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Abstract 
 

This paper investigates implementation of social choice functions in the complete 
information environments. We construct particularly simple mechanisms named local 
direct mechanisms, which require each agent to make a single announcement about her 
own and neighbors’ utility indices. We assume that each agent is boundedly rational in 
that she may announce any best reply, including disequilibrium messages, even if the 
others play a Nash equilibrium. We require that the honest message profile be stable in 
the global sense that it is reachable from every message profile and no other message 
profile is reachable from it. It is shown that with a minor restriction, every social choice 
function is virtually implementable. We provide naïve models of adaptive dynamics 
whose convergence characterizes the static definition of stability. We also investigate 
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several variants of the stability notion such as BR-stability, weak stability, and weak 
BR-stability. 

 
Keywords: Complete Information, Local Direct Mechanisms, Stability, Small Fines, 
Virtual Implementation, Possibility Results, Bounded Rationality, Adaptive Dynamics. 
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1. Introduction 
 

This paper investigates implementation of social choice functions in the complete 
information environments. We consider particularly simple mechanisms named local 
direct mechanisms, which require each agent to make a single announcement on her own 
and her two neighbors’ utility indices. We allow agents to be levied only small amounts. 
The purpose of the paper is to address how implementation works when agents are 
boundedly rational, and show the possibility that a social choice function is virtually 
implementable via such simple mechanisms as local direct mechanisms. 

We hypothesize that each agent is boundedly rational so that she may change her 
message into any message that is better than or indifferent to the message that she 
currently announces, given that she expects the others to continue announcing the same 
messages as their current messages. Hence, each agent may announce any best reply, 
including disequilibrium messages, even if the others play a Nash equilibrium. We 
require that the honest message profile be stable in the global sense that it is reachable 
from every message profile through finite steps, in each step of which, an agent 
unilaterally changes her message, whereas no other message profile is reachable from it. 
Hence, the honest message profile is the unique strict Nash equilibrium, and there exists 
no other absorbing limit cycle in terms of reachability. The main result of the paper is that 
with a minor restriction, every social choice function is virtually implementable in terms 
of stability via local direct mechanisms. 

Several earlier works in the implementation literature have required the uniqueness of 
Nash equilibrium or its related solution concepts, and have provided their respective 
possibility theorems. See Matsushima (1988), Moore and Repullo (1988), Abreu and Sen 
(1990), Palfrey and Srivastava (1991), and Abreu and Matsushima (1992). See also the 
survey by Moore (1992). These works indicate that it might be inevitable to construct 
complicated mechanisms in that each agent must have redundant, slack messages that she 
never announces as long as agents play the equilibrium behaviors. The mechanisms 
constructed by these authors provide each agent with the incentive to deviate from any 
unwanted message profile by announcing such a slack message. 

In contrast, local direct mechanisms are so simple as to have no slack messages. The 
size of the set of message profiles, however, is larger than the size of the set of preference 
profiles. This implies that there exist slack message profiles that agents never announce 
as long as they make the honest announcements. No messages are slack, but message 
profiles leading agents to announce different opinions are slack. The paper shows that the 
existence of such slack message profiles is enough to provide agents with the incentives 
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to extricate themselves from the trap of the unwanted message profile into the honest 
message profile. 

A local direct mechanism is specified as follows. For each agent, there exist three 
agents who announce their respective opinions about this agent’s utility index. If at least 
two agents announce the same opinion, we shall regard it as the public opinion. If a 
message profile has the public opinion for every agent, the mechanism almost certainly 
enforces the allocation assigned by the social choice function to this profile. Otherwise, 
the mechanism certainly enforces the allocation that maximizes agent 1’s utility on the 
supposition that she is correct, i.e., agent 1 becomes dictatorial. 

A key heuristic of the paper is as follows. Suppose that a message profile does not 
have the profile of the public opinions. Then, each agent has a wide variety of messages 
satisfying that whichever message she announces agent 1 remains dictatorial and the 
resultant allocation never changes. This, together with the bounded rationality hypothesis, 
serves to provide each agent with the incentive to announce the honest message. 

When the given message profile has the profile of the public opinions, we can use the 
idea of the virtualness addressed by Matsushima (1988) and Abreu and Sen (1990) to 
provide each agent with the incentive to make the honest announcement about her own 
utility index. We can specify the mechanism in ways that an agent is fined if and only if 
she is the single deviant from the profile of the public opinions and announces different 
opinions about her neighbors’ utility indices. This, together with the virtualness, serves to 
provide each agent with the strict incentive to announce the honest message given that the 
others announce the honest messages. Since the use of fine serves mainly for this 
strictness, we can make the amount of fine as small as possible. 

In order to clarify that this permissive result does not much depend on the specificity 
of the stability notion, we will investigate its robustness in several ways. Firstly, we will 
replace the bounded rationality hypothesis with a hypothesis that each agent who will 
change her message announces only best replies. Based on it we define the notion of B-R 
stability. B-R stability is more restrictive than stability in that it is impossible for a local 
direct mechanism to virtually implement a social choice function in terms of BR-stability, 
even though it is possible in terms of stability. We assume that there are four or more 
agents, and we introduce a modified local direct mechanism, in which each agent not only 
announces opinions on her own and two neighbors’ utility indices but also announces 
either integer “0” or integer “1”. The honest message for each agent is redefined as the 
message, according to which, she announces “0” as well as makes the honest 
announcements. Hence, messages with the announcement of “1” are slack. We show that 
with a minor restriction, every social choice function is virtually implementable in terms 
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of BR-stability via modified local direct mechanisms. 
Many previous works in the implementation literature have used integer mechanisms, 

in which each agent announces any nonnegative integer as well as opinions about agents’ 
utility indices. The size of the set of message profiles is infinite, although the side of the 
set of preference profiles is finite. Many other previous works have used modulo 
mechanisms, in which each agent announces any integer in the set },...,1{ n  as well as 
opinions about agents’ utility indices.1 The size of the set of message profiles is finite, but 
it tends to infinity as the number of agents increases. Abreu and Matsushima (1992) have 
constructed their own mechanisms, in which each agent makes multiple announcements 
about all agents’ utility indices. The size of the set of message profiles is finite,2 but it 
tends to infinity as the upper bound of the amount of fine decreases. In contrast, in our 
modified local direct mechanisms, the size of the set of message profiles is finite, is 
constant with respect to the number of agents, and is constant with respect to the upper 
bound of the amount of fine. 

We also show that if a social choice function is virtually implementable in terms of 
stability via local direct mechanisms, it is also virtually implementable in terms of 
BR-stability via direct mechanisms where each agent makes a single announcement about 
all agents’ utility indices. Direct mechanisms have no slack messages, the size of the set 
of message profiles is finite, is constant with respect to the upper bound of the amount of 
fine, but is larger than that in modified local direct mechanisms. 

In the definitions of stability and BR-stability, only a single agent is permitted to 
change her message at one time. We will permit two or more agents to simultaneously 
change their messages and introduce the notions of weak stability and weak BR-stability. 
We, rather trivially, show that every social choice function is virtually implementable in 
terms of weak stability or weak BR-stability via local direct mechanisms, even if all 
agents prefer the allocation that maximizes player 1’s utility to the desired outcome. 

In most parts of this paper, we investigate implementation on the basis of the static 
definition of stability, because of its tractability. In the last part of the paper we will 
characterize this stability notion from the viewpoints of adaptive dynamics. We consider 
the situation in which agents asynchronically play the component game infinitely many 
times. We introduce naïve models of adaptive dynamics, and show that there exists the 
unique convergent behavior if and only if the stable message profile exists in the 

                                                 
1 Modulo mechanisms have unwanted mixed equilibria. 
2 The Abreu-Matsushima mechanism can eliminate all pure and mixed unwanted equilibria. The wanted 

equilibrium is the only iteratively undominated message profile. 
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component game, where the stable message profile will be this convergent point. 
The crucial feature of our adaptive dynamics is that learning is not well sophisticated 

in that, irrespective of the past history of play, each agent always chooses any best reply 
with positive probability. Because of this, it is straightforward that every Nash 
equilibrium that is not strict can be eliminated. In this respect, the present paper has some 
distance from the models that were intensively studied in the evolution and learning 
literature3 such as fictitious play, Bayesian learning and regret based dynamics addressed 
by Hart and Mas-Colell (2000). In this literature, learning is sometimes more involved so 
that an agent can learn not to play particular best replies. This may prevent the honest 
message profile from being reachable from other message profiles. Hence, we may say 
that the less boundedly rational agents are, the more complicated mechanisms are needed 
for implementation. 

The elimination of unwanted absorbing limit cycles is not trivial at all, even if we use 
our naïve models. Hence, we have to make a careful check on how implementation works. 
Especially, when multiple agents are unlikely to adjust behaviors at one time, i.e., either 
stability or BR-stability must be used, and when all agents prefer agent 1’s dictatorship to 
the socially desirable outcome, the social choice function is not necessarily virtually 
implementable. On the other hand, when at least one agent exists who prefers the socially 
desirable outcome to agent 1’s dictatorship, every social choice function is virtually 
implementable. This point is the technical highlight of this paper. 

The present paper could also be put in perspective of robustness of implementation to 
non-optimal behaviors, which were intensively studied after the survey by Moore (1992). 
Related works are Eliaz (2000), Maniquet (1998), Seften and Yavas (1996), Cabrales 
(1999), and others. 

The organization of the paper is as follows. Section 2 provides the model. Section 3 
considers stability and weak stability. Section 4 considers BR-stability and weak 
BR-stability. Section 5 considers adaptive dynamics. Section 6 concludes. 
 

                                                 
3 See, for example, Fudenberg and Levine (1998). 
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2. The Model 
 

Let N n= { ,..., }1  denote the finite set of agents where 3≥n . Let Γ  denote the finite 
set of pure alternatives. Let A  denote the set of all lotteries over Γ . Agent i s'  utility is 
indexed by a parameter ωi . Let Ω i  denote the finite set of her utility indices where 

3≥Ωi . Agent i s'  preference is given by a utility function u A Ri i: × →Ω , and satisfies 

the expected utility hypothesis. We assume that no element of Ω i  induces complete 
indifference over all lotteries, and that any pair of distinct elements of Ω i  induces distinct 
orderings over A . Hence, for every i N∈ , there exists a function α i i A:Ω →  such that 
for every ωi i∈Ω , )( iia ωα=  is the single maximizer of ),( ii au ω  among the set 

}:)({ iiii A Ω∈′∈′ ωωα , i.e., u ui i i i i i i i( ( ), ) ( ( ), )α ω ω α ω ω> ′  for all ′ ≠ω ωi i . An example 

of iα  is as follows. For every ωi i∈Ω , and every },...,1{ Γ∈k , let Γ∈),( kii ωγ  denote 

the pure alternative that player i  prefers in the k-th place among the set Γ , i.e., 

)),,(()),2,(()),1,(( iiiiiiiiiiii uuu ωωγωωγωωγ Γ≥⋅⋅⋅≥≥ . 

Let 
∑
Γ

=

+−Γ
≡

1

1
)),()((

l

iiii

l

k
kωγωα . Note the above inequalities hold because the 

probability )),()(( kiiii ωγωα  is decreasing with respect to },...,1{ Γ∈k  and any pair of 

distinct elements of Ω i  induces distinct orderings over A .4 
We assume that utilities are quasi-linear. We denote by iii tau +),( ω  the utility for 

agent i  of a lottery a A∈  and a side payment t Ri ∈  when her utility index is given by 

ωi .
5 A preference profile is described by ω ω ω= ( ,..., )1 n . Let ∏

∈
Ω≡Ω

Ni
i  denote the set 

of preference profiles. 
A social choice function x A:Ω →  maps from preference profiles to lotteries. The 

lottery Ax ∈)(ω  with no transfers is regarded as the most desirable allocation when the 
preference profile is given by Ω∈ω . We shall fix an arbitrary social choice function 
x A:Ω →  and an arbitrary positive real number )1,0(∈ε  that is close to zero. We specify 

                                                 
4 See the Lemma in Abreu and Matsushima (1992). 

5 Quasi-linearity is assumed for simplicity. All we need is that there exists a private good and each agent’s 
utility is denoted ),,( iii tau ω , which is increasing with respect to it . 
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another social choice function x̂  by 

∑
∈

+−=
Ni

iin
xx )()()1()(ˆ ωαεωεω  for all ω ∈Ω . 

Note that x̂  is ε -close to x , that is, for every ω ∈Ω , Ax ∈)(ω  is ε -close to Ax ∈)(ˆ ω  
in that the distance between them is at most ε  in the Euclidean metric. We call x̂  the 
ε -virtual social choice function associated with x . 

