i = 1.

Below, we show the existence of equilibria for N = 2. It is easily seen that, for

sufficiently small φ, the buyers always strictly prefer j = 1 unless their money holdings

are 0 or the partners have 2p. Similarly, for sufficiently small φ, the sellers always

strictly prefer i = 1 unless their money holdings are 2p or the partners have 0. By

tedious calculations, we obtain the Jacobian of (3)-(5), evaluated at h(0) = 1, with
19The other solution is q0

b = 0 and V (n) = 0, n = 0, . . . , N .
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respect to h(1), h(2), V (0), V (1), V (2) as follows:20

−
(

1 − 2

φ + 2

)(
1 − 7 + 2φ

4φ + 8

)(
1 − 1.5

φ + 2

)
.

Clearly, it is negative for all φ > 0. Thus the implicit function theorem can be applied

and, for small ε > 0, there exists a solution (h(1), h(2), V (0), V (1), V (2)) to the above

equations corresponding to h(0) = 1 − ε. Note that it is easily shown that h(n) >

0, n = 1, 2. Since the incentive of the strategy at h(0) = 1 is strict, then, due to the

continuity, the agents still use it even when h(0) = 1 − ε for small enough ε > 0. It

can be shown that the set of equilibria with the endpoint corresponding to h(0) = 1 is

a one-dimensional manifold around h(0) = 1; for the rigorous argument, see Theorem

2. Finally, h(0) = 1 − ε is consistent with a positive money supply.

For N > 2, similar arguments can be applied. However, the incentive at h(0) = 1 is

not strict in some cases. Thus we need to carefully choose strategies which the agents

prefer even for h(0) = 1 − ε.

Remark 8 In the above example, there exists a one-dimensional manifold, a set of

equilibria, with the endpoint corresponding to h(0) = 1. In this case, following the

manifold, we can find its whole structure; especially, equilibria with h(0) not close to

one can be obtained. For the methods to follow one-dimensional manifolds, see, for

example, Allgower and Georg [2]. See also Herings, Talman and Yang [10]; they present

a method to follow a continuum of price constrained equilibria.

6 Extensions of the Basic Model

In the previous sections, we assumed that there is only one medium of exchange, the

matching is pairwise, holding the medium of exchange gives no utility, and there is an

upper bound of holdings of the medium of exchange. All of these assumptions can be

easily relaxed. However, in order to avoid complicated notations, we mainly show them

by examples.

First, we can allow for multiple media of exchange. For simplicity, we assume that

there are two media of exchange. Let the state space be {0, . . . , N1} × {0, . . . , N2}.
Suppose that an agent with (n1, n2), a seller, meets an agent with (n̄1, n̄2), a buyer, and

that a trade occurs. The seller pays (m1, m2) to the buyer. Suppose, at each period,

the proportion of the above type of matching is ξ. Thus, by the trade, the agents in
20Clearly, (6) is redundant in this case.

26



the match move from (n1, n2) to (n1 +m1, n2 +m2), and (n̄1, n̄2) to (n̄1 −m1, n̄2 −m2),

respectively, and the proportion of each move is of course ξ. Thus the same argument

as in the proof of Theorem 1 applies and

N1∑
n1=0

N2∑
n2=0

(n1 + n2)O(n1,n2) =
N1∑

n1=0

N2∑
n2=0

(n1 + n2)I(n1,n2)

holds, where O(n1,n2) and I(n1,n2) are the outflow and the inflow at (n1, n2), respectively.

That is, by the condition for stationarity, the stationary distribution is determined up

to at least one degree of freedom and the dimension of the set of stationary equilibria is

typically more than or equal to one. Of course, this argument can be applied to much

more general cases.

