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Abstract 
 

We investigate implementation of social choice functions as mappings from states to 
lotteries under complete information. We assume that for every agent, any pair of 
distinct states induces distinct preferences. A social choice function is called 
Condorcet-decisive if it always enforces the Condorcet winner among its range. We 
introduce plurality mechanisms, where each agent makes a single announcement and the 
lottery associated with the opinion announced by the largest number of agents is 
enforced. We show that a social choice function is virtually implementable via plurality 
mechanisms combined with constrained random dictatorship, if and only if it is 
Condorcet-decisive. 
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1. Introduction 
 

This paper investigates implementation of a social choice function in pure strategy 
Nash equilibrium under complete information. A social choice function is defined as a 
mapping from states to lotteries. We restrict the set of states in that for every agent, any 
pair of distinct states induces distinct preferences. Associated with a social choice 
function, we introduce the plurality mechanism, in which each agent simultaneously 
makes a single announcement about the state, and the central planner enforces the 
lottery that the social choice function assigns to the opinion announced by the largest 
number of agents. We investigate how implementation works when we confine our 
attention to a variant of the plurality mechanism. 

We must note that when there exist three or more agents, every inconstant social 
choice function is never implementable via the plurality mechanism, because every 
message profile making all agents announce the same but incorrect state is always a 
Nash equilibrium. Based on this, we define a virtual plurality mechanism as its 
modified version in ways that with a small probability, each agent is randomly selected 
as a constrained dictator and the planner chooses the lottery that maximizes this agent’s 
utility among a restricted subset of lotteries when the state that she announces is correct. 

A social choice function is said to be virtually implementable if at every state, for 
every  close to zero, the honest message profile is the unique pure strategy 
Nash equilibrium in the game defined by the state and the virtual plurality mechanism, 
where the probability of the central planner following constrained random dictatorship 
is as small as . The purpose of the paper is to characterize the set of social choice 
functions that are virtually implementable even if virtual plurality mechanisms are only 
constructible. 

)1,0(∈ε

ε

A social choice function is said to be Condorcet-decisive if it always enforces the 
Condorcet winner among its range, i.e., if at every state, there exist a majority of agents 
who prefer the lottery that the social choice function assigns to this state to any other 
lottery in its range. The main results are as follows. A social choice function is virtually 
implementable if it is Condorcet-decisive. When the number of agents is odd, a social 
choice function is virtually implementable only if it is Condorcet-decisive. Moreover, 
when the number of agents is even and the set of states is enough inclusive, a social 
choice function is virtually implementable only if it is Condorcet-decisive. 

Suppose that the central planner knows that there exists the Condorcet winner 
among the set of candidate lotteries, but she does not know which lottery is the correct 
Condorcet winner. Then, the social choice function assigning the Condorcet winner at 
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every state is undoubtedly one of the most plausible from the normative viewpoints. 
Our results imply that this social choice function is acceptable not only from the 
normative viewpoints, but also from the positive viewpoints, because it is the only 
virtually implementable social choice function via virtual plurality mechanisms. 

On the other hand, suppose that the central planner does not know whether there 
exists the Condorcet winner or not. Then, how to determine the social choice function 
would be problematic from the normative viewpoints, because the Condorcet criterion 
alone cannot solve it. Our results imply that it is problematic not only from the 
normative viewpoints, but also from the positive viewpoints, because every inconstant 
social choice function is never virtually implementable via virtual plurality mechanisms, 
and therefore, the central planner has to design more complicated and artificial 
mechanisms. 

Several authors in the implementation literature have constructed their respective 
mechanisms where each agent has redundant, slack messages that she never announces 
as long as playing equilibrium behavior.1 By announcing such a slack message, each 
agent could deviate from any unwanted message profile. As they have commonly 
indicated, it might be inevitable to make mechanisms so complicated and artificial in 
order to implement a wide variety of social choice functions. Such complexity and 
artificiality are, however, serious obstacles from the practical viewpoints.2 In contrast, 
we confine our attention to direct mechanisms that are particularly simple and plausible 
in that each agent has no slack messages and the central planner follows such intuitive 
decision-making procedures as plurality and constrained dictatorship. And then, we 
prove that there still exist social choice functions that are not only virtually 
implementable, but also normatively quite appealing.3 

The use of constrained random dictatorship was originated by Matsushima (1988) 
and cultivated by Abreu and Sen (1990). These works, together with Abreu and 
Matsushima (1992), showed that the combination of constrained random dictatorship 
with the addition of slack messages is a powerful way of eliminating unwanted 
equilibria.4 In contrast, the present paper clarifies the possibility that the use of 
constrained random dictatorship alone could eliminate all unwanted equilibria without 
any assistance of slack messages, where the restriction on the set of states will play a 

