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Abstract 
 

We investigate implementation in the complete information environments, where a 

social choice function is defined as a mapping from states to lotteries, and there exist 

four or more agents. We assume that for every agent, any pair of distinct states induces 

distinct strict preference orderings over all pure alternatives. In contrast to the previous 

works, we construct only direct mechanisms. Without any help of mechanism 

complexity, we can show that every social choice function is virtually implementable, 

provided that the set of states is restricted in ways that there always exist a majority of 

agents who dislike a particular agent’s dictatorial choice the worst. 
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1. Introduction 
 

 

We investigate implementation of a social choice function where there exist four or 

more agents. A social choice function is defined as a mapping from states to lotteries. 

We confine our attention to the complete information environments, in which all agents 

are assumed to know what the true state is. We restrict the set of possible states in ways 

that for every agent, any pair of distinct states induces distinct preference orderings, and 

that for every agent, any state induces a strict preference ordering over all pure 

alternatives. We assume that with the restrictions above, the set of states is inclusive 

enough. 

We consider only direct mechanisms where each agent makes a single 

announcement about the state. We use pure strategy Nash equilibrium as the solution 

concept. We require a direct mechanism to virtually implement the social choice 

function in that at every state, truth telling is a pure strategy Nash equilibrium, and 

every pure strategy Nash equilibrium virtually induces the allocation that is suggested 

by the social choice function. Here, the definition of the virtualness above is originated 

by Matsushima (1988), and well cultivated by Abreu and Sen (1990). The purposes of 

the paper are to provide a sufficient condition for virtual implementation via direct 

mechanisms, and to argue that the class of social choice functions that are virtually 

implementable via direct mechanisms is large. 

A social choice function is said to be majority-proof if at every state, there exist a 

majority of agents who never prefer a particular agent’s dictatorial choice to the choice 

that is suggested by this social choice function. We show that if a social choice function 

is majority-proof, then it is virtually implementable via direct mechanisms. Based on 

this sufficiency result, we show as the main result of the paper that every social choice 

function is virtually implementable via direct mechanisms, provided that the set of 

states is restricted in ways that at every possible state, there exist a majority of agents 

who dislike a particular agent’s dictatorial choice the worst. 

Several earlier works in the implementation literature commonly indicate that it 

might be inevitable to make mechanisms complicated in order to implement a wide 
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variety of social choice functions. See Moore (1992) and its references.1 These works 

have constructed their respective mechanisms that are complicated in the sense that each 

agent has redundant, slack messages that she never announces as long as playing 

equilibrium behavior.2 By announcing slack messages, each agent could deviate from 

any unwanted message profile. In contrast, direct mechanisms are simple in that they 

have no slack messages. 

Several authors such as Maskin (1999) have constructed so-called ‘modulo’ 

mechanisms, in which each agent announces not only all agents’ preferences but also an 

element of a large enough subset of integers. By combining the modulo mechanism 

design with the virtualness, Matsushima (1988), and Abreu and Sen (1990), showed that 

every social choice function is virtually implementable in pure strategy Nash 

equilibrium.3 

Modulo mechanisms are complicated because all messages with the announcements 

of integers except ‘0’ are slack. Since such complexity is a serious obstacle to 

implement a social choice function for practical reasons, we must need an alternative 

possibility result by using only simple mechanisms such as direct mechanisms. The 

present paper implies that in a class of environments, the idea of virtualness alone is 

enough for eliminating all unwanted pure strategy equilibria, and therefore, we need to 

ask no help to the use of slack messages. 

The organization of the paper is as follows. Section 2 provides the model. Section 3 
provides the sufficiency theorem and its corollaries. Section 4 provides the complete 
proof of the sufficiency theorem. Section 5 concludes. 
 

                                                 
1 Most papers in this literature assumed that a state is defined as a profile of agents’ preferences. 
Hence, the domain of a social choice function is restricted in ways that any pair of distinct states 
induces distinct preference profiles. 
2 Jackson (1992) discussed that it might be plausible for a mechanism implementing a social 
choice function to be bounded in some sense. Our simplicity is more restrictive than the 
boundedness, because a bounded mechanism may have slack messages. 
3 In the modulo mechanisms constructed by Matsushima (1988), every agent never announces 
the other agents’ preferences except her two neighbors’ preferences. 
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2. The Model 
 
 

Let , ,  and  denote the finite set of agents, the finite set of 
states, the finite set of pure alternatives and the set of lotteries over , respectively, 
where we assume 