A mechanism is given by ),;,...,( 1 tgMMG n=  where iM  is the finite set of messages 

for agent i , ∏
∈

=
Ni

iMM , AMg →:  is an outcome function, t t tn= ( ,..., )1 , t M Ri: →  

is a side payment function to agent i , and t  is budget-balancing in that ∑
∈

=
Ni

i mt 0)(  for 

all m M∈ . When agents announce a message profile m M∈ , the mechanism enforces 
the lottery Amg ∈)(  and each agent Ni ∈  receives the side payment Rmti ∈)( . An 
arbitrary message rule is denoted by Nii ∈= )(µµ  where ii M→Ω:µ  for all Ni ∈ .6 

Throughout the paper, we shall fix an arbitrary positive real number 0>ξ . We 
confine our attention to mechanisms G  satisfying that for every Ni ∈ , and every 

Mm ∈ , 
ξ−≥)(mti . 

This implies that there exists an upper bound to the amount of fine such that each agent is 
able to pay up to this amount. A mechanism and a preference profile define a game 

),( ωG . 
 

                                                 
6 The introduction of mixed message rules will not change any results of the paper. 
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3. Stable Implementation 
 

3.1. Stability 
 

A finite sequence KK
k

kk MNmi )(),( 1 ×∈=  is said to be connected with a message 
profile Mm ∈  if 

1−= k
i

k
i mm  for all },...,1{ Kk ∈  and all kii ≠ , 

where mm =0 . A message profile Mm ∈′  is said to be reachable from another message 
profile Mm ∈  in ( , )G ω  if there exists K

k
kk mi 1),( =  connected with m  such that mmK ′= , 

and for every },...,1{ Kk ∈ , 
)()),(()()),(( 11 −− +≥+ k

ii
k

i
k

ii
k

i mtmgumtmgu kkkkkk ωω .                       (1) 
Hence, m′  is reachable from m  if and only if m  can be switched to m′  through finite 
steps, in each step of which, an agent unilaterally changes her message into any message 
that is better than or indifferent to that announced in the last step. 
 
Definition 1: A message profile Mm ∈  is stable in ( , )G ω  if m  is reachable from every 

′ ≠m m  in ( , )G ω  and no ′ ≠m m  is reachable from m  in ( , )G ω . 
 

Note that m  is stable if and only if m  is the unique strict Nash equilibrium and there 
exists no other absorbing limit cycle in terms of reachability in that there exists no 
nonempty subset MM ⊂  such that }{mM ≠ , every pair of message profiles in M  are 
mutually reachable, and there exists no Mm ∉′  that is reachable from some Mm ∈′′ . 
 

3.2. Possibility Theorem 
 
We specify a mechanism ),,( *** tgMG =  named a local direct mechanism as follows. 

Let 11 +− Ω×Ω×Ω= iiiiM  for all i N∈ .7 We denote iiiiiiii Mmmmm ∈= +− ),,( 1,,1, , where 
mi j j, ∈Ω . Each agent Ni ∈  makes a single announcement about her own and neighbors’ 

utility indices.8 The honest message rule in *G  is denoted by Nii ∈= )( ** µµ  where for 
every Ni ∈ , and every Ω∈ω , 

),,()( 11
*

+−= iiii ωωωωµ . 
Let MM ⊂~  denote the set of message profiles m  satisfying that there exists Ω∈)(~ mω  
such that for every Ni ∈ , 

)(~
, mm iij ω=  for at least two agents }1,,1{ +−∈ iiij . 

We shall call ii m Ω∈)(~ω  and Ω∈)(~ mω  the public opinion for agent i  and the profile of 
the public opinions, respectively. We specify *g  by 

                                                 
7 We denote ni =−1  if 1=i , and 11 =+i  if ni = . 
8 Matsushima (1988) investigated a variant of modulo mechanisms where each agent announces about her 
own and her neighbors’ utility indices. 
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∑
∈

+−=
Ni

iii m
n

mxmg )())(~()1()( ,
* αεωε  if Mm ~∈ , 

and 
)()( 1,1

* mdmg =  if Mm ~∉ , 
where Aii →Ω:α  was the function introduced in Section 2, and Ad →Ω1:  is a 
function satisfying that for every 11 Ω∈ω , 

)),(()),(( 1
*

1111 ωωω mgudu ′≥  for all Mm ∈′ . 
An example of Ad ∈)( 1ω  is the lottery that maximizes agent s1′  utility. 

Suppose that there exists the profile of the public opinions Ω∈)(~ mω , i.e., Mm ~∈ . 
Then, with probability ε−1 , the mechanism enforces the lottery that the original social 

choice function x  assigns to )(~ mω , i.e., ))(~( mx ω . With probability 
n
ε , each agent Ni ∈  

becomes dictatorial and chooses the lottery Am iii ∈)( ,α . As Matsushima (1988) and 
Abreu and Sen (1990) have pointed out, the virtualness serves to provide each agent with 
the incentive to make the honest announcement about her own utility index. Next, 
suppose that there does not exist the profile of the public opinions, i.e., Mm ~∉ . Then, 
agent 1 certainly becomes dictatorial and chooses the lottery Amd ∈)( 1,1 . 

We specify *t  by 
ξ−=)(* mti  and ξ=+ )(*

2 mti  if Mm ~∈ , )(~
, mm jji ω≠  for some 

}1,1{ +−∈ iij , and ))(~),(~),(~( 11 mmmm iiii +′′−′′ = ωωω  for all ii ≠′ , 
and 

0)(* =mti  and 0)(*
2 =+ mti  otherwise. 

Each agent Ni ∈  is fined if and only if there exists the profile of the public opinions 
)(~ mω , agent i  is the single deviant from )(~ mω , and she does not announce the public 

opinions about her neighbors’ utility indices. If agent i  is fined, only agent 2+i  is 
rewarded. The possibility of a player’s being fined, together with the virtualness, serves to 
provide each agent with the strict incentive to announce the honest message when the 
others announce the honest messages. 

Note 
)(ˆ))(( ** ωωµ xg = , and 0))(( ** =ωµit  for all Ni ∈ . 

When agents announce the honest message profile )(* ωµ , the mechanism enforces the 
lottery that the ε -virtual social choice function x̂  assigns to the true preference profile. 

The following theorem provides a sufficient condition under which the mechanism 
*G  and the honest message rule *µ  implement the ε -virtual social choice function x̂  in 

terms of stability in that for every Ω∈ω , the honest message profile )(* ωµ  is stable in 
),( * ωG . 

 
Theorem 1: For every Ω∈ω , if there exists 1≠j  such that 

ξωωωω −≥ )),(()),(ˆ( 1 jjjj duxu ,                                                         (2) 

then, )(* ωµ  is stable in ),( * ωG . 
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Since Theorem 1 holds for every 0>ε , we can say that x  is virtually implementable 

in terms of stability via local direct mechanisms. That is, for every 0>ε , there exists an 
ε -virtual social choice function that is implemented by the local direct mechanisms 

),( ** µG  in terms of stability, if for every Ω∈ω  there exists 1≠j  such that 
ξωωωω −> )),(()),(( 1 jjjj duxu . 

Note that x  is virtually implementable in terms of stability via local direct mechanisms if 
)}),(()),(({minmax 11 jjjjj

xudu ωωωωξ
ω

−>
≠Ω∈

. 

Hence, it follows that if 0>ξ  is large enough to satisfy that for every Aa ∈ , and every 
Ω∈ω , there exists 1≠j  such that ξωωω −≥ )),((),( 1 jjij duau , then every social 

choice function is virtually implementable in terms of stability via local direct 
mechanisms. The following corollary is straightforward from Theorem 1. 
 
Corollary 2: For every Ω∈ω , if there exists 1≠j  such that 

)),(()),(ˆ( 1 jjjj duxu ωωωω ≥ ,                                                                (3) 
then, it holds, irrespective of 0>ξ , that )(* ωµ  is stable in ),( * ωG . 
 

From Corollary 2 it follows that, irrespective of the upper bound of the amount of fine 
0>ξ , a social choice function x  is virtually implementable in terms of stability via local 

direct mechanisms, if for every Ω∈ω , there exists 1≠j  such that 
)),(()),(( 1 jjjj duxu ωωωω ≥ .                                                               (4) 

A social choice function x  is said to be efficient if for every ω ∈Ω , )(ωx  is efficient 
in that there exists no a A∈  such that u a u xi i i i( , ) ( ( ), )ω ω ω≥  for all i N∈  and the strict 
inequality holds for some i N∈ . Note that every efficient social choice function x  
satisfies inequalities (4) for all ω ∈Ω . Hence, it follows that, irrespective of the upper 
bound of the amount of fine 0>ξ , every efficient social choice function is virtually 
implementable in terms of stability via local direct mechanisms. 

The complete proof of Theorem 1 will be shown in Appendix A. The next subsection 
provides an example for understanding the logical core of the proof. 

 
3.3. Example I 

 
This subsection assumes that }3,2,1{=N , and that the set of utility indices for each 

agent Ni ∈  consists of three distinct elements. Let },,{ iiii ωωω ′′′=Ω . Suppose that 
),,( 321 ωωωω =  is the true preference profile, and agent 2=j  satisfies inequality (2). 

Let a message profile Mm ~∈  be specified by ),,( 11 +− ′′′= iiiim ωωω  for all Ni ∈ . Note that 
the profile of the public opinions is given by ωωωωωω ≠′′′=′= ),,()(~

321m . Hence, the 
profile of the public opinions is different from the true preference profile. We will show 
that )(* ωµ  is reachable from m  in ),( * ωG . 

We specify a sequence 8
1),( =k

kk mi , connected with m , by 
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11 =i , ),,( 213
1
1 ωωω ′′=m , 22 =i , ),,( 321

2
2 ωωω ′′=m , 

33 =i , ),,( 132
3
3 ωωω ′′=m , 14 =i , ),,( 213

4
1 ωωω ′′′′=m , 

25 =i , ),,( 321
5
2 ωωω ′′′=m , 16 =i , ),,( 213

6
1 ωωω=m , 

27 =i , ),,( 321
7
2 ωωω=m , 38 =i , and ),,( 132

8
3 ωωω=m . 

Note )(*8 ωµ=m . We can show that 3m  is reachable from 0m , because the virtualness 
provides each agent with the incentive to make the honest announcement about her own 
utility index. Note 11 =i , Mm ~1 ∈ , ωω ′=)(~ 1m , 

))},()({
3

)(ˆ()()),(( 111111
1*1*

111 ωωαωαεωω ′−+′=+ xumtmgu iii , and 

)),(ˆ()()),(( 11
0*0*

111 ωωω ′=+ xumtmgu iii . 
Hence, it follows from the definition of )(1 ⋅α  that inequality (1) holds for 1=k , and 
therefore, 1m  is reachable from mm =0 . In the same way, the definition of )(2 ⋅α  ( )(3 ⋅α ) 
implies that 2m  is reachable from 1m  ( 3m  is reachable from 2m , respectively). 

We can show that 4m  is reachable from 3m , because agent 1 prefers the allocation 
that maximizes player s'1  utility to the allocation chosen according to the profile of the 
public opinions. Note 14 =i , Mm ~4 ∉ , 1

4
1,1 ω=m , 

)),(()()),(( 111
4*4*

444 ωωω dumtmgu iii =+ , and 

),)}()({
3

)(ˆ()()),(( 1

3

1
1

3*3*
444 ωωαωαεωω ∑

=

′−+′=+
i

iiiiiii
xumtmgu . 

Hence, the definition of )(⋅d  implies inequality (1) for 4=k , and therefore, 4m  is 
reachable from 3m . 

We can show, as the key heuristic of the paper, that 6m  is reachable from 4m , because 
each agent has a wide variety of messages satisfying that whichever message she 
announces, the resultant allocation never changes. Note 25 =i , Mm ~5 ∉ , 1

5
1,1 ω=m , 

)),(()()),(( 212
5*5*

555 ωωω dumtmgu iii =+ , and 

)),(()()),(( 212
4*4*

555 ωωω dumtmgu iii =+ . 

Hence, inequality (1) holds for 5=k  with equality, and therefore, 5m  is reachable from 
4m . In the same way, 6m  is reachable from 5m . 

Note that 4m  and 5m  are weak Nash equilibria if for every 1≠i , and every ωω ≠ , 
)),(ˆ()),(( 1 iiii xudu ωωωω ≥ . 

We can show that 7m  is reachable from 6m , because inequality (2) for 2=j  implies 
that agent 27 =i  prefers the allocation chosen according to the profile of the public 
opinions to the allocation that maximizes agent s'1  utility. Since 27 =i , Mm ~7 ∈ , 

ωω =)(~ 7m , agent 3 is the single deviant from )(~ 7mω , and 
))(~),(~(),( 7

2
7

1
7

2,3
7

1,3 mmmm ωω≠ , it follows that 

ξωωω +=+ )),(ˆ()()),(( 22
7*7*

777 xumtmgu iii , and 

)),(()()),(( 112
6*6*

777 ωωω dumtmgu iii =+ . 
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These inequalities, together with inequality (2) for 2=j , imply inequality (1) for 7=k , 
and therefore, 7m  is reachable from 6m . 