                                                 
1 See, for example, the survey by Moore (1992) and its references. 
2 It has been discussed whether a social choice function is implementable when mechanisms have slack 
messages but are restricted to be finite or bounded. See Jackson (1992). 
3 The recent works by Matsushima (2002a, 2002b) investigated implementation where the central planner 
can design direct mechanisms that are not plurality-based. 
4 Abreu and Matsushima (1992) required the uniqueness of mixed strategy equilibria. 
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significant role. 
We must distinguish the positive use of plurality to specify mechanisms with its 

normative use to specify social choice functions. It is well known in the public 
economics literature that a plurality-based social choice function is not necessarily 
acceptable, because it is sometimes inconsistent with the Condorcet criterion.5 On the 
other hand, the paper shows that a plurality-based mechanism is a powerful and efficient 
way of finding out the Condorcet winner. Suppose that there exists the Condorcet 
winner at every state, that each agent plays honestly, and that the size of the set of states 
is given by . Then, by  times repeatedly operating pair-wise majority rules, 
the central planner can eventually find out the correct Condorcet winner. However, once 
the central planner specifies the procedure as a multi-stage game form, each agent may 
have incentive to behave dishonestly. Moreover, when  is big, it must take so long 
time to finalize the procedure.

K 1−K

K
6 In contrast to this, a virtual plurality mechanism has 

nice properties that each agent has incentive to behave honestly and a single round of 
direct revelation is enough for finding out the Condorcet winner. 

The organization of the paper is as follows. Section 2 provides the model. Section 3 
shows that Condorcet-decisiveness is sufficient for virtual implementation via virtual 
plurality mechanisms. Section 4 shows that it is necessary. Section 5 discusses 
alternative definitions of plurality mechanism. 

 

                                                 
5 See, for example, Mueller (1989). 
6 Herrero and Srivastava (1992) investigated implementation via multi-stage mechanisms by using the 
solution concept of backward induction, and many social choice functions, including Condorcet-decisive 
social choice functions, are implementable. 
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2. The Model 
 

Let , ,  and  denote the finite set of agents, the finite set of 
states, the finite set of pure alternatives and the set of lotteries over , respectively, 
where . Agent  preference over lotteries is given by nd 
satisfies the expected utility hypothesis. A social choice function is defined by a 
mapping from states to lotteries , whose range is denoted by . We 
define a direct mechanism by  where  is the set of agent i  

messages, , and . The honest message rule for each agent  is 

defined by  where 
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We denote  and . A direct mechanism  will be 
simply denoted by . For every ,  defines a game. A message profile 

 is said to be a (pure strategy) Nash equilibrium in  if 
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The domain of  is restricted as follows. We assume that for every agent , 
any pair of distinct states induces distinct preference orderings over , i.e., for every 

, and every , there exist  and α ∆  such that 
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Hence, by knowing a single agent’s preference ordering, the central planner can know 
all other agents’ preference orderings. We also assume that for every agent , 
neither state induces complete indifference over all lotteries, i.e., for every , 
there exist  and a  such that u . 
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We define the random-dictator mechanism  by ∆→nMy :
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∈
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According to , with probability y
n
1 , each agent is selected as a constrained dictator 

and can choose any lottery in the range of , where she can maximize her utility by 
telling the truth. 

il

For every , and every , let  denote the number of 
agents  who announce , i.e., tell the truth. We define the plurality 

mechanism  in ways that for every , and every , 
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Note that when there are multiple plurality opinions, the opinion that is announced by 
the lowest agent is selected among them. Section 5 will discuss an alternative definition 
of plurality mechanism in this respect. 

For every , we specify a direct mechanism  as a combination of the 
plurality mechanism and the random-dictator mechanism in that for every , 
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A social choice function  is said to be virtually implementable if for every , 
and every , the honest message profile  is the unique Nash equilibrium in 

. 
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3. Sufficiency 
 

A lottery α  is said to be the Condorcet winner among a subset of lotteries 
 at the state ω , if , and for every , 
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Inequalities (1) imply that for every other lottery , there exist a majority of 
agents who weakly prefer α  to . A social choice function  is said to be 
Condorcet-decisive if for every ,  is the Condorcet winner among  
at . 
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Proposition 1: A Condorcet-decisive social choice function  is virtually 
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From the above arguments, we have proved that no message profile  is a 
Nash equilibrium in . 

)(ωµ≠m
),( ωεg

Q.E.D. 



 10 

4. Necessity 
 

The following proposition states that when the number of agents is odd, 
Condorcet-decisiveness is necessary for virtual implementation. 
 
Proposition 2: If  is odd and a social choice function  is virtually implementable, 
then it is Condorcet-decisive. 

n f

 
Proof: Suppose that  is not Condorcet-decisive. Then, there exist ω  and 

 such that 
f Ω∈

}/{ωω Ω∈′

2
1)}),(()),((:{# +

≥>′∈
nfufuNi ii ωωωω . 