Second, matchings need not be pairwise. We consider the following model. There

are k + 1 goods, where k ≥ 4. The first k goods are indivisible and immediately

perishable, and good i is consumed by type i agents. The remaining good is a perfectly

divisible and durable fiat-money object. A type i agent and a type i + 1 agent can

cooperate to produce one unit of good i + 2 (mod. 3). A type i agent consumes only

good i and derives instantaneous utility. Each agent is characterized by her type and

the amount of money she holds. Suppose there is a matching technology that always

chooses 3 agents. If their types are i, i+1, and i+2 (mod. 3), then a trade potentially

occurs. Let their money holdings be pn1, pn2, and pn3, respectively. Suppose, by a

bargaining procedure, a trade occurs and the type i + 2 agent pays the type i agent

pmi and the type i + 1 agent pmi+1. Suppose the proportion of the above type of

matching is ξ. Thus, by the trade, the agents in the match move from ni to ni + mi,

ni+1 to ni+1 + mi+1, and ni+2 to ni+2 − mi − mi+1, respectively, and the proportion

of each move is of course ξ. Thus the same argument as in the proof of Theorem 1

applies and
∑N

n=0 nOn =
∑N

n=0 nIn holds. That is, by the condition for stationarity,

h is determined up to at least one degree of freedom and the dimension of the set of

stationary equilibria is typically more than or equal to one. Of course, this argument

can be applied to much more general cases.

Third, as we mentioned in Section 2, we can deal with models in which holdings of

the medium of exchange give some utility to the holder. In those models, Wnj have the

following form:

Wnj(x, p, γ) = U(np, h, β, j, γ) + κE(V (n′)|h, β, n, j),

where κ is the discount factor, U is the temporal utility, and E(V (n′)|h, β, n, j) is the
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expectation of V (n′) conditional on h, β, n, j. Here U depends on np, the quantity

of the medium of exchange. In this case, we cannot deal with
∑N

n=0 pnh(n) = M

separately, since Wnj depends on p. However, analyzing
∑N

n=0 pnh(n) = M and (3)-

(7) in the definition of stationary quasi-equilibrium simultaneously, we can obtain the

same results as in Section 4. Intuitively, even in this case, the number of equations is

less than that of variables. Of course, we should notice that the sufficient conditions

that a stationary quasi-equilibrium is a stationary equilibrium, stated in Section 4.4,

may not be satisfied in some models. However, Zhou [22] shows that there also exists

a continuum of stationary equilibria in Green and Zhou model even if the holdings of

money give a dividend in the form of utility.

Finally, we discuss the case of N = ∞. In Appendix B, we show that
∑∞

n=0 n(On −
In) = 0 holds under a mild condition which is satisfied in Green and Zhou [6]. As in

Section 3, O0−I0 and O1−I1 are redundant in the condition of stationary distribution.

Thus, together with
∑∞

n=0 h(n) = 1, the stationary distribution could be determined

with at least one degree of freedom. Of course, this argument is very rough. For the

rigorous arguments, we should use the implicit function theorem or the transversality

theorem in infinite dimensional spaces. (See, for example, Abraham and Robbin [1].)

However, it seems that the conditions for these theorems are typically satisfied in our

environment. Indeed, in Green and Zhou [6], the conditions are satisfied and the

stationary distribution has (at least) one degree of freedom.

Appendix

A Real Indeterminacy Theorems

We denote On(h, β, α) − In(h, β, α) by Dn(h, β, α). Let B be the power set of

{(n, j) | j = 1, . . . , kn, n = 0, . . . , N} and B̂ be {b ∈ B |∀n, ∃j, (n, j) ∈ b}. b ∈ B̂

can be considered as a set of actions used in an equilibrium. For a given b ∈ B̂, let

Ωb = {(βnj)(n,j)∈b | βnj > 0 for (n, j) ∈ b}.
Let xb = (V, h, βb), where βb ∈ Ωb. For a given b ∈ B̂ and all (n, j) ∈ b, W b

nj(x
b, γ)

is defined from Wnj(x, γ) by setting βn′j′ = 0 for all (n′, j′) /∈ b. In parallel with this,

Db
n(h, βb, α) is defined for n = 2, . . . , N .