In the mechanism *G , the fine that agent 2−j  pays is always transferred to agent j . 
Agents j  and 2−j  have the same neighbor, i.e., agent 1−j , and announce opinions 
about this agent’s utility index. This property is crucial in showing that the message 
profile can move from the set MM ~/  to the set M~ . 

Note 38 =i , Mm ~8 ∈ , )(*8 ωµ=m , 
)),(ˆ()()),(( 33

8*8*
888 ωωω xumtmgu iii =+ , and 

ξωωω −=+ )),(ˆ()()),(( 33
7*7*

888 xumtmgu iii . 

These imply inequality (1) for 8=k , and therefore, 8m  is reachable from 7m . 
From these observations, we have proved that )(*8 ωµ=m  is reachable from m . 
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3.4. Discussions 
 

We will show below that when there exist four or more agent, the local direct 
mechanism *G  cannot virtually implement a social choice function x  in terms of either 
Nash equilibrium or undominated Nash equilibrium. Fix Ω∈ω  arbitrarily. Assume 

)()( 1ωω dx ≠ . 
First, consider a message profile Mm ∈  satisfying that 111 ω=m , and for every 

}1/{Ni ∈ , there exists }2,...,2{ −+∈ iij  such that 

jjjjjjjj mmmm ,1,1,,1 −+− ≠≠≠ . 

Note that m  is a Nash equilibrium in ),( * ωG , and )()( 1
* ωdmg = )(ωx≠ . This implies 

that *G  cannot virtually implement x  in terms of Nash equilibrium. 
Next, for every Ni ∈ , consider a message ii Mm ∈  satisfying that iiim ω=, . Choose 

ii Mm −− ∈  satisfying that 
))(~),(~),(~( 111 mmmm jjjj +−−= ωωω  for all ij ≠ , and 
))(~),(~(),( 111,1, mmmm iiiiii +−+− = ωω . 

Note that 

)(* mg )()1( ωε ′−= x })()({ ∑
≠

′++
ij

jjiin
ωαωαε , 0)(* =mti , 

and for every ii mm ≠′ , 

)/(*
immg ′ )()1( ωε ′−= x })()({ , ∑

≠
′+′+

ij
jjiii m

n
ωααε , 

ξ−=′)/(*
ii mmt  if ))(~),(~(),( 111,1, mmmm iiiiii +−+− ≠′′ ωω , 

and 
0)/(* =′ii mmt  if ))(~),(~(),( 111,1, mmmm iiiiii +−+− =′′ ωω . 

Hence, the definition of iα  implies that im  is the strict best reply to im− , and therefore, 

im  is undominated in ),( * ωG . From the above arguments, we have shown that every 
message profile Mm ∈′  satisfying that iiim ω=,  and iiiiiiii mmmm ,1,1,,1 −+− ≠≠≠  for all 

Ni ∈ , is an undominated Nash equilibrium in ),( * ωG . Hence, it follows that *G  cannot 
virtually implement x  in terms of undominated Nash equilibrium. 

We will also show that when there exist five or more agents, *G  can virtually 
implement x  in terms of stability, simply by using sequences K

k
kk mi 1),( =  satisfying that 

k
i km  is undominated for every },...,1{ Kk ∈ . Assume that ε  is so small relative to ξ  that 

for every Ni ∈ , every ii Ω∈ω , and every ii Ω∈′ω , 

ξωωαωωαε <′− )}),(()),(({ iiiiiiii uu
n

. 

Fix Ni ∈ , ii Ω∈ω , and ii Mm ∈  arbitrarily. Choose ii Mm −− ∈  satisfying that 
Mm ~∈ , 

))(~),(~),(~( 11 mmmm jjjj +−= ωωω  for all 2−≠ ij , 
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)(~
33,2 mm iii −−− ≠ ω , and ))(~),(~(),( 121,22,2 mmmm iiiiii −−−−−− = ωω . 

Since 5≥n , it follows }1,,1{3 +−∉− iiii , and therefore, 
Mmm i
~/ ∈′  for all ii Mm ∈′ . 

Hence, 

)(* mg ))(~()1( mx ωε−= ∑
∈

+
Nj

jj m
n

))(~(ωαε , ξ=)(* mti , 

whereas for every ii mm ≠′ , 

)(* mg ))(~()1( mx ωε−= }))(~()({ , ∑
≠

+′+
ij

jjiii mm
n

ωααε , and 0)(* =mti . 

These equalities, together with the definition of jα , imply that 
)/()),/(()()),(( iiiiiiii mmtmmgumtmgu kk ′+′>+ ωω  for all ii mm ≠′ , 

and therefore, im  is the strict best reply to im− . Hence, we have shown that every 
message is undominated, and therefore, *G  can virtually implement x  by using 
sequences K

k
kk mi 1),( =  satisfying that k

i km  is undominated for every },...,1{ Kk ∈ . 
 

3.5. Weak Stability 
 

A message profile Mm ∈′  is said to be weakly reachable from another message 
profile Mm ∈  in ( , )G ω  if there exists a sequence of message profiles KK

k
k Mm ∈=1)(  

such that mmK ′= , and for every },...,1{ Kk ∈ , and every Ni ∈ , 
)()),(()/()),/(( 1111 −−−− +≥+ k

ii
k

i
k
i

k
ii

k
i

k
i mtmgummtmmgu ωω ,             (5) 

where mm =0 . Hence, m′  is weakly reachable from m  if and only if m  can be switched 
to m′  through finite steps, in each step of which, multiple agents simultaneously change 
their messages to messages better than or indifferent to the messages announced in the 
last step, provided that each agent expects the others to continue announcing the same 
messages. Note that if m′  is reachable from m , m′  is weakly reachable from m . 

In each step, every agent who can change her message may misperceive what the 
others will announce. She expects the others to continue announcing the same messages, 
but there may exist other agents who will also change their messages at the same time. In 
contrast to weak reachability, reachability guarantees that an agent who can change her 
message will correctly perceive the others’ announcements because there exist no other 
agents who can change their messages at the same time. 
 
Definition 2: A message profile Mm ∈  is weakly stable in ( , )G ω  if m  is weakly 
reachable from every ′ ≠m m  in ( , )G ω  and no ′ ≠m m  is weakly reachable from m  in 
( , )G ω . 
 

Note that m  is weakly stable if and only if m  is the unique strict Nash equilibrium 
and there exists no other absorbing limit cycle in terms of weak reachability. Note that if 
m  is stable, it is weakly stable. The following theorem states that, without requiring the 
existence of 1≠j  satisfying inequality (2), every social choice function is virtually 
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implementable in terms of weak stability by using ),( ** µG . 
 
Theorem 3: For every Ω∈ω , )(* ωµ  is weakly stable in ),( * ωG . 

 
Consider Example I and think about Mm ~5 ∉ . Each agent makes the honest 

announcement about her own utility index, and she and her two neighbors announce 
different opinions about her own utility index. Even if each agent Ni ∈  unilaterally 
changes her message into the honest message, the resultant allocation never changes. This 
implies that )(* ωµ  is weakly reachable from 5m  through the single step that all agents 
simultaneously change their messages into the truthful messages. In this step we do not 
require the existence 1≠j  satisfying inequality (2). For the detailed proof, see Appendix 
B. 
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4. BR-Stable Implementation 
 

4.1. BR-Stability 
 

A message profile Mm ∈′  is said to be BR-reachable from another message profile 
m M∈  in ),( ωG  if there exists K

k
kk mi 1),( =  connected with m  such that mmK ′= , and, 

for every k K= 1,..., , and every kk ii Mm ∈′′ , 

)/()),/(()()),(( kkkkkkkk i
k

iii
k

i
k

ii
k

i mmtmmgumtmgu ′′+′′≥+ ωω               (6) 
Note that ′m  is BR-reachable from m  if and only if m  can be switched to ′m  through 
finite steps, in each step of which, an agent unilaterally changes her message to the best 
reply to the profile in the last step. If ′m  is BR-reachable from m , ′m  is reachable from 
m . 
 
Definition 3: A message profile m M∈  is BR-stable in ( , )G ω  if m  is BR-reachable 
from every ′ ≠m m  in ( , )G ω  and no ′ ≠m m  is BR-reachable from m  in ( , )G ω . 
 

Note that m  is BR-stable if and only if m  is the unique strict Nash equilibrium and 
there exists no other absorbing limit cycle in terms of BR-reachability in that there exists 
no nonempty subset MM ⊂  such that }{mM ≠ , every pair of message profiles in M  
are mutually BR-reachable, and there exists no Mm ∉′  that is BR-reachable from some 

Mm ∈′′ . If m  is BR-stable, it is stable. 
A stable message profile is not necessarily BR-stable. The following proposition 

provides a sufficient condition on Ω∈ω  under which the truthful message profile 
)(* ωµ  is stable but not BR-stable in the game ),( * ωG . 

 
Proposition 4: Fix Ω∈ω  arbitrarily. Suppose that for every Ni ∈ , and every Ω∈′ω , 

)),(()),(( iiii xuxu ωωωω >′  if jj ωω =′  for all }1,,1{ +−∉ iiij  and 
 ),,(),,( 1111 +−+− ≠′′′ iiiiii ωωωωωω . 

Then, for every sufficiently small 0>ε , and every sufficiently small 0>ξ , the truthful 
message profile )(* ωµ  is not BR-stable in ),( * ωG . 
 

Consider Example I and think about Mm ~7 ∈ . Let ),,( 3212 ωωω′=m . Note that 
)(ˆ)( 7* ωxmg = , ξ=)( 7*

2 mt , 

)}()({),,(ˆ)/( 11113212
7* ωαωαεωωω ′−+′=

n
xmmg , and 0)/( 2

7*
2 =mmt . 

Suppose that the supposition of Proposition 4 holds. Choose 0>ξ  so close to zero that 
)),/(( 22

7*
2 ωmmgu )/( 2

7*
2 mmt+

))},()({),,(ˆ( 211113212 ωωαωαεωωω ′−+′=
n

xu  

ξωω +> )),(( 22 xu )),(( 2
7*

2 ωmgu= )( 7*
2 mt+ . 

Then, agent 2 prefers 2m  to )(*
2

7
2 ωµ=m  when the others announce 6

2−m , and therefore, 
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)(*
2

7
2 ωµ=m  is not the best reply to 6m . Hence, inequalities (5) do not hold for 7=k , and 

therefore, )(* ωµ  is not BR-reachable from m  by the sequence 8
1),( =k

kk mi . For the 
detailed proof, see Appendix B. 
 

4.2. Possibility Theorem 
 

We specify a mechanism ),,( +++ = tgMG  named a modified local direct mechanism 
as follows. Let 

}1,0{11 ×Ω×Ω×Ω= +− iiiiM  for all i N∈ . 
We denote iiiiiiiiii Mmmmmm ∈= ++− ),,,( 2,1,,1,  where 

mi j j, ∈Ω  for all }1,,1{ +−∈ iiij , and }1,0{2, ∈+iim . 
Each agent announces not only an opinion about her and her two neighbors’ utility 
indices but also either integer “0” or integer “1”. The honest message rule in +G  is 
denoted by Nii ∈

++ = )(µµ , where for every Ni ∈ , and every Ω∈ω , 
)0,,,()( 11 +−

+ = iiii ωωωωµ . 
Each agent never announces integer “1” as long as she announces the honest message. We 
redefine MM ⊂~  by the set of message profiles m  satisfying that there exists the profile 
of the public opinions Ω∈)(~ mω  such that for every Ni ∈ , 

)(~
, mm iij ω=  for all }1,,1{ +−∈ iiij  if 1,2 =− iim , 

and 
)(~

, mm iij ω=  for at least two agents }1,,1{ +−∈ iiij  if 0,2 =− iim . 

The definition of the public opinions )(~ miω  for agent i  in +G  differs from that in *G  in 
that it must be announced by all three agents whenever agent 2−i  announces integer “1”.  

Given this modification, we specify +g  by 

∑
∈

+ +−=
Ni

iii m
n

mxmg )())(~()1()( ,αεωε  if Mm ~∈ , 

)()( 1,1mdmg =+  if Mm ~∉ , 

and specify +t  by 
ξ−=+ )(mti  and ξ=+

+ )(3 mti  if Mm ~∈ , 
)0),(~),(~(),,( 112,1,1, mmmmm iiiiiiii +−++− ≠ ωω , 

and )0),(~),(~),(~( 11 mmmm iiii +′′−′′ = ωωω  for all ii ≠′ , 
and 

0)( =+ mti  and 0)(3 =+
+ mti  otherwise. 