},...,1{ nN = Ω A ∆

A

4≥n . 
Agent  preference over lotteries is given by u  and satisfies the 
expected utility hypothesis. A social choice function is defined by a mapping from 
states to lotteries , where its range is denoted by . When , 
we will simply denote . 

i s' Ri →Ω×∆:

)( f∆∆→Ω:f
f )(ω

1))(( =af ω
a=

We provide two assumptions on the profile of utility functions  as follows. Niiu ∈)(
 
Assumption 1: For every , every , and every ω Ω , there exist 

 and α ∆  such that 
Ni∈ Ω∈ω }/{ω∈′

∆∈α }/{α∈′

),(),( ωαωα ′> ii uu  and u . ),(),( ωαωα ′′<′ ii u
 

Assumption 1 implies that for every agent , any pair of distinct states induces 
distinct preference orderings over . Hence, by knowing a single agent’s preference 
ordering, the central planner can know all other agents’ preference orderings. 

Ni∈
∆

 
Assumption 2: For every , and every , Ni∈ Ω∈ω

),(),( ωω auau ii ′≠  for all a  and all . A∈ }/{aAa ∈′

 
Assumption 2 implies that for every agent , every state induces strict 

preference ordering over all pure alternatives. 
Ni∈

We define a direct mechanism by  where  is the set of agent  

messages, , and . When all agents announce the message 

profile , the central planner chooses the lottery . The honest message rule 
for each agent  is defined by  where 

),( gM

∆

Ω→

Ω=iM

)(mg

si′

∏
∈

=
Ni

iMM

M∈
i

→Mg :

Ω:iµ
m

ωωµ =)(i  for all ω . Ω∈
We denote  and . A direct mechanism  will be 
simply denoted by . For every ,  defines a game. A message profile 

 is said to be a (pure strategy) Nash equilibrium in  if 

Nii ∈= )(µµ
g

Nii ∈= ))(()( ωµωµ
Ω∈ω ,( ωg

),( gM
)

Mm∈ ),( ωg
)),/(()),(( ωω iii mmgumgu ′≥  for all i  and all . N∈ ii Mm ∈′
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A social choice function  is said to be virtually implementable if for every , 
there exists a direct mechanism  such that for every , there exists a Nash 
equilibrium in ( , and for every Nash equilibrium m  in ,  is 

close to )  in that 

f )1,0(∈ε

)(mgε

εg Ω∈ω
),ωεg

ω
),( ωεg

−ε (f

εωε ≤− ))(())(( afamg  for all a . A∈

We define agent 1’s dictatorial social choice function  by Ad →Ω:
),()),(( 11 ωωω audu ≥  for all ω  and all . Ω∈ Aa∈

At every state ω , agent 1 prefers  the best among . The following 
assumption on  is likely to hold when the set of states is inclusive enough. 

Ω∈

d
)(ωd A

 
Assumption 3: For every , there exist ω Ω  and ω  such 
that 

Ω∈ω }/{ω∈′ },/{ ωω ′Ω∈′′

)()()( ωωω ′′=′= ddd . 
 
Assumption 3 implies that for every , there exist at least three distinct states 

at which agent 1 prefers  the best. 
Ω∈ω

)(ωd
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3. The Results 
 
 

A social choice function  is said to be majority-proof if for every , f Ω∈ω

2
)}),(()),((|}1/{{# ndufuNi ii >≥∈ ωωωω . 

Hence, at every state , there exist a majority of agents who never prefer agent 1’s 
dictatorial choice  to the socially desired choice . The following theorem 
states that majority-proofness is sufficient for virtual implementation via direct 
mechanisms. 

Ω∈ω
)ω(d )(ωf

 
Theorem 1: A social choice function  is virtually implementable if it is 
majority-proof. 

f

 
In order to prove Theorem 1, we will construct the following direct mechanism. Fix 

a message profile  arbitrarily. With a small probability, each agent  is 
randomly chosen as a constrained dictator and the central planner chooses l . 
Otherwise, the central planner chooses as follows. Fix two distinct states  and 

 arbitrarily. The central planner chooses  if a majority of agents 
except agent 1 announce . She chooses  if all agents announce either  or 

, agent 1 announces , and the number of agents announcing  is almost as large 
as the number of agents announcing . She chooses  if there exist three agents 
who announce distinct opinions.  