Let  be the message profile satisfying that  for all , Mm∈ },{ ωω ′∈im Ni∈

2
) = n

ω
1,( −mn , 

2
1),( +

=′
nmn ω , and 

)),(()),(( ωωωω fufu ii >′  if .                       (6) ω′=im
Note that . For every , if , then, for every , 
it follows that , and therefore, 

)()()( ωω ffmz ≠′=
)()/( ==′ mzmmz i

Ni∈ ω=im ii Mm ∈′

)(ω′f

)),(())),/(( ωω εε mgummgu iii −′ 0)}),(()),(({ <−′= ωωω
ε

iiiii lumlu
n

. 

Suppose that there exist no i  and no  such that , 
, and . For every i , if 

, then it follows that ,  for all 
, and therefore, 

N∈
),ˆ( ii ml

(/ ωµi

},{ˆ ωω ′∉im
0)), >′ ωω
)/( ∈′mmz i

ω′=im
N∈

}
)()()ˆ/( ω′== fmzmmz i

ω′=im
},{ ωω ′∉im

(()( −ω iii luu
)())( ωfmz = )(),({ ωω ′ff

0)),(())),/(( ≤−′ ωω εε mgummgu iii , 

because of inequality (6). Hence,  is a Nash equilibrium in . m ),( ωεg
Suppose that there exist such  and m . Without loss of generality, 

we can choose  satisfying that 
Ni∈ },{ˆ ωω ′∉i

},{ˆ ωω ′∉im
0)),(()),ˆ(( ≥′′− ωωω iiiii lumlu  for all ω ≠ .                 (7) ω′′

We will show that  is a Nash equilibrium in ( . Note that 

, and for every , 

imm ˆ/ ),ωεg

)()ˆ/( ω′= fmmz i Nj∈

)()ˆ/()),ˆ/(( ω′==′ fmmzmmmz iji  for all m  if , jj M∈′ ω=′jm

and 



 11 

)()),ˆ/(( ωfmmmz ji =′  for all m  if . ω′≠′j ω′=jm

Hence, it follows from inequality (6) that 

0)),(())),/(( ≤−′ ωω εε mgummgu jjj  for all  and all . ij ≠ jj Mm ∈′

The supposition implies that for every , , and 
therefore, 

ω≠′im )()ˆ/()/( ω′==′ fmmzmmz ii

)),ˆ/(()),/(( ωω εε
iiii mmgummgu −′  

0)}),ˆ(()),(({ ≤−′= ωω
ε

iiiiii mlumlu
n

, 

because of inequality (7). Moreover, note that , and therefore, )())(/( ωωµ fmz i =

)),ˆ/(())),(/(( ωωωµ εε
iiii mmgumgu −  

)}),(()),((){1( ωωωε iii mfufu −−=  

0)}),(()),(({ ≤−′+ ωω
ε

iiiiii mlumlu
n

, 

because  is sufficiently close to zero and u . 
From the above arguments, we have proved that  is a Nash equilibrium in 

. 

)1,0(∈ε 0)),(()),(( <− ωωω iii mfuf

im̂/m
),( ωεg

  Q.E.D. 
 

The following proposition states that when the set of states is enough inclusive, 
Condorcet-decisiveness is necessary for virtual implementation even if the number of 
agents is even. 
 
Proposition 3: A social choice function  is not virtually implementable if  is even 
and there exist  and ω Ω  such that 
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5. Alternative Definition 
 

The paper has defined the plurality mechanism in ways that when there exist 
multiple plurality opinions, the opinion that is announced by the lowest agent is selected 
among them. The positive result of Proposition 1 crucially depends on this deterministic 
selection. An alternative definition is that the selection is stochastic in that when the 

number of the plurality opinions is as large as ]},min[,...,1{ nr Ω∈ , each of the 

plurality opinions is randomly selected with positive probability 
r
1 . Based on this, the 

plurality mechanism  is redefined by z
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where  denotes the set of all plurality opinions associated with the message 
profile , i.e., the set of states  satisfying that 
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Virtual plurality mechanisms are also redefined on the basis of this redefined plurality 
mechanism. 

We can show that even Condorcet-decisive social choice functions are not 
necessarily virtually implementable. Suppose that ,  is even, and a social 
choice function  satisfies that there exist ω ,  and ω  such 
that 
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)()/( ω ′′=′ fmmz i  if , ω′=im
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it follows that 
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which implies that  is a Nash equilibrium in . Hence, it follows that the 
social choice function  is not virtually implementable via redefined virtual plurality 
mechanisms. 

m ),( ωεg
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