Each agent Ni ∈  is fined if and only if there exists the profile of the public opinions 
)(~ mω , she is the single deviant from )(~ mω  and either announces integer “1” or does not 

announce the public opinions for her neighbors. If she is fined, only agent 3+i  is 
rewarded. Note that 

)(ˆ))(( ωωµ xg =++ , and 0))(( =++ ωµit  for all Ni ∈ . 
Hence, the mechanism enforces the allocation assigned by x̂  to the true preference 
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profile when agents announce the honest message profile. The following theorem 
provides a sufficient condition under which ),( ++ µG  implements x̂  in terms of 
BR-stability. 
 
Theorem 5: Suppose that 4≥n . For every Ω∈ω , if there exists 1≠j  such that 
inequality (2) holds, then, )(ωµ+  is BR-stable in ),( ω+G . 

 
Hence, given 4≥n , a social choice function x  is virtually implementable in terms of 

BR-stability by ),( ++ µG  under the same condition as in terms of stability via modified 
local direct mechanisms. The following corollary is straightforward from Theorem 5. 
 
Corollary 6: For every Ω∈ω , if 4≥n  and there exists 1≠j  satisfying inequality (3), 
then, it holds, irrespective of 0>ξ , that )(ωµ+  is BR-stable in ),( ω+G . 
 

Hence, given 4≥n , irrespective of the upper bound of the amount of fine 0>ξ , a 
social choice function x  is virtually implementable in terms of BR-stability via modified 
local direct mechanisms under the same condition as in terms of stability via local direct 
mechanisms. 

The complete proof of Theorem 5 will be provided in Appendix C. The next 
subsection provides an example for understanding the logical core of the proof. 

 
4.3. Example II 

 
This subsection assumes that }4,3,2,1{=N , and that the set of utility indices for each 

agent Ni ∈  consists of three distinct elements. Let },,{ iiii ωωω ′′′=Ω . Suppose that 
),,( 321 ωωωω =  is the true preference profile, and that agent 2=j  satisfies inequality 

(2). Let a message profile Mm ~∈  be specified by 
)0,,,( 11 +− ′′′= iiiim ωωω  for all 3,2,1=i . 

Note that the profile of the public opinions is given by 
ωωωωωω ≠′′′=′= ),,()(~

321m . 
Hence, the profile of the public opinions is different from the true preference profile. We 
will show that the honest message profile )(ωµ+  is BR-reachable from m  in ),( ω+G . 

We specify 9
1),( =k

kk mi , connected with m , by 
21 =i , )0,,,( 321

1
2 ωωω ′′=m , 12 =i , )1,,,( 214

2
1 ωωω ′′′′=m , 

43 =i , )1,,,( 143
3
4 ωωω ′′′′=m , 34 =i , )1,,,( 432

4
3 ωωω ′′=m , 

25 =i , )1,,,( 321
5
2 ωωω ′′=m , 46 =i , )0,,,( 143

6
4 ωωω=m , 

17 =i , )0,,,( 214
7
1 ωωω=m , 28 =i , )0,,,( 321

8
2 ωωω=m , 

39 =i , and )0,,,( 432
9
3 ωωω=m . 

Note )(9 ωµ +=m . We can show that 1m  is BR-reachable from m , because the 
virtualness provides each agent with the incentive to make the honest announcement 
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about her own utility index. Note that for every 22 Mm ∈′ , 
Mmm ~/ 2

1 ∈′ , ωω ′=′ )/(~
2

1 mm , 

)/()),/(( 2
1

222
1

2 mmtmmgu ′+′ ++ ω ))},()({
4

)(ˆ( 2222,222 ωωααεω ′−+′≤ mxu , 

and 

))},()({
4

)(ˆ()()),(( 222222
1

22
1

2 ωωαωαεωω ′−+′=+ ++ xumtmgu . 

Hence, it follows from 21 =i  and the definition of )(2 ⋅α  that for every 22 Mm ∈′ , 
)()),(( 1

22
1

2 mtmgu ++ +ω )/()),/(( 2
1

222
1

2 mmtmmgu ′+′≥ ++ ω , 
i.e., inequalities (6) hold for 1=k , and therefore, 1m  is BR-reachable from m . 

We can show that 2m  is BR-reachable from 1m , because agent 1 prefers the 
allocation that maximizes her utility to the allocation chosen according to the profile of 
the public opinions. Note Mm ~2 ∉ , 1

2
1,1 ω=m , and 0)/( 1

2
1 =+ mmt  for all 11 Mm ∈ . Hence, 

for every 11 Mm ∈ , 
)),(()()),(( 111

1
11

2
1 ωωω dumtmgu =+ ++  

)/()),/(()),/(( 1
1

111
2

111
2

1 mmtmmgummgu +++ +=≥ ωω , 
which, together with 12 =i , implies inequalities (6) for 2=k , and therefore, 2m  is 
BR-reachable from 1m . 

We can show, as the key heuristic of the paper, that 7m  is BR-reachable from 2m , 
because whichever message an agent announces, the resultant allocation never changes. 
Note that for every 44 Mm ∈ , Mmm ~/ 4

3 ∉ , and therefore, 
)/()),/(( 4

3*
444

3
4 mmtmmgu ++ ω )),(( 414 ωωdu= . 

This, together with 43 =i , implies inequalities (6) for 3=k  with strict equality, and 
therefore, 3m  is BR-reachable from 2m . In the same way, 4m , 5m , 6m , and 7m  are 
BR-reachable from 3m , 4m , 5m , and 6m , respectively. 

For every }7,...,3{∈k , every message for player ki  is the best reply to km . For every 
}6,...,3{∈k , every agent is indifferent among all her messages. Moreover, for every 
}7,...,2{∈k , the message profile km  is a Nash equilibrium in ),( ω+G . 

We can show that 8m  is BR-reachable from 7m , because inequality (2) for 2=j  
implies that agent 28 =i  prefers the allocation chosen according to the profile of the 
public opinions to the allocation that maximizes agent 1’s utility. Note that Mm ~8 ∈ , 

ωω =)(~ 8m , agent 3  is the single deviant from )(ωµ+ , and )0,,(),,( 42
7

1,3
7

4,3
7

2,3 ωω≠mmm . 

Hence, it follows that ξ=−= ++ )()( 8
3

8
2 mtmt , and therefore, 

ξωωω +=+ ++ )),(ˆ()()),(( 22
8

22
8

2 xumtmgu . 
Note that for every )(22 ωµ +≠m , 

)/()),/(( 2
8

222
8

2 mmtmmgu ++ +ω )),(( 212 ωωdu=  if Mmm ~/ 2
8 ∉ , 

and 

)/()),/(( 2
8

222
8

2 mmtmmgu ++ +ω ))},()({
4

)(ˆ( 2222,222 ωωααεω −+= mxu  
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if 
Mmm ~/ 2

8 ∈ . 
These inequalities, together with 28 =i  and inequality (2) for 2=j , imply inequalities 
(6) for 8=k , and therefore, 8m  is BR-reachable from 7m . 

In the modified local direct mechanism +G  the fine paid by agent 3−j  is always 
transferred to agent j . Agent j  announces her opinion about agent sj '1−  utility index. 
Agent 3−j  does not announce her opinion about agent sj '1−  utility index, but the 
announcement of either integer “0” or integer “1” by agent 3−j  influences how to 
determine the public opinion for agent 1−j . This property is crucial in showing that the 
message profile can move from the set MM ~/  to the set M~  through the agent sj'  
best-reply behavior. 

Finally, note 39 =i , Mm ~9 ∈ , )(9 ωµ +=m , and therefore, 
)),(ˆ()()),(( 33

9
33

9
3 ωωω xumtmgu =+ ++ , 

whereas, for every 33 Mm ∈ , 
)),(ˆ()/()),/(( 333

9
333

9
3 ωωω xummtmmgu ≤+ ++ . 

Hence, inequalities (6) hold for 9=k , i.e., )(9 ωµ +=m  is BR-reachable from 8m . 
From these observations, we have proved that )(ωµ+  is BR-reachable from m . 
 



 22 

4.4. Direct Mechanisms 
 

This subsection shows that not only modified local direct mechanisms but also direct 
mechanisms virtually implement x  in terms of BR-stability. Suppose 4≥n , and 4≥Ωi  

for all Ni ∈ . Specify a mechanism ),,( ****** tgMG =  as follows. Let niM Ω×⋅⋅⋅×Ω= 1  
for all i N∈ . We denote iniii Mmmm ∈= ),...,( ,1,  where mi j j, ∈Ω  for all Nj ∈ . Each 
agent announces opinions about all agents’ utility indices. The honest message rule in 

**G  is denoted by Nii ∈= )( **** µµ  where ωωµ =)(*
i  for all Ω∈ω . There are no slack 

messages in **G , but +Ω>Ω ii
**  for all Ni ∈ , i.e., the size of the set of message profiles 

in **G  is larger than in +G .  
We redefine MM ⊂~  by the set of message profiles m  satisfying that there exists the 

profile of the public opinions Ω∈)(~ mω  such that for every Ni ∈ , 
)(~

, mm iij ω=  for 1−n  or more agents.9 

We specify **g  by 

∑
∈

+−=
Ni

iii m
n

mxmg )())(~()1()( ,
** αεωε  if Mm ~∈ , 

)()( 1,1
** mdmg =  if Mm ~∉ , 

and, we specify **t  by 
ξ−=)(** mti  and ξ=+ )(**

3 mti  if Mm ~∈ , )(~
, mm iii −− ≠ ω , and )(~ mmi ω=′  

for 
all ii ≠′ , 

and 
0)(** =mti  and 0)(**

3 =+ mti  otherwise. 
Note that 

)(ˆ))(( **** ωωµ xg = , and 0))(( **** =ωµit  for all Ni ∈ . 
The following theorem provides a sufficient condition under which ),( **** µG  
implements x̂  in terms of BR-stability. 
 
Theorem 7: Suppose that 4≥n , and 4≥Ωi  for all Ni ∈ . For every Ω∈ω , if there 
exists 1≠j  such that inequality (2) holds, then, )(** ωµ  is BR-stable in ),( ** ωG . 
 
Proof: See Appendix D. 

 
Hence, given 4≥n  and 4≥Ωi  for all Ni ∈ , a social choice function x  is virtually 

implementable in terms of BR-stability by ),( **** µG  under the same condition as by 
),( ++ µG . The following corollary is straightforward from Theorem 7. 

 

                                                 
9 In **G , the public opinions are not determined according to either the majority rule or the unanimity rule. 
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Corollary 8: For every Ω∈ω , if 4≥n , 4≥Ωi  for all Ni ∈ , and there exists 1≠j  
satisfying inequality (3), then, it holds irrespective of 0>ξ  that )(** ωµ  is BR-stable in 

),( ** ωG . 
 

Hence, given 4≥n  and 4≥Ωi  for all Ni ∈ , irrespective of the upper bound of the 
amount of fine 0>ξ , a social choice function x  is virtually implementable in terms of 
BR-stability by ),( **** µG  under the same condition as ),( ++ µG . 

 
4.5. Discussions 

 
In the same way as local direct mechanisms, it follows that when 4≥n , either 

modified local direct mechanisms or direct mechanisms cannot virtually implement a 
social choice function x  in terms of either Nash equilibrium or undominated Nash 
equilibrium. In the same way as local direct mechanisms, it follows that when 5≥n , both 
direct mechanisms and direct mechanisms can virtually implement x  in terms of 
BR-stability by using sequences K

k
kk mi 1),( =  satisfying that k

i km  is undominated for every 
},...,1{ Kk ∈ . 

Either integer mechanisms or modulo mechanisms cannot virtually implement a 
social choice function in terms of BR-stability. In integer mechanisms, the wanted 
message profile is never BR-reachable from every message profile triggering off the 
integer game. In modulo mechanisms, the set of all message profiles triggering off the 
modulo game is an absorbing limit cycle in terms of BR-stability. On the other hand, the 
Abreu-Matsushima mechanisms can virtually implement it in terms of BR-stability. 

We can construct other mechanisms that virtually implement a social choice function 
in terms of BR-stability. Assume 5≥n . Consider a class of mechanisms in which each 
agent Ni ∈  announces about her own and her four neighbors’ utility indices, i.e., about 

),...,( 22 +− ii ωω . We can construct a mechanism within this class that, together with the 
associated honest message rule, implements the virtual social choice function x̂  in terms 
of BR-stability, provided that there exists 1≠j  satisfying inequality (2). Hence, for every 
social choice function with the existence of 1≠j  satisfying inequality (2), there exist 
mechanisms that virtually implement it in terms of BR-stability such that there exist no 
slack messages, the size of the set of message profiles is finite and constant with respect to 
the number of agents as well as the upper bound of fine. 
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4.6. Weak BR-Stability 
 

A message profile ′ ∈m M  is said to be weakly BR-reachable from another message 
profile m M∈  in ),( ωG  if there exists a sequence of message profiles K

k
km 1)( =  such that 

mmK ′= , and for every k K= 1,..., , and every Ni ∈ , either 1−= k
i

k
i mm , or 

)/()),/(()()),(( i
k

iii
k

i
k

ii
k

i mmtmmgumtmgu ′′+′′≥+ ωω  for all ii Mm ∈′′ ,   
where mm =0 . Hence, ′m  is weakly BR-reachable from m  if and only if m  can be 
switched to ′m  through finite steps, in each step of which, multiple agents 
simultaneously change their messages to their best reply to the message profile in the last 
step. 
 