Below, we show that the dimension of the set of equilibria is at least one. However,

in fact, there are many types of stationary equilibria depending on which b ∈ B̂ is
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used in equilibria. We first consider the simplest case; namely, the case that h(n) >

0, n = 0, . . . , N , hold and Db
n = 0, n = 2, . . . , N , can be linearly independent, i.e.,

∃(h, βb) such that Db
n(h, βb, α) = 0, n = 2, . . . , N, are linearly independent for any γ.21

Let K =
∑N

n=0 kn. Recall that, for a given b ∈ B̂, the condition for a stationary

quasi-equilibrium is as follows:

Db
n(h, βb, α) = 0, n = 2, . . . , N

N∑
n=0

h(n) − 1 = 0,

V (n) − W b
nj(x

b, γ) = 0, (n, j) ∈ b∗∑
j∈{j′|(j′,n)∈b}

βnj − 1 = 0, n = 0, . . . , N

V (n) − W b
nj(x

b, γ) ≥ 0, (n, j) /∈ b∗.

Let gb : RN+1 × RN+1
++ × Ωb × RL → RN−1 × R × R#b × RN+1 ×RK−#b be the LHS of

the above condition.

Let

Cb = {0} × · · · × {0}︸ ︷︷ ︸
2N+#b+1

×R++ × · · · × R++︸ ︷︷ ︸
K−#b

,

and, for (n, j) /∈ b,

Cb(n,j) = {0} × · · · × {0}︸ ︷︷ ︸
2N+#b+1

×R++ × · · · × R++ × {0} × R++ × · · · × R++︸ ︷︷ ︸
K−#b

,

where the last {0} corresponds to V (n) − W b
nj(x

b, γ), (n, j) /∈ b. Moreover, for

(n, j), (n′, j′) /∈ b such that (n, j) 
= (n′, j′),

Cb(n,j)(n′,j′) = {0} × · · · × {0}︸ ︷︷ ︸
2N+#b+1

×R × · · · × R × {0} × R × · · · × R × {0} × R × · · · ×R︸ ︷︷ ︸
K−#b

,

where the last two {0}s correspond to V (n) − W b
nj(x

b, γ), (n, j) /∈ b, and V (n) −
W b

n′j′(x
b, γ), (n′, j′) /∈ b, respectively. For γ, let Eb

γ be the set of stationary quasi-

equilibria for b ∈ B̂. Then clearly

Eb
γ ⊂ (gb(·, γ))−1

(
Cb ∪ (∪(n,j)C

b(n,j)) ∪ (∪(n,j),(n′,j′)C
b(n,j)(n′,j′))

)
and

Eb
γ ⊃ (gb(·, γ))−1

(
Cb ∪ (∪(n,j)C

b(n,j))
)

21The result would not change if this holds only for almost every γ.
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hold.

Theorem 2 Let Γ ⊂ RL be a C2 manifold without boundary. For b ∈ B̂, suppose

that Eb
γ 
= ∅ holds for all γ ∈ Γ, and that gb is C2 and is transversal to Cb, Cb(n,j),

and Cb(n,j)(n′,j′) for all (n, j), (n′, j′) /∈ b. Then, for almost every γ ∈ Γ, Eb
γ is a one-

dimensional manifold with boundary.

Proof: (i) By the parametric transversality theorem (see, for example, Guillemin and

Pollack ([8], Chapter 2) and Hirsch ([11], Chapter 3)), for almost every γ ∈ Γ, gb(·, γ)

is transversal to all of Cb, Cb(n,j) and Cb(n,j)(n′,j′), (n, j), (n′, j′) /∈ b,. Let Γ′ be the set

of such γs.