Mm∈

ω̂

Ni∈
(i m

Ω∈

ω~

)i

ω~

}~/{ˆ ωω Ω∈

ω̂

)~(ωf

)( 1md

ω~ )~(ωf
ω~

ω̂

Let  denote the correct state. It is straightforward from the specification 
above that the honest message profile  is a strict Nash equilibrium and virtually 
induces . Whenever a majority of agents except agent 1 announce the same but 
incorrect state, there exists an agent who does not tell the truth but has incentive to tell 
the truth. From Assumption 3, it follows that whenever there exists no opinion about the 
state that a majority of agents except agent 1 commonly announce, agent 1 can make the 
outcome virtually equal  by changing her message approximately. From the 
majority-proofness, it follows that whenever the central planner chooses , a 
majority of agents have incentive to announce , and therefore, the message profile 
will be eventually switched into a message profile that virtually induces . Based 
on the outline above, we can prove that a majority-proof social choice function is 
virtually implementable. The full proof of Theorem 1 will be provided in the next 
section. 

Ω∈ω

)(ωf
)(ωµ

)(ωd
)(ωd

)
ω

(ωf
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We provide the main result of the paper as a corollary of Theorem 1, which provides 
a restriction on the profile of utility functions  that guarantees every social 
choice function to be virtually implementable. 

Niiu ∈)(

 
Corollary 2: Suppose that for every , Ω∈ω

2
})),((),(|}1/{{# nAaallforduauNi ii >∈≥∈ ωωω . 

Then, every social choice function is virtually implementable. 
 
Proof: From the supposition, it follows that every social choice function is 
majority-proof. Theorem 1 implies that it is virtually implementable. 

Q.E.D. 
 

Corollary 2 states that every social choice function is virtually implementable, 
provided that the set of states is restricted in ways that at every possible state, there exist 
a majority of agents who dislike agent 1’s dictatorial choice the worst. 

Fix a social choice function  arbitrarily. We specify another social choice 
function  in ways that for every , 

f
ω*f Ω∈

)()(* ωω ff =  if 
2

)}),(()),((|}1/{{# ndufuNi ii >≥∈ ωωωω , 

and 
)()(* ωω df =  otherwise. 

The definition of  implies that at every state ω , if a majority of agents prefer 
 to , then  must be replaced with . The following Corollary 

states that this modified social choice function  is virtually implementable. 

*f
)(ωd )(ωf )(ωf )(ωd

*f
 
Corollary 3: For every social choice function , its modified social choice function 

 is virtually implementable. 
f

*f
 
Proof: It follows from the definition of  that  is majority-proof. Theorem 1 
implies that it is virtually implementable. 

*f *f

Q.E.D. 
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4. Proof of Theorem 1 
 
 

For every ω , and every Ω∈ },...,1{ Ak ∈ , let γ  denote the pure 

alternative that agent  prefers in the k-th place among . We define  by 

Aki ∈),(ω

Ai ∆→Ω:il

∑
=

+−
≡ Aii

kA
kl

1

1
)),()((

ρ

ρ
ωγω  for all ω  and all Ω∈ },...,1{ Ak ∈ . 

Since  is decreasing with respect to )),()(( kl ii ωγω },...,1{ Ak ∈

)

, it follows from 

Assumptions 1 and 2 that for every ,  is the unique maximizer of 
 among the range of , i.e., 

Ω∈ω (ωα il=
),( ωαiu il

)),(()),(( ωωωω ′> iiii lulu  for all ω  and all ω Ω . Ω∈ }/{ω∈′

For every , and every , let  denote the number of 
agents  who announce , i.e, 

Mm∈
}1/{

Ω∈ω
ω=im

},...,0{),( nmn ∈ω
Ni∈

}|}1/{{#),( ωω =∈= imNimn . 
We specify  in ways that for every , and every , ∆→Mx : Mm∈ Ω∈ω

)()( ωfmx =  whenever 
2

),( nmn >ω , 

)()( ωfmx =  whenever 
2

),(
2

1 nmnn
≤≤

−
ω

},{ ωω ′∈im
) ,(),( ωω = mnm

 and there exists 

 such that  for all , and either 
[ n ] or [ n  and ], 

}/{ω
)ω > n

ω Ω∈′

,(m
Ni∈

1m,( ω′m )′ ω′=

and 
)()( 1mdmx =  otherwise. 

For every , we specify  in ways that for every , )1,0(∈ε εg Mm∈

∑
∈

+−=
Ni

ii ml
n

mxmg )()()1()( ε
εε . 