Definition 4: A message profile m M∈  is weakly BR-stable in ( , )G ω  if m  is weakly 
BR-reachable from every ′ ≠m m  in ( , )G ω  and no ′ ≠m m  is not weakly BR-reachable 
from m  in ( , )G ω . 
 

Note that m  is weakly BR-stable if and only if m  is the unique strict Nash 
equilibrium and there exists no other absorbing limit cycle in terms of weak 
BR-reachability. Note that if m  is BR-stable, it is weakly BR-stable. The following 
theorem states that without requiring the existence of 1≠j  satisfying inequality (2), 
every social choice function x  is virtually implementable in terms of weak BR-stability 
by using ),( ++ µG . 
 
Theorem 9: If 4≥n , then, for every Ω∈ω , )(ωµ+  is weakly BR-stable in ),( ω+G . 
 

Consider Example II and think about Mm ~5 ∉ . Each agent Ni ∈  makes the honest 
announcement about her own utility index, and she and her two neighbors announce 
different opinions about her own utility index. She also announces 15

2, =+iim , and 
therefore, the public opinion for agent 2+i  must be announced by all relevant agents. 
Even if each agent Ni ∈  unilaterally changes her message into any message, the resultant 
allocation never changes. Hence, )(ωµ +

i  is the best reply to 5m , and therefore, )(ωµ +  is 
weakly BR-reachable from 5m  through the single step that all agents simultaneously 
change their messages into the honest messages. In this step we do not require the 
existence of 1≠j  satisfying inequality (2). We do not use this assumption in the steps 
that 5m  is BR-reachable from m  also. Hence, we have shown without requiring the 
existence of 1≠j  satisfying inequality (2) that )(* ωµ  is weakly BR-reachable from m . 
For the detailed proof, see Appendix B. In the same way, we can show that given that 

4≥n , for every Ω∈ω , )(** ωµ  is weakly BR-stable in ),( ** ωG . We can show the same 
result for the mechanism in Subsection 4.5. Hence, given that 4≥n , every social choice 
function can be virtually implemented by either +G , **G  or the mechanism in Subsection 
4.5, together with their respective honest message rules. 
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5. Adaptive Dynamics 
 
This section characterizes stability and its variants from the dynamical viewpoint. Fix 

a mechanism G  and a preference profile Ω∈ω  arbitrarily. Consider situations in which 
agents are faced with the same game ),( ωG  infinitely many times. At the end of every 
period ,...2,1=t , all agents can observe their announced message profile Mtm ∈)( . 
Agents’ behavior is described by a naïve model of adaptive dynamics defined by 

)),0(( pm , where Mm ∈)0( , Niipp ∈= )( , Mmii mpp ∈⋅= ))|(( , and ]1,0[:)|( →⋅ ii Mmp  
is a conditional probability function on iM . Two different scenarios, i.e., alternating play 
and simultaneous play, are provided. 
 

5.1. Alternating Play 
 
This subsection assumes that at the beginning of each period, at most one agent can 

change the announcement. For every 1≥t , we define Nti ∈)(  by 
ivnt +=  for some nonnegative integer 0≥v , 

that is, 1)1( =i , 2)2( =i ,…, 1)1( =+ni ,…, and so on.10 In period 1, all agents except 
agent 1)1( =i  announce the message profile Mm ∈)0( . In every period 1≥t , agent )(ti  
announces any message )()( titi Mm ∈  with probability ))1(|( )()( −tmmp titi , whereas any 
other agent )(tii ≠  announces the message announced in the last period, i.e., )1( −tmi . 
 
Definition 5: A message profile Mm ∈  is the long-run behavior in G  with alternating 
play with respect to Niipp ∈= )( , if for every Mm ∈)0( , and every ]1,0(∈λ , there exists 
a positive integer T̂  such that on the assumption of alternating play, at least with 
probability λ−1 , the model )),0(( pm  induces agents to announce mtm =)(  in every 
period Tt ˆ≥ . 
 

Note that m  is the long-run behavior if and only if, irrespective of which message 
profile agents announce in period 1, agents come to continue announcing m  in the long 
run. We introduce a condition on ),( pω  as follows. 
 
Condition 1: For every Ni ∈ , ii Mm ∈ , and every Mm ∈′ , 

0)|( >′mmp ii  if and only if 
)/()),/(( iiiii mmtmmgu ′+′ ω )()),(( mtmgu iii ′+′≥ ω . 

 
Condition 1 implies that in every period 1≥t , agent )(ti  announces any message 

with a positive probability if and only if this message is better than or indifferent to 

                                                 
10 The specificity of ∞

=1))(( tti  may not be necessary. All we need is that for every Ni ∈ , there exists an 

infinite increasing sequence of periods ∞
=1)),(( ssit  such that isiti =)),((  for all ,...2,1=s , i.e., each 

agent Ni ∈  has infinitely many chances to change her message. 
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)1()( −tm ti . The following proposition states that Condition 1 is a sufficient condition 
under which the stable message profile is characterized by the long-run behavior in G  
with alternating play. 
 
Proposition 10: Suppose that ),( pω  satisfies Condition 1. Then, a message profile 

Mm ∈  is stable in ),( ωG  if and only if it is the long-run behavior in G  with alternating 
play with respect to p . 
 
Proof: See Appendix E. 
 

We introduce another condition on ),( pω  as follows. 
 
Condition 2: For every Ni ∈ , ii Mm ∈ , and every Mm ∈′ , 

0)|( >′mmp ii  if and only if either ii mm ′=  or  )/()),/(( iiiii mmtmmgu ′+′ ω  
)/()),/(( iiiii mmtmmgu ′′′+′′′≥ ω  for all ii Mm ∈′′ , 

 
Condition 2 implies that in every period 1≥t , agent )(ti  announces any message 

with positive probability if and only if this message is either equal to )1()( −tm ti  or the 
best reply to )1( −tm . The following proposition states that Condition 2 is a sufficient 
condition under which the BR-stable message profile is characterized by the long-run 
behavior in G  with alternating play. We can prove the proposition in the same way as 
Proposition 10, by replacing stability and inequality (1) by BR-stability and inequalities 
(6), respectively. 

 
Proposition 11: Suppose that ),( pω  satisfies Condition 2. Then, a message profile 

Mm ∈  is BR-stable in ),( ωG  if and only if it is the long-run behavior in G  with 
alternating play with respect to p . 
 

5.2. Simultaneous Play 
 
This subsection assumes that at the beginning of each period, two or more agents may 

simultaneously change their announcements with positive probability. In every period 
1≥t , each agent Ni ∈  announces any message ii Mm ∈  with probability 

))1(|( −tmmp ii . 
 
Definition 6: A message profile Mm ∈  is the long-run behavior in G  with 
simultaneous play with respect to Niipp ∈= )(  if for every Mm ∈)0( , and every ]1,0(∈λ , 
there exists a positive integer T̂  such that on the assumption of simultaneous play, at least 
with probability λ−1 , the model )),1(( pm  induces agents to announce mtm =)(  in 
every period Tt ˆ≥ . 
 

The following proposition states that Condition 1 is a sufficient condition under 
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which the weakly stable message profile is characterized by the long-run behavior in G  
with simultaneous play. 
 
Proposition 12: Suppose that ),( pω  satisfies Condition 1. Then, a message profile 

Mm ∈  is weakly stable in ),( ωG  if and only if it is the long-run behavior in G  with 
simultaneous play with respect to p . 
 
Proof: See Appendix E. 
 

The following proposition states that Condition 2 is a sufficient condition under 
which the weakly BR-stable message profile is characterized by the long-run behavior in 
G  with simultaneous play. We can prove the proposition in the same way as Proposition 
12, by replacing weak stability and inequalities (5) by weak BR-stability and inequalities 
(8), respectively. 

 
Proposition 13: Suppose that ),( pω  satisfies Condition 2. Then, a message profile 

Mm ∈  is weakly BR-stable in ),( ωG  if and only if it is the long-run behavior in G  with 
simultaneous play with respect to p . 
 

5.3. Discussions 
 

We have assumed that each agent always has static expectations on the other agents’ 
announcements. We can provide the same results when we replace this assumption by a 
weaker assumption that each agent has static expectations only if the others have 
announced the same messages for a long time. As a generalization of )),0(( pm , we 
define a model of adaptive dynamics by )),0(( qm  where Niiqq ∈= )( , h  denotes a partial 
history of message profiles, Mmii hqq ∈⋅= ))|(( , and ]1,0[:)|( →⋅ ii Mhq  is a conditional 
probability function on iM . Similarly we define the long-run behaviors with respect to q . 
We introduce two conditions on ),( qω  as follows. 
 
 Condition 3: There exist a positive integer 0>T  and a positive real number 0>ρ  such 
that for every Ni ∈ , every ii Mm ∈ , every Tt ≥ , and every tmh 1))(( == ττ , 

ρ≥)|( hmq ii  if 0)|( >hmq ii , 
0)|( >hmq ii  if ii mtm =)( , 

and if there exists Mm ∈′  such that mm ′=)(τ  for all },...,1{ tTt +−∈τ , then 
0)|( >hmq ii  if and only if )/()),/(( iiiii mmtmmgu ′+′ ω )()),(( mtmgu iii ′+′≥ ω . 

 
Condition 4: There exist a positive integer 0>T  and a positive real number 0>ρ  such 
that for every Ni ∈ , every ii Mm ∈ , every Tt ≥ , and every tmh 1))(( == ττ , 

ρ≥)|( hmq ii  if 0)|( >hmq ii , 
0)|( >hmq ii  if ii mtm =)( , 

and if there exists Mm ∈′  such that ii mm ≠′  and mm ′=)(τ  for all },...,1{ tTt +−∈τ , 
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then 
0)|( >hmq ii  if )/()),/(( iiiii mmtmmgu ′+′ ω  

)/()),/(( iiiii mmtmmgu ′′′+′′′≥ ω  for all ii Mm ∈′′ , 
and 

0)|( =hmq ii  if )/()),/(( iiiii mmtmmgu ′+′ ω )()),(( mtmgu iii ′+′< ω . 
 

Condition 3 holds if Condition 1 holds. Condition 4 holds if either Condition 2 or 
Condition 3 holds. Condition 4 is the weakest among these four conditions. 

 In the same way as in the “only if” part of Proposition 10, it follows that under 
Condition 3, the stable message profile is the long-run behavior with alternating play with 
respect to q . In the same way as in the “only if” part of Proposition 11, it follows that 
under Condition 4, the BR-stable message profile is the long-run behavior with 
alternating play with respect to q . In the same way as in the “only if” part of Proposition 
12, it follows that under Condition 3, the weakly stable message profile is the long-run 
behavior with simultaneous play with respect to q . In the same way as in the “only if” 
part of Proposition 13, it follows that under Condition 4, the weakly BR-stable message 
profile is the long-run behavior with simultaneous play with respect to q . Hence, it 
follows that under Condition 3, the stable message profile is the long-run behavior with 
respect to q . Under Condition 4, the BR-stable message profile is the long-run behavior 
with respect to q  irrespective of whether with alternating play or with simultaneous play. 
Both alternating play and simultaneous play may be even unnecessary for the long-run 
convergence to the stable, or BR-stable, message profile. All we have to require is that 
each player has infinitely many chances to change her message. 

From the above arguments, we can obtain the following convergence results. With the 
existence of 1≠j  satisfying inequality (2), the honest message profile )(* ωµ  is the 
long-run behavior in the local direct mechanism *G  under Condition 3 whenever each 
agent has infinitely many chances to change her message. Under Condition 3, )(* ωµ  is 
the long-run behavior in *G  with simultaneous play. With the existence of 1≠j  
satisfying inequality (2), the honest message profile )(ωµ +  is the long-run behavior in 
the modified local direct mechanism +G  under Condition 4 whenever each agent has 
infinitely many chances to change her message. Under Condition 4, )(ωµ +  is the 
long-run behavior in +G  with simultaneous play. The same results hold for the direct 
mechanism **G  and the mechanism in Subsection 4.5. 