(ii) Let γ ∈ Γ′. Suppose (gb(·, γ))−1(Cb(n,j)(n′,j′)) 
= ∅ for some (n, j), (n′, j′) /∈
b. Then it is a submanifold in the domain and the codimension of the manifold is

equal to the codimension of Cb(n,j)(n′,j′). Since codim Cb(n,j)(n′,j′) = 2N + #b + 3

and the dimension of the domain of gb(·, γ) is 2N + #b + 2, then the dimension of

(gb(·, γ))−1(Cb(n,j)(n′,j′)) is minus one, i.e., it is empty. This is a contradiction. Thus

Eb
γ = (gb(·, γ))−1

(
Cb ∪ (∪(n,j)C

b(n,j))
) 
= ∅

holds.

(iii) Suppose (gb(·, γ))−1(Cb) 
= ∅. Then it is a submanifold in the domain. Moreover,

the codimension of the manifold is equal to the codimension of Cb. (See, for example,

Guillemin and Pollack ([8], Chapter 1).) Since codim Cb = 2N + #b + 1 and the

dimension of the domain of gb(·, γ) is 2N + #b + 2, then (gb(·, γ))−1(Cb) is a one-

dimensional manifold; more precisely, each connected component is diffeomorphic either

to an open interval or to a circle.

(iv) Suppose (gb(·, γ))−1(Cb(n,j)) 
= ∅ for some (n, j) /∈ b. Let xb ∈
(gb(·, γ))−1(Cb(n,j)). Below, we show that xb is an endpoint of some one-dimensional

manifold in (gb(·, γ))−1(Cb), i.e., the connected component containing xb is homeo-

morphic to an interval. Let ϕb : R2N+K+1 → R2N+#b+2 be the projection map from

the range of gb to the space of elements which correspond to {0}s in Cb(n,j). Then,

by the assumption, ϕb ◦ gb(·, γ) is a submersion at xb, i.e., the linear map defined by

the Jacobian matrix at xb, denoted by dxb(ϕb ◦ gb(·, γ)), is surjective. Since the do-

main and the range of ϕb ◦ gb(·, γ) are the same, the inverse function theorem can be

applied. Thus there exist an open neighborhood of xb denoted by D, and an open

neighborhood of (0, . . . , 0) ∈ R2N+#b+2, denoted by D′, such that the restriction of
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ϕb ◦ gb(·, γ) to D is a diffeomorphism from D to D′. Since, for sufficiently small ε > 0,

D′
ε = {(0, . . . , 0, t)|−ε < t < ε} is a subset of D′, then (ϕb◦gb(·, γ))−1(D′

ε) is diffeomor-

phic to an open interval. Note that (ϕb ◦gb(·, γ))−1({(0, . . . , 0, t)|0 ≤ t < ε}) is a subset

of Eb
γ and diffeomorphic to [0, 1). Since (ϕb ◦gb(·, γ))−1((0, . . . , 0, ε

2
)) ∈ (gb(·, γ))−1(Cb),

it belongs to a connected component obtained in (iii). Thus the component should be

diffeomorphic to an open interval in (gb(·, γ))−1(Cb). Of course, one of its endpoints is

xb.

Next, we consider the case that (i) Db
n = 0, n = 2, . . . , N , are not linearly indepen-

dent for all βb and h, and/or that (ii) h(n) = 0 for some n in equilibria.

Example 1 For some b ∈ B̂, suppose f((n, j), (n′, j′)) is equal to 0 or 2 for all (n, j)

and (n′, j′). Then if n is even (odd), then n+ f((n, j), (n′, j′)) and n− f((n, j), (n′, j′))
are even (odd). Thus the stationary distribution can be divided into two distribution

so that Db
n = 0, n = 0, . . . , N , has more than one degree of freedom.

Example 2 Under the assumption in Example 1, there exists a stationary distribution

such that h(n) = 0, for all n = 2m, m = 1, 2, . . . .