We will prove Theorem 1 by showing that for every , and every , the 
honest message profile  is a Nash equilibrium in , and that for every 

 that is close enough to zero, every , and every Nash equilibrium  in 
, it follows that 

)1,0(∈ε

,( εg
Ω∈ω

m
)(ωµ )ω

)1,0(∈ε

),( ωεg
Ω∈ω

)()( ωfmx = , 
and therefore,  is ε close to . )(mgε − )(ωf

Fix  arbitrarily. Note that . Since , it follows that for Ω∈ω )())(( ωωµ fx = 3≥n
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every , and every , Ni∈ ii Mm ∈
() ωfmi =

),/) ωω im

Ω∈

(ωµ

2
n

Ω
}ˆ

(∈ε

)/)(( ωµx , 
and therefore, 

0)}()({))),((()((( ≤+=− ω
ε

ωωµµ εε
iiiii lml

n
gugu . 

Hence,  is a Nash equilibrium in . ) ),( ωεg
We divide the set of message profiles  into the following three cases. Fix 

 arbitrarily. 
M

Mm∈
 
Case 1: There exists  such that ω~

)~,(mn >ω . 

 
Case 2: There exist  and ω Ω  such that ∈ω~ }~/{ˆ ω∈

,~{ ωω∈im  for all i , N∈

2
)~,(

2
1 nmnn

≤≤
−

ω , 

and 
either [ ] or [  and ]. )ˆ,()~,( ωω mnmn > )ˆ,()~,( ωω mnmn = ω̂1 =m

 
Case 3: The message profile  does not belong to either of Case 1 and Case 2. m

 
Fix  arbitrarily, which is close enough to zero. Fix  

arbitrarily, where . Assume that  is a Nash equilibrium in . 
)1,0 )}(/{ ωµMm∈

),( ωεg)()( ωfmx ≠ m
Suppose that  belongs to Case 1. Then, it follows that , and every agent 

 who announces  has strict incentive to announce  instead of , 
because for every , 

m

m

ωω ≠~

(ωµiNi∈ ω~≠im

iM
) im

i ∈′

)~()())(/( ωωµ fmxmx i == , 
and therefore, 

0)}()({)),(())),(/(( >+=− iiiiii mll
n

mgumgu ω
ε

ωωωµ εε  if . ω≠im

Hence, it must hold that 
},~{ ωω∈im  for all i . N∈

Note that there exists an agent  such that ,  belongs to either 
Case 1 or Case 2, and 

Ni∈ ω~=im )(/ ωµim

)~()())(/( ωωµ fmxmx i == . 
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This agent has strict incentive to announce  instead of , because )(ωµi im

0)}~()({)),(())),(/(( >+=− ωω
ε

ωωωµ εε
iiiii ll

n
mgumgu . 

However, this contradicts the Nash equilibrium property. Hence, it follows that  
cannot belong to Case 1. 

m

Suppose that  belongs to Case 2. Then, agent 1 has strict incentive to announce a 
message  satisfying  instead of , because  
belongs to Case 3, 

m
~,ω}{1 ω∉′m )()( 1 ωdmd =′ 1m 1/ mm ′

)()/( 1 ωdmmx =′ , 
and therefore, 

)),(()),/(( 111 ωω εε mgummgu −′ )}),~(()),((){1( 11 ωωωωε fudu −−=  

0)}),(()),(({ 111111 >−′+ ωω
ε mlumlu
n

, 

where Assumption 3 implies that such  exists. this contradicts the Nash equilibrium 
property. Hence, it follows that  cannot belong to Case 2. 

1m′
m

Suppose that  belongs to Case 3. Then, m

2
),( nmn ≤ω  for all ω , Ω∈

and there exist  and ω  such that }/{~
1mΩ∈ω }~,/{ˆ 1 ωmΩ∈

1),( ≥ωmn  for all ω∈ . }ˆ,~{ ωω
If , then agent 1 has strict incentive to announce a message  
satisfying  instead of , because  belongs to Case 3, 

, and therefore, it follows from Assumption 2 and the fact that 
 is close to zero that 

)()( 1 ωdmd ≠
)( 1md ′

)()/ ωdmm i =′

)1,0(∈

}ˆ,~{1 ωω∉′m
)(ωd= 1m 1/ mm ′

(x
ε

)),(()),/(( 111 ωω εε mgummgu −′ )}),(()),((){1( 111 ωωωε mdudu −−=  

0)}),(()),(({ 111111 >−′+ ωω
ε mlumlu
n

. 