In modulo mechanisms, under Condition 2, the wanted message profile is always the 
long-run behavior with simultaneous play because it is weakly BR-stable. However, in 
modulo mechanisms, under Condition 2, the wanted message profile is never the long-run 
behavior with alternating play because it is not BR-stable. In integer mechanisms, under 
Condition 2, the wanted message profile is always the long-run behavior with 
simultaneous play because it is weakly BR-stable. 

This point is related to Cabrales (1999), which retrieved the honor of integer 
mechanisms by showing that the wanted outcomes can be achieved by boundedly rational 
agents. However, in integer mechanisms, under Condition 2, the wanted message profile 
is never the long-run behavior with alternating play because it is not BR-stable. On the 
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other hand, in Abreu-Matsushima mechanisms, the wanted message profile is always the 
long-run behavior with respect to q  under Condition 4 irrespective of whether with 
alternating play or with simultaneous play, because it is BR-stable. Cabrales (1999) 
pointed out that Abreu-Matsushima mechanisms have an instability property in that if 
agents are allowed to announce even worse messages, there exists a trade-off between 
close implementability and stability of the wanted message profile. In the mechanisms 
studied in the present paper there exists no such trade-off. 

The mechanisms studied in the paper have a nice feature with respect to the speed of 
convergence. In the local direct mechanism *G , the honest message profile )(* ωµ  is 
always reachable from every message profile through at most 25 +n  steps. This number 
of steps does not depend on the upper bound of the amount of fine. The same property 
holds for BR-reachability in the modified local direct mechanism, in the direct 
mechanism, and also in the mechanism addressed in Subsection 4.5. In contrast, in 
Abreu-Matsushima mechanisms, the number of steps crucially depends on the upper 
bound of the amount of fine. Indeed, this number tends to infinity as the upper bound of 
the amount of fine approaches zero, which implies that it takes very long time to converge 
to the wanted outcome in Abreu-Matsushima mechanisms relative to the mechanisms in 
the paper. 
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6. Concluding Remarks 
 

This paper has investigated implementation of social choice functions in terms of 
stability and its variants. We have shown that with a minor restriction every social choice 
function is virtually implementable in terms of stability via local direct mechanisms, 
which are of particularly simple form. We have shown that it is virtually implementable in 
terms of BR-stability via slightly more complex but still very simple mechanisms such as 
modified local direct mechanisms and direct mechanisms. Moreover, if multiple players 
are allowed to simultaneously change their announcements, every social choice function 
is virtually implementable with no restrictions. 

The paper could be regarded as an early attempt to provide new ideas of designing 
mechanisms with bounded rationality. The results of the paper depend on the assumption 
that models of adaptive dynamics are naïve so that irrespective of the past history of play, 
each agent always chooses any best reply with positive probability. This naïve 
assumption might be inappropriate in some case when agents are more sophisticated so 
that they may learn not to announce a particular message even if it is a best reply. Hence, 
a further attempt might be needed to investigate other definitions of stability on the basis 
of more general and careful dynamic refinement of equilibrium. 

It is important to investigate stable implementation in the incomplete information 
environments. The paper depends on the assumption that an agent’s utility index is known 
to other agents. This assumption guarantees that a local direct mechanism and its variants 
have slack message profiles. The results rely on the existence of such slack message 
profiles. In contrast, in the incomplete information environments, direct mechanisms 
have no slack message profiles, because agents have no jointly possessed information. 
Hence, a question in the incomplete information environments would be what is the 
minimum requirement of adding slack messages to direct mechanisms. 
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Appendix A: Proof of Theorem 1 
 

Fix ω ∈Ω  arbitrarily. Lemma A-1 is based on the fact that the virtualness serves to 
provide each agent with the incentive to make the honest announcement about her own 
utility index. 

 
Lemma A-1: For every Mm ~∈ , if a message profile Mm ~∈′  is given by 

))(~,),(~( 11 mmm iiii +−=′ ωωω  for all Ni ∈ , 
then, Mm ~∈′  is reachable from m  in ),( * ωG . 
 
Proof: Note )(~)(~ mm ωω =′ . Consider n

k
kk mi 2

1),( =  connected with m  satisfying that for 
every nk ,...,1= , 

kik = , ))(~,),(~(
1,1

mmmm kkkkk iiii
k
i +−

= ωω , 
and, for every nnk 2,...,1+= , 

nkik −=  and ))(~,),(~( 11 mmm kkkk iii
k
i +−

= ωωω . 

Note mm n ′=2 . Note that for every nk 2,...,1= , 
)()( 1** −≥ k

i
k

i mtmt kk , 
for every nk ,...,1= , 

)()( ** mgmg k = ))(~()1( mx ωε−= ∑
∈

+
Ni

iii m
n

)( ,αε , 

and for every nnk 2,...,1+= , 

∑
≤

+−=
ki

ii
k

n
mxmg )())(~()1()(* ωαεωε ∑

>
+

ki
iii m

n
)( ,αε . 

Hence, it follows from the definition of )(⋅iα  that for every nk 2,...,1= , 
)()),(()()),(( 1*1*** −− +≥+ k

ii
k

i
k

ii
k

i mtmgumtmgu kkkkkk ωω , 
and therefore, m′  is reachable from m .                                                                 Q.E.D. 
 

Lemma A-2 is based on the fact that agent 1 becomes dictatorial when there does not 
exist the profile of the public opinions. 

 
Lemma A-2: For every Mm ~∈ , if 

))(~,),(~( 11 mmm iiii +−= ωωω  for all Ni ∈ , and 
)(~ mii ωω ≠  for some Ni ∈ , 

then, there exists Mm ~∉′  that is reachable from m  in ),( * ωG . 
 
Proof: Suppose )(~

22 mωω ≠ . Specify m′  by 

11,1 ω=′m , }),(~{ 222,1 ωω mm ∉′ , )(~
,1 ωωnnm =′ , and ii mm =′  for all 1≠i . 

Such an m′  exists because 32 ≥Ω . Since Mm ~∉′ , it follows that 

)),(()()),(( 111
*
11

*
1 ωωω dumtmgu =′+′  
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)),())(~()1(( 11 ωωαεωε ∑
∈

+−≥
Nj

jjn
mxu )()),(( *

11
*

1 mtmgu += ω , 

and therefore, m′  is reachable from m . By replacing 2 and n  by n  and 2, respectively, 
we can obtain the same result in the case of )(~ mnn ωω ≠ . 

Next, suppose )(~
22 mωω =  and )(~ mnn ωω = . Assume that agent 3 is not the single 

deviant from )(~ mω . Consider 2
1),( =k

kk mi  connected with m  satisfying that 
31 =i , 2

1
2,1 ω≠

i
m , ))(~,(),(

1
1

1,
1

, 111111 mmm
iiiiii ++

= ωω , 

12 =i , },{ 1
2,2

2
2, 12 ii

mm ω∉ , and )),(~(),( 222222 1
2

,
2

1, iiiiii
mmm ωω

−−
= . 

Such a sequence 2
1),( =k

kk mi  exists because 32 ≥Ω . Note Mm ~1 ∈  because )(~
22 mωω = , 

but note Mm ~2 ∉ . Hence, it follows that 

)()( *1* mgmg = ∑
∈

+−=
Nj

jjn
mx )())(~()1( ωαεωε , 0)( 1*

1 =mti , 

)()( 1
2* ωdmg = , and 0)( 2*

2 =mti . 
Hence, for each }2,1{∈k , 

)()),(()()),(( 1*1*** −− +≥+ k
ii

k
i

k
ii

k
i mtmgumtmgu kkkkkk ωω , 

and therefore, there exists Mm ~∉′  that is reachable from m . Next, assume that agent 3 is 
the single deviant from )(~ mω . Since agent 1−n  is not the single deviant from )(~ mω , we 
can obtain the same result by replacing 3 and 2 by 1−n  and n , respectively.      Q.E.D. 
 

Lemma A-3 is based on the key heuristic that for each agent, there exist a wide variety 
of messages such that whichever message she announces, the resultant allocation never 
changes. 
 
Lemma A-3: For every Mm ~∉ , there exists Mm ~∉′  that is reachable from m  in 

),( * ωG  such that for every Ni ∈ , 

iiim ω=′, , and iiiiiiii mmmm ,1,1,,1 −+− ′≠′≠′≠′ . 
 
Proof: Since Mm ~∉ , we can choose Ni ∈ˆ  satisfying that 

iiiiiiii mmmm ˆ,1ˆˆ,1ˆˆ,ˆˆ,1ˆ −+− ≠≠≠ . 

Consider n
k

kk mi 2
1),( =  that is connected with m  satisfying that for every nk ,...,1= , 
kik = , 

ii
k

ii kk mm ˆ,ˆ,
= , 

kkk i
k

ii
m ω=

,
 if iik ˆ≠ , 

},{ 1
1,211,

−
++++

∉ k
iii

k
ii kkkkk mm ω  if iik ˆ1 ≠+ , 

},{ 1
1,111,

−
−+−−

∉ k
iii

k
ii kkkkk mm ω  if iik ˆ1 ≠− , 

for every nnk 2,...,1+= , 
nkik −= , kkk i

k
ii

m ω=
,

, 

},{ 1
1,211,

−
++++

∉ k
iii

k
ii kkkkk mm ω  if iik ˆ1 =+ , 
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},{ 1
1,111,

−
−+−−

∉ k
iii

k
ii kkkkk mm ω  if iik ˆ1 =− , 

and 
n

ji
k

ji kk mm
,,

=  if ij ˆ≠ . 

Note that for every }2,...,1{ nk ∈ , 
Mmk ~∉ , 

for every 1ˆ,...,1 −+= ink , 
)()( 1,1

* mdmg k =  and 0)(* =k
i mt k , 

and, for every nink 2,...,ˆ+= , 
)()( 1

* ωdmg k =  and 0)(* =k
i mt k . 

Hence, for every nk 2,...,1= , 
)()),(()()),(( 1*1*** −− +≥+ k

ii
k

i
k

ii
k

i mtmgumtmgu kkkkkk ωω , 

and therefore, nm2  is reachable from m . Note that for every Ni ∈ , 
i

n
iim ω=2

,  and n
ii

n
ii

n
ii

n
ii mmmm 2

,1
2

,1
2
,

2
,1 −+− ≠≠≠ . 

Q.E.D. 
 

Lemma A-4 is based on the fact that there exists an agent 1≠j  satisfying inequality 
(2), together with the key heuristic of the paper. 
 
Lemma A-4: For every Mm ~∉ , if for every Ni ∈ , 

iiim ω=,  and iiiiiiii mmmm ,1,1,,1 −+− ≠≠≠ , 
then, there exists Mm ~∈′  that is reachable from m  in ),( * ωG  such that ωω =′)(~ m . 
 
Proof: Let 1≠j  be the agent satisfying inequality (2). Consider 1

1),( −
=

n
k

kk mi  that is 
connected with m  satisfying that 

),,( 11 +−
= kkkk iii

k
im ωωω  for all 1,...,1 −= nk , 

jkik +=  for all 3,...,1 −= nk , 
12 −=− jin , and jin =−1 . 

Note that for every 2,...,1 −= nk , Mmk ~∉ , 11,1 ω=km , 

)()( 1
* ωdmg k = , and 0)(* =k

i mt  for all Ni ∈ . 
Note that Mmn ~1 ∈− , ωω =− )(~ 1nm , and agent 2−j  is the single agent i  satisfying that 

))(~),(~),(~( 1
1

11
1

1 −
+

−−
−

− ≠ n
i

n
i

n
i

n
i mmmm ωωω . 

Note also that )(~ 1
1

1
1,2

−
−

−
−− ≠ n

j
n

jj mm ω . Hence, it follows that 

)(ˆ)( 1* ωxmg n =−  and ξ=−
− )( 1*

1
n

i mt n . 
These imply that for every 1,...,1 −= nk , 

)()),(()()),(( 1*1*** −− +≥+ k
ii

k
i

k
ii

k
i mtmgumtmgu kkkkkk ωω , 

and therefore, 1−nm  is reachable from m .                                                              Q.E.D. 
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By using these lemmata, we can show that )(* ωµ  is stable in ),( * ωG . For every 
Ni ∈ , and every )(* ωµiim ≠ , if iiim ω≠, , then 

)),(ˆ())(())),((( ****
iiiii xutgu ωωωµωωµ =+

))},()({)(ˆ( , iiiiiii m
n

xu ωωααεω −+>  

)/)(()),/)((( ****
iiiii mtmgu ωµωωµ +≥ , 

whereas, if iiim ω=, , then 

)),(ˆ())(())),((( ****
iiiii xutgu ωωωµωωµ =+ ξωω −> )),(ˆ( ii xu  

)/)(()),/)((( ****
iiiii mtmgu ωµωωµ += . 

Hence, )(* ωµ  is a strict Nash equilibrium in ),( * ωG . Lemma A-1 implies that if Mm ~∈  
and ωω =)(~ m , then )(* ωµ  is reachable from m . Lemmata A-3 and A-4 imply that if 

Mm ~∉ , then there exists Mm ~∈′  reachable from m  such that ωω =′)(~ m . Lemma A-2 
implies that if Mm ~∈  and ωω ≠)(~ m , then there exists Mm ~∉′  reachable from m . 
Hence, )(* ωµ  is reachable from every message profile, no other message profile is 
reachable from )(* ωµ  because it is a strict Nash equilibrium, and therefore, )(* ωµ  is 
stable in ),( * ωG . 
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Appendix B 
 
Proof of Theorem 3: Fix Ω∈ω  arbitrarily. Note that the proofs of Lemmata A-1, A-2, 
and A-3 do not depend on the existence of 1≠j  satisfying inequality (2). In the same 
way as in the proof of Theorem 1, )(* ωµ  is a strict Nash equilibrium in ),( * ωG . We will 
show that for every Mm ~∉ , if iiim ω=, , and iiiiiiii mmmm ,1,1,,1 −+− ≠≠≠  for all Ni ∈ , 

then )(* ωµ  is weakly reachable from m  in ),( * ωG . Note that for every Ni ∈ , 
Mm i
~)(/ * ∉ωµ , and therefore, 

))(/())),(/(( **** ωµωωµ iiiii mtmgu + )),(( 1 ii du ωω= . 
Hence, for every Ni ∈ , 

))(/())),(/(( **** ωµωωµ iiiii mtmgu + )()),(( ** mtmgu iii += ω , 
and therefore, )(* ωµ  is weakly reachable from m  in ),( * ωG . This property, together 
with Lemmata A-1, A-2, and A-3, implies that for every Mm ∈ , )(* ωµ  is weakly 
reachable from m . 

Q.E.D. 
 
Proof of Proposition 4: Suppose that )(* ωµ  is BR-stable in ),( * ωG . Then, there exist 

Mm ~∉ , Ni ∈ , and ),,(),,( 1111 +−+− ≠′′′ iiiiii ωωωωωω  such that for every }1,,1{ +−∉ iiij , 

jjjm ω=′,  for at least two agents }1,,1{ +−∈′ jjjj , 
for every }1,,1{ +−∈ iiij , 

jjjm ω′=′,  for some }/{}1,,1{ ijjjj +−∈′ , 
and for every ii Mm ∈′′ , 

))(/())),(/(( **** ωµωωµ iiiii mtmgu + )/()),/(( **
iiiii mmtmmgu ′′+′′≥ ω .   

(B1) 
Note from the Supposition of Proposition 4 that 

))(/())),(/(( **** ωµωωµ iiiii mtmgu + ξωωααεω +−+≤ ∑
≠

),)}()({)(ˆ( , i
ij

jjjji m
n

xu . 

Let ),,( 11 +− ′′′=′ iiiim ωωω , and let Ω∈ω  denote the preference profile satisfying that 

hh ωω ′=  for all }1,,1{ +−∈ iiih , and hh ωω =  for all }1,,1{ +−∉ iiih . 
Note that ωω =′)/(~

imm , ),,( 11 +−=′ iiiim ωωω , and therefore, 

)/()),/(( **
iiiii mmtmmgu ′+′ ω ),)}()({)(ˆ( , i

ij
jjjji m

n
xu ωωααεω ∑

≠
′−+≥ . 

Since 0>ε  and 0>ξ  are small, the supposition of Proposition 4 implies that 

),)}()({)(ˆ( , i
ij

jjjji m
n

xu ωωααεω ∑
≠

′−+

ξωωααεω +−+> ∑
≠

),)}()({)(ˆ( , i
ij

jjjji m
n

xu . 

Hence, it follows from the above inequalities that 
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)/()),/(( **
iiiii mmtmmgu ′+′ ω ))(/())),(/(( **** ωµωωµ iiiii mtmgu +> . 

This contradicts inequalities (B1).                                                                          Q.E.D. 
 
Proof of Theorem 9: Fix Ω∈ω  arbitrarily. The proof of Lemmata C-1, C-2, and C-3 do 
not depend on the existence of 1≠j  satisfying inequality (2). In the same way as in the 
proof of Theorem 5, )(ωµ +  is a strict Nash equilibrium in ),( ω+G . We will show that 
for every Mm ~∉ , if for every Ni ∈ , iiiiiiiii mmmm ,1,1,,1 −+− ′≠′≠=′≠′ ω  and 1,2 =′− iim , then 

)(ωµ +  is weakly BR-reachable from m  in ),( ω+G . Note that for every Ni ∈ , 
Mm i
~)(/ ∉+ ωµ , and therefore, 

))(/())),(/(( ωµωωµ ++++ + iiiii mtmgu )),(( 1 ii du ωω= . 
Hence, for every Ni ∈ , 

))(/())),(/(( ωµωωµ ++++ + iiiii mtmgu )()),(( mtmgu iii
++ += ω , 

and therefore, )(ωµ +  is weakly BR-reachable from m  in ),( ω+G . This property, 
together with Lemmata C-1, C-2, and C-3, implies that for every Mm ∈ , )(ωµ +  is 
weakly BR-reachable from m  in ),( * ωG .                             
Q.E.D. 
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Appendix C: Proof of Theorem 5 
 

Fix Mm ×Ω∈),(ω  arbitrarily. 
 
Lemma C-1: For every Mm ~∈ , if there exists a single agent Ni ∈  such that 

)(ωµ +≠ iim , then, )(ωµ+  is BR-reachable from m  in ),( ω+G . 
 
Proof: Note ωω =)(~ m , )()(/ ωµωµ ++ =im , and therefore, 

)(ˆ))(/( ωωµ xmg i =++ , 0))(/( =++ ωµii mt , 
and, for every ii Mm ∈′ , 

)}()({)(ˆ)/( , iiiiii m
n

xmmg ωααεω −′+=′+ , and 0)/( ≤′+
ii mmt . 

The definition of )(⋅iα  implies that for every ii Mm ∈′ , 
))(/())),(/(( ωµωωµ ++++ + iiiii mtmgu )/()),/(( iiiii mmtmmgu ′+′≥ ++ ω , 

and therefore, that )(/)( ωµωµ ++ = im  is BR-reachable from m .                            
Q.E.D. 
 
Lemma C-2: For every Mm ~∈ , either )(ωµ+  is BR-reachable from m  in ),( ω+G , or 
there exists Mm ~∉′  that is BR-reachable from m  in ),( ω+G . 
 
Proof: Suppose that )(ωµ+  is not BR-reachable from m  and there exists no Mm ~∉′  
BR-reachable from m . Then, there exists n

k
kk mi 1),( =  connected with m  such that for 

every nk ,...,1= , 
kik = , Mmk ~∈ , )0),(~),(~(),,(

112,1,1,
mmmmm kkkkkkkk ii

k
ii

k
ii

k
ii +−++−

= ωω , 

and, for every kk ii Mm ∈′′ , 

)()),(( k
ii

k
i mtmgu kkk

++ +ω )/()),/(( kkkkk i
k

iii
k

i mmtmmgu ′′+′′≥ ++ ω . 

Note that )0),(~),(~(),,( 112,1,1, mmmmm ii
n

ii
n

ii
n

ii +−++− = ωω  for all Ni ∈ , and that nm  is BR-
reachable from m . Hence, without loss of generality, we can assume that m  satisfies 
that 

)0),(~),(~(),,( 112,1,1, mmmmm iiiiiiii +−++− = ωω  for all Ni ∈ . 

Consider 2
1),( +

=
n
k

kk mi  that is connected with m  satisfying that for every nk ,...,1= , 
kik = , )0),(~,),(~( 11 mmm kkkk iii

k
i +−

= ωωω , 
for 1+= nk , 

nik = , ))(~,),(~(),,(
111,,1,

mmmmm kkkkkkkkk iii
k

ii
k

ii
k

ii +−+−
= ωωω , 

0
2,

=k
ikm  if 22 )(~ ωω ≠m , 

1
2,

=k
i km  if 22 )(~ ωω =m , 

for 2+= nk , 
1=ki , )0,),(~(),,(

12,,1, kkkkkkkk ii
k

ii
k

ii
k

ii
mmmm ωω

−+−
= , and }),(~{ 222,

ωω mmk
i k ∉ . 



 

 

39 

Note Mmk ~∈  for all 2+≠ nk , but Mmn ~2 ∉+ . 
Fix nk ,...,1=  arbitrarily. Suppose inequalities (6) for every 1−≤′ kk . Then, 1−km  

is BR-reachable from m , and therefore, it follows from the supposition at the beginning 
of this proof that there exists no Mm ~∉′  BR-reachable from 1−km . For every kk ii Mm ∈′′ , 

)()),(( k
ii

k
i mtmgu kkk

++ +ω )/()),/(( kkkkk i
k

iii
k

i mmtmmgu ′′+′′≥ ++ ω  if Mmm ki
k ∉′′/ . 

Since Mmk ~∈ , kkk i
k

ii
m ω=

,
, and )0),(~),(~(),,( 112,1,1, mmmmm ii

k
ii

k
ii

k
ii +−++− = ωω  for all Ni ∈ , 

it follows that for every kk ii Mm ∈′′ , 

)()),(( k
ii

k
i mtmgu kkk

++ +ω )/()),/(( kkkkk i
k

iii
k

i mmtmmgu ′′+′′≥ ++ ω  if Mmm ki
k ~/ ∈′′ . 

Since inequalities (6) automatically hold for 1=k , the above arguments imply 
inequalities (6) for every nk ,...,1= , and therefore, nm  is BR-reachable from m . 

Since nm  is BR-reachable from m , it follows that )(ωµ+  is not BR-reachable from 
nm , and there exists no Mm ~∉′  BR-reachable from nm , Hence, for every nn ii Mm ∈′′ , 

)()),(( n
ii

n
i mtmgu nnn

++ +ω )/()),/(( nnnnn i
n

iii
n

i mmtmmgu ′′+′′≥ ++ ω  if Mmm ni
n ∉′′/ . 

Since )0),(~,),(~( 11 mmm iii
n
i +−= ωωω  for all Ni ∈ , it follows from Lemma C-1 that there 

exist two agents Ni ∈  such that )(~
,

n
i

n
ii mm ω≠ . This implies that 

0)()( 11
1 == +++

++
n

i
n

i mtmt nn , and therefore, for every 11 ++ ∈′′ nn ii Mm , 

)()),(( 11
111

++++
+++ + n

ii
n

i mtmgu nnn ω )/()),/(( 11111
11

+++++ ′′+′′≥ ++++
nnnnn i

n
iii

n
i mmtmmgu ω  if 

Mmm ni
n ~/ 1

1 ∈′′ +
+ . 

Hence, inequalities (6) hold for 1+= nk , and therefore, 1+nm  is BR-reachable from m . 
Inequalities (6) for 2+= nk  are straightforward from the fact that 12 =+ni , 

Mmn ~2 ∉+ , and 1
2

1,1 ω=+nm . Hence, 2+nm  is BR-reachable from m . But this contradicts 

Mmn ~2 ∉+ . 
Q.E.D. 

 
Lemma C-3: For every Mm ~∉ , there exists Mm ~∉′  that is BR-reachable from m  such 
that for every Ni ∈ , iiiiiiiii mmmm ,1,1,,1 −+− ′≠′≠=′≠′ ω  and 1,2 =′− iim . 
 
Proof: Since Mm ~∉ , there exists Nr ∈  such that either 

rrrrrrrr mmmm ,1,1,,1 −+− ≠≠≠  and 0,2 =− rrm , 
or 

rrrj mm ,, ≠  for some }1,1{ +−∈ rrj  and 1,2 =− rrm . 

We can choose 4}1,...,2{))4(),...,1(( +−∈ rrii  as follows. If 0,2 =− rrm , then, 
2)1( −= ri , 1)2( −= ri , 1)3( += ri , and ri =)4( . 

 If 1,2 =− rrm , then, 
}1,1{)1( +−∈ rri , )}1(/{}1,1{)2( irri +−∈ , rrri mm ,),2( ≠ , 2)3( −= ri , and 

ri =)4( . 
We specify n

k
kk mi 2

1),( =  connected with m  in the following way. 
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(1) For every }2,...,1{ nk ∈ , 
kkk i

k
ii

m ω=
,

 and 1
2,

=
+

k
ii kkm . 

(2) For every },...,1{ nk ∈ , 
1++= krik  if }4,...,1{ −∈ nk  

)4( +−= nkiik  if },...,3{ nnk −∈ , 
for every }1,1{ +−∈ kk iii , 

i
k

ii km ω≠
,

 and 1
,,
−≠ k
ij

k
ii

mm k  for all }/{}1,,1{ kiiiij +−∈  if there exists 

ii Ω∈′ω  such that ii ωω ≠′  and 1
,
−≠′ k
iji mω  for all }/{}1,,1{ kiiiij +−∈ , 

and 
i

k
ii km ω=

,
 if there exists no such ii Ω∈′ω . 