We first consider the case that, for any γ, Db
n = 0, n = 2, . . . , N , are not linearly

independent for all βb and h, and that h(n) > 0 for all n. Let M(b) be the maximal

number of (potentially) independent equations in Db
n = 0, n = 0, . . . , N . For simplicity,

we assume Db
n = 0, n = N − M(b) + 1, . . . , N , can be linearly independent. We define

gb : RN+1 × RN+1
++ × Ωb ×RL → RM (b) × R × R#b × RN+1 ×RK−#b by replacing

Db
n(h, βb, α), n = 2, . . . , N,

in the definition of gb in Theorem 2 by

Db
n(h, βb, α), n = N − M(b) + 1, . . . , N.

By the same argument as in Theorem 2, we obtain the following theorem.

Theorem 5 Let Γ ⊂ RL be a C2−(N−1−M(b)) manifold without boundary. For b ∈ B̂,

suppose that Eb
γ 
= ∅ holds for all γ ∈ Γ, and that gb is C2−(N−1−M(b)) and is transversal

to Cb, Cb(n,j), and Cb(n,j)(n′,j′) for all (n, j), (n′, j′) /∈ b, where the definitions of them

should be slightly modified. Then, for almost every γ ∈ Γ, Eb
γ is a (N − M(b))-

dimensional manifold with boundary.
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We next consider the case that, for some b ∈ B̂ and for any γ, h(n) = 0 holds for some

n in equilibria. That is we assume that there exists a set N(b) ⊂ {0, 1, . . . , N} such that

if the players take actions in b and h(n) = 0, n /∈ N(b), and h(n) > 0, n ∈ N(b), hold,

then In = 0 and On = 0 hold for n /∈ N(b). For simplicity, we assume that #N(b) − 2

of Db
n = 0, n ∈ N(b), can be linearly independent in equilibria. (We will discuss the

general case later.) Let N ′(b) be the subset of N(b) such that Db
n = 0, n ∈ N ′(b), can

be linearly independent. We define gb : RN+1 × R
#N(b)
++ × Ωb × RL → R#N ′(b) × R ×

R#b × RN+1 ×RK−#b by replacing

Db
n(h, βb, α), n = 2, . . . , N,

in the definition of gb in Theorem 2 by

Db
n(h, βb, α), n ∈ N ′(b).

By the same argument as in Theorem 2, we obtain the following theorem.

Theorem 6 Let Γ ⊂ RL be a C2 manifold without boundary. For b ∈ B̂, suppose

that Eb
γ 
= ∅ holds for all γ ∈ Γ, and that gb is C2 and is transversal to Cb, Cb(n,j), and

Cb(n,j)(n′,j′) for all (n, j), (n′, j′) /∈ b, where the definitions of them should be slightly

modified. Then, for almost every γ ∈ Γ, Eb
γ is a one-dimensional manifold with bound-

ary.

In general, #N ′(b) can be less than #N(b) − 2. Applying the same argument as in

Theorems 6 and 5, the dimension of the set of equilibrium for b is more than one.

In order to show real indeterminacy of equilibria, it suffices to prove that the welfare∑N
n=0 h(n)V (n) is not constant on each connected set of equilibria. For a given a ∈ R,
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the condition for a stationary quasi equilibrium with welfare a is as follows:

Db
n(h, βb, h, α) = 0, n = 2, . . . , N
N∑

n=0

h(n) − 1 = 0,

V (n) − W b
nj(x

b, γ) = 0, (n, j) ∈ b∗∑
j∈{j′|(j′,n)∈b}

βnj − 1 = 0, n = 0, . . . , N

V (n) − W b
nj(x

b, γ) ≥ 0, (n, j) /∈ b∗

N∑
n=0

h(n)V (n) − a = 0.

Let gb
w : RN+1 × RN+1

++ × Ωb × RM × R → RN−1 × R × R#b × RN+1 × RK−#b × R be

the LHS of the above condition, where the last R in the domain is the set of a in the

last equation.