However, this contradicts the Nash equilibrium property. Hence, it must hold that 

. If )()( 1 ωdmd =
2

),( nmn <ω

im

, then it follows from inequality  that there exists 

an agent  such that  and  belongs to Case 3. Such an agent 
has strict incentive to announce  instead of , because 

4≥n

Ni∈ ω≠
(µi

)(/ ωµim
)ω im

)()())(/( ωωµ dmxmx i == , 
and therefore, 

)),(())),(/(( ωωωµ εε mgumgu iii − 0)}),(()),(({ >−= ωωω
ε

iiiii mlulu
n

. 
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However, this contradicts the Nash equilibrium property. Hence, it must hold that 

2
),( nmn =ω

}1/{Ni∈

. Since  is majority-proof, it follows that there exists an agent 

 who announces  and never prefers  to . Such an agent 
has strict incentive to announce  instead of , because  belongs to 
Case 1, 

f

ω≠im
µi

)(ωd )(ωf
/ µim)(ω im )(ω

)())(/( ωωµ fmx i = , 
and therefore, 

)),(())),(/(( ωωωµ εε mgumgu iii − )}),(()),((){1( ωωωωε dufu ii −−=  

0)}),(()),(({ >−+ ωωω
ε

iiiii mlulu
n

. 

However, this contradicts the Nash equilibrium property. Hence, it follows that  
cannot belong to Case 3. 

m

From the above arguments, we have proved that for every Nash equilibrium  
in , , and therefore,  is close to . Hence, we 
have completed the proof of the Theorem. 

Mm∈
),( ωεg )()( ωfmx = )(mgε −ε )(ωf

Q.E.D.               
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5. Concluding Remarks 
 
 

The present paper has investigated implementation of a social choice function as a 
mapping from states to lotteries. We have shown that with some domain-restrictions, 
majority-proofness is sufficient for virtual implementation in pure strategy Nash 
equilibrium via direct mechanisms. We have shown also that whenever there always 
exist a majority of agents who dislike a particular agent’s dictatorial choice the worst, 
then every social choice function is virtually implementable in pure strategy Nash 
equilibrium via direct mechanisms. 

The paper did not check whether there exists unwanted mixed strategy Nash 
equilibria. Abreu and Matsushima (1992) showed that every social choice function 
might be virtually implementable in mixed strategy Nash equilibrium, when we can 
construct so-called Abreu-Matsushima mechanisms, which are more complicated than 
direct mechanisms. In the Abreu-Matsushima mechanisms, each agent makes multiple 
announcements about the state, and the message profile that induces every agent to 
make multiple honest announcements is the unique mixed strategy Nash equilibrium.4 
This positive result crucially depends on the assumption that each agent can be 
individually levied by a small amount. In contrast, the preset paper does not depend on 
this assumption. 

The recent works by the author such as Matsushima (2002a, 2002b) are closely 
related, because both considered direct mechanisms or its variant in the implementation 
literature. Matsushima (2002b) investigated a particular class of direct mechanisms 
named virtual plurality mechanisms. A virtual plurality mechanism is defined on the 
basis of a plausible decision making procedure in that with a high probability the central 
planner enforces the allocation that the social choice function assigns to the opinion 
announced by a largest number of agents. Matsushima (2002b) showed that with three 
or more agents and some domain-restrictions, a social choice function is virtually 
implementable via virtual plurality mechanisms if and only if it always enforces the 
Condorcet winner. In contrast, the present paper showed that when we take into account 
a wider class of direct mechanisms than virtual plurality mechanisms, much wider 
variety of social choice functions, including inefficient ones, are all virtually 
implementable.5 

                                                 
4 More precisely, this message profile is the unique iteratively undominated strategy profile. 
5 However, the characterization of Matsushima (2002b) does not depend on the assumption that 
there exists four or more agents. 
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Moreover, Matsushima (2002a) investigated much simpler mechanisms than direct 
mechanisms, named local direct mechanisms, in which each agent makes only a single 
announcement about her own and two neighbors’ preferences. It must be noted that a 
social choice function is unlikely to be virtually implementable in pure strategy Nash 
equilibrium when we consider local direct mechanisms instead of direct mechanisms. 
However, Matsushima (2002a) showed that with a very minor restriction, every social 
choice function could be virtually implementable, provided that every agent is assumed 
to be boundedly rational in a naïve sense that she may announce any best reply, 
including disequilibrium messages. This result does not depend on Assumptions 1, 2 
and 3 in the present paper, but depends on the assumption that each agent can be 
individually levied by a small amount. 
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