(3) For every }2,...,1{ nnk +∈ , 
nkik −= , 

and, for every }1,1{ +−∈ kk iii , 

i
k

ii km ω≠
,

 and 1
,,
−≠ k
ij

k
ii

mm k  for all }/{}1,,1{ kiiiij +−∈ . 
Note that for every }2,...,1{ nk ∈ , 

Mmm ki
k ~/ ∉′′  for all kk ii Mm ∈′′ , and 

)()( 1ωdmg k =+  if 1=ki . 
Hence, inequalities (6) hold for every }2,...,1{ nk ∈ , and therefore, nm2  is BR-reachable 
from m . Note that for every Ni ∈ , n

ii
n

iii
n
ii

n
ii mmmm 2

,1
2

,1
2
,

2
,1 −+− ≠≠=≠ ω  and 12

,1 =−
n

iim .  
Q.E.D. 
 
Lemma C-4: For every Mm ~∉ , if for every Ni ∈ , 

iiiiiiiii mmmm ,1,1,,1 −+− ′≠′≠=′≠′ ω  and 1,2 =′− iim , 
then, there exists Mm ~∈′  that is BR-reachable from m  such that there exists a single 
agent Ni ∈  satisfying that )(ωµ +≠′ iim . 
 
Proof: Consider 1

1),( −
=

n
k

kk mi  connected with m  satisfying that for every }1,...,1{ −∈ nk , 
)(ωµ += kk i

k
im , 

kjik +=  if }4,...,1{ −∈ nk , 
23 −=− jin , 12 −=− jin , and jin =−1 , 

where inequality (2) holds for 1≠j . Note that 
Mmk ~∉  and )()( 1ωdmg k =+  for all }2,...,1{ −∈ nk , Mmn ~1 ∈− , 

)(1 ωµ+− = i
n
im  for all 3−≠ ji , )(ˆ)( 1 ωxmg n =−+ , and ξ=−+ )( 1n

j mt . 

Note that for every )(ωµ +≠′′ jjm , 

0)/( 1 =′′−+
j

n
j mmt , 
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)}()({)(ˆ)/( ,
1

jjjjjj
n m

n
xmmg ωααεω −′′+=′′−+  if 11, −− =′′ jjjm ω , 

and 
)()( 1

1 ωdmg n =−+  if 11, −− ≠′′ jjjm ω . 

These imply inequalities (6) for every }1,...,1{ −∈ nk . Hence, 1−nm  is BR-reachable 
from m . Since agent 3−j  is the single deviant from )(ωµ + , we have proved this 
lemma. 

Q.E.D. 
 

By using these lemmata, we will show that )(ωµ +  is BR-stable in ),( ω+G . Note 
that for every Ni ∈ , and every )(ωµ +≠ iim , if iiim ω≠, , then 

)),(ˆ())(())),((( iiiii xutgu ωωωµωωµ =+ ++++

))},()({)(ˆ( , iiiiiii m
n

xu ωωααεω −+>  

)/)(()),/)((( iiiii mtmgu ωµωωµ ++++ +≥ , 
whereas, if iiim ω=, , then 

)),(ˆ())(())),((( iiiii xutgu ωωωµωωµ =+ ++++ ξωω −> )),(ˆ( ii xu  
)/)(()),/)((( iiiii mtmgu ωµωωµ ++++ += . 

These inequalities imply that )(ωµ +  is a strict Nash equilibrium in ),( ω+G . Lemma C-
1 implies that for every Mm ~∈ , if there exists the single agent Ni ∈  such that 

)(ωµ +≠ iim , then )(ωµ +  is BR-reachable from m . Lemmas C-3 and C-4 imply that for 
every Mm ~∉ , there exists Mm ~∈′  BR-reachable from m  such that there exists the 
single deviant from )(ωµ + . Lemma C-2 implies that for every Mm ~∈ , either )(ωµ+  is 
BR-reachable from m  or there exists Mm ~∉′  that is BR-reachable from m . These 
observations imply that )(ωµ+  is BR-reachable from every message profile. Note that 
no )(ωµ +≠m  is reachable from )(ωµ+  because )(ωµ+  is a strict Nash equilibrium. 

From the above arguments, we have proved that )(ωµ +  is BR-stable in ),( ω+G , 
and therefore, we have completed the proof of Theorem 5. 
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Appendix D: Proof of Theorem 7 
 

Fix Ω∈ω  and Mm ∈  arbitrarily. 
 
Lemma D-1: For every Mm ~∈ , if that there exists the single agent Ni ∈  such that 

)(** ωµiim ≠ , then, )(** ωµ  is BR-reachable from m  in ),( ** ωG . 
 
Proof: Note that ωω =)(~ m  and )()(/ **** ωµωµ =im . Hence, 

)(ˆ))(/( **** ωωµ xmg i = , 0))(/( **** =ωµii mt , 
and for every ii Mm ∈′ , 

)}()({)(ˆ)/( ,
**

iiiiii m
n

xmmg ωααεω −′+=′ , and 0)/(** ≤′ii mmt . 

The definition of )(⋅iα  implies that for every ii Mm ∈′ , 
))(/())),(/(( ******** ωµωωµ iiiii mtmgu + )/()),/(( ****

iiiii mmtmmgu ′+′≥ ω , 
and therefore, that )(/)( **** ωµωµ im=  is BR-reachable from m .                             
Q.E.D. 
 
Lemma D-2: For every Mm ~∈ , if )(** ωµ  is not BR-reachable from m  in ),( ** ωG , 
then, there exists Mm ~∉′  that is BR-reachable from m  in ),( ** ωG  such that there exist 

Nr ∈  and Nr ∈′  such that for every rr Ω∈′ω , 
rrim ω′≠,  for at most 2−n  agents Ni ∈ , and 

rrim ω′≠,  for at most 3−n  agents }/{rNi ′∈ , 
 
Proof: We specify n

k
kk mi 2

1),( =  that is connected with m  as follows. 
(1) For every nk 2,...,1= , 

Mmk ~∈ , )(~
, mm kkk i

k
ii −−

=ω , 

and for every kk ii Mm ∈′′ , 

)()),(( **** k
ii

k
i mtmgu kkk +ω )/()),/(( ****

kkkkk i
k

iii
k

i mmtmmgu ′′+′′≥ ω  if Mmm ki
k ~/ ∈′′ . 

(2) For every nk ,...,1= , 
1+−= knik , 

and for every nnk 2,...,1+= , 
12 +−= knik . 

If for every nk 2,...,1= , and every kk ii Mm ∈′′  satisfying Mmm ki
k ~/ ∉′′ , 

)()),(( **** k
ii

k
i mtmgu kkk +ω )/()),/(( ****

kkkkk i
k

iii
k

i mmtmmgu ′′+′′≥ ω , 

then inequalities (6) hold for every nk 2,...,1= , and therefore, )(**2 ωµ=nm  is BR-
reachable from  m , which is, however, a contradiction. Hence, there exist }2,...,1{ nk ∈′  
and kk ii Mm ∈′′  such that Mmm ki

k ~/ ∉′′ , inequalities (6) hold for every kk ′< , and 
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)()),(( **** k
ii

k
i mtmgu kkk +ω )/()),/(( ****

kkkkk i
k

iii
k

i mmtmmgu ′′+′′< ω . 

Suppose that }2,{ nnk ∉′ , i.e., 1≠′ki . Then, there exist Nr ∈ , }/{ kiNi ′∈ , and 
},/{ kiiNi ′∈′  such that k

ri
k

ri mm ′
′

′ ≠ ,, . Note that for every kk ii Mm ′′ ∈′′ , 

)()/( 1,1
** k

i
k mdmmg k

′′ =′′ ′  and 0)/(** =′′ ′′
′

kk i
k

i mmt  if Mmm ki
k ~/ ∉′′ ′
′ . 

Hence, without loss of generality we assume that },{ ,,,
k

ri
k

ri
k

ri
mmm k

′
′

′′ ∉′ . For every rr Ω∈′ω , 

rrrm ω′≠′′ ,  for at most 2−n  agents Nr ∈′′ , 

and for every },,/{ kiiiNr ′′∈′ , 

rrrm ω′≠′′ ,  for at most 3−n  agents }/{rNr ′∈′′ . 
This implies that the lemma holds true. 

Suppose that }2,{ nnk ∈′ , i.e., 1=′ki . Note that 

j
k

jim ω=′
,  for all }1/{Ni ∈  and all }/{iNj ∈ . 

Hence, 11, ω=′k
im  for all }1/{Ni ∈ , and therefore, there exist }1/{Nr ∈  and }1/{Ni ∈  

such that r
k

rim ω≠′
, . Note that for every kk ii Mm ′′ ∈′′ , 

)()/( 1,1
** k

i
k mdmmg k

′′ =′′ ′  and 0)/(** =′′ ′′
′

kk i
k

i mmt  if Mmm ki
k ~/ ∉′′ ′
′ . 

Hence, without loss of generality, we assume },{ ,, r
k

ri
k

ri
mm k ω′′ ∉′  and 11,1 ω=′km . For every 

rr Ω∈′ω , 

rrrm ω′≠′′ ,  for at most 2−n  agents Nr ∈′′ , 

and for every },/{ kiiNr ′′∈′ , 

rrrm ω′≠′′ ,  for at most 3−n  agents }/{rNr ′∈′′ . 
This implies that the lemma holds true.                                                                   Q.E.D. 
 
Lemma D-3: For every Mm ~∉ , if there exist Nr ∈  and Nr ∈′  such that for every 

rr Ω∈′ω , 
rrim ω′≠,  for at most 2−n  agents Ni ∈ , and 

rrim ω′≠,  for at most 3−n  agents }/{rNi ′∈ , 
then, there exists Mm ~∉′  that is BR-reachable from m  such that for every Nr ∈ , 

rrrm ω=, , 
for every Nr ∈′ , 

rrrm ω≠′ , , 
and for every rr Ω∈′ω , 

rrim ω′≠,  for at most 3−n  agents }/{rNi ′∈ . 
 
Proof: Without loss of generality, we can assume rr ≠′ , because there are at least two 
such agents r′  when 4≥n . Let NmN i ⊂),(ω  denote the set of agents Ni ∈′  satisfying 
that iiim ω=′ , . We specify n

k
kk mi 2

1),( =  that is connected with m  as follows. 
(1) For every }2,...,1{ nk ∈ , 
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kkk i
k

ii
m ω=

,
. 

(2) For every  },...,1{ nk ∈ , 
 kk ii ′≠  for all }/{},...,1{ knk ∈′ , 
 ri ′=1 , rin = , 

and for every }1,1{ +−∈ kk iii , 

either 1),( , =kk
ii mmN k , or ),(),( ,

k
i

kk
ii mNmmN k ω′≤  for all ii Ω∈′ω . 

(3) For every }2,...,1{ nnk +∈ , 
nkik −= . 

and for every }1,1{ +−∈ kk iii , 

i
k
i km ω≠ , 

and 
either 1),( , =kk

ii mmN k , or ),(),( ,
k

i
kk

ii mNmmN k ω′≤  

for all }/{ iii ωω Ω∈′ . 
Since 4≥n  and 4≥Ωi  for all Ni ∈ , it follows that for every }2,...,1{ nk ∈ , 

Mmm ki
k ~/ ∉′′  for all kk ii Mm ∈′′ , and 

)()( 1ωdmg k =+  if 1=ki . 
This implies that inequalities (6) hold for every }2,...,1{ nk ∈ , and therefore, nm2  is BR-
reachable from m . Note from the specification of n

k
kk mi 2

1),( =  that for every Nr ∈ , 

r
n
rrm ω=2

, , 
for every Nr ∈′ , 

r
n
rrm ω≠′

2
, , 

and for every rr Ω∈′ω , 

r
n
rim ω′≠2

,  for at most 3−n  agents }/{rNi ′∈ . 
Q.E.D. 

 
Lemma D-4: For every Mm ~∉ , if for every Nr ∈ , 

rrrm ω=, , 
for every Nr ∈′ , 

rrrm ω≠′ , , 
and for every rr Ω∈′ω , 

rrim ω′≠,  for at most 3−n  agents }/{rNi ′∈ , 

then there exists Mm ~∈′  that is BR-reachable from m  such that there exists the single 
agent Ni ∈  satisfying that )(** ωµiim ≠′ . 
 
Proof: Choose 1≠j  satisfying that inequality (2) hold. Consider 1

1),( −
=

n
k

kk mi  that is 
connected with m  satisfying that for every }1,...,1{ −∈ nk , 
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)(** ωµ kk i
k
im = , 

kjik +=  if }4,...,1{ −∈ nk , 
23 −=− jin , 12 −=− jin , and jin =−1 . 

Note that for