Let

Cb
a = {0} × · · · × {0}︸ ︷︷ ︸

2N+#b+1

×R++ × · · · × R++︸ ︷︷ ︸
K−#b

×{0},

and, for (n, j) /∈ b,

Cb(n,j)
a = {0} × · · · × {0}︸ ︷︷ ︸

2N+#b+1

×R++ × · · · × R++ × {0} × R++ × · · · × R++︸ ︷︷ ︸
K−#b

×{0}.

Moreover, for (n, j), (n′, j′) /∈ b such that (n, j) 
= (n′, j′),

Cb(n,j)(n′,j′)
a = {0} × · · · × {0}︸ ︷︷ ︸

2N+#b+1

×R × · · · × R × {0} × R × · · · × R × {0} × R × · · · ×R︸ ︷︷ ︸
K−#b

×{0}.

By the same argument as in the proof of Theorem 2, the following theorem holds.

Theorem 3 Let Γ ⊂ RL be a C1 manifold without boundary. For b ∈ B̂, suppose that

Eb
γ 
= ∅ holds for all γ ∈ Γ, and that, for any given a, gb

w(·, a) is C1 and is transversal

to Cb
a, C

b(n,j)
a , and C

b(n,j)(n′,j′)
a for all (n, j), (n′, j′) /∈ b. Then, for almost every γ ∈ Γ,

Eb
γ ∩ {xb|∑N

n=0 h(n)V (n) = a} is a zero-dimensional manifold.

Together with Theorem 2, the above theorem implies real indeterminacy of Eb
γ . That

is, for any given welfare level a, the dimension of the set of equilibria with welfare level
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a is one dimension less than that of the set of equilibria. The same argument applies

to the cases in Theorems 5 and 6; the dimension of the set of equilibria that have the

same welfare level is one dimension less than that of the set of equilibria.

B The Case of N = ∞
Theorem 7 Suppose, for some integer δ > 0, f((i, j), (i′, j′)) ≤ δ holds for all (i, j)

and (i′, j′). Then

∞∑
n=0

n(On − In) = 0.

Proof: It suffices to show that
∑∞

n=0 n (On − In) absolutely converges. Let

Ôn =
∞∑

i=n

Oi and În =
∞∑

i=n

Ii.

(Note that we can define Ôn and În since
∑∞

i=0 h (i) converges.) Clearly, it suffices to

show that
∑∞

n=1

(
Ôn − În

)
absolutely converges.

The presumption implies that

Oi =

δ∑
k=0

∑
{j,i′,j′|f ((i,j),(i′,j′))=k}

αh(i, j)h(i′, j′)

+
δ∑

k=0

∑
{j,i′,j′|f ((i′,j′),(i,j))=k}

αh(i′, j′)h(i, j),

and

Ii =

δ∑
k=0

∑
{j,i′,j′|f ((i−k,j),(i′,j′))=k}

αh(i − k, j)h(i′, j′)

+
δ∑

k=0

∑
{j,i′,j′|f ((i′,j′),(i+k,j))=k}

αh(i′, j′)h(i + k, j)
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hold for all i ≥ δ. Thus

∣∣∣Ôn − În

∣∣∣ =
∣∣∣∣∣∣

δ∑
d=1

d−1∑
k=0

∑
{j,i′,j′|f ((i′,j′),(n+k,j))=d}

αh(i′, j′)h(n + k, j)

−
δ∑

d=1

d∑
k=1

∑
{j,i′,j′|f ((n−k,j),(i′,j′))=d}

αh(n − k, j)h(i′, j′)

∣∣∣∣∣∣
≤ α

n+δ−1∑
i=n−δ

h (i)

holds for all n ≥ δ. So, for all N2 > N1 > δ, we obtain

N2∑
n=1

∣∣∣Ôn − În

∣∣∣− N1∑
n=1

∣∣∣Ôn − În

∣∣∣ ≤ 2α
N2+δ−1∑

i=N1−δ+1

h (i) .

Since
∑∞

n=0 h (n) converges, so does
∑∞

n=1

∣∣∣Ôn − În

∣∣∣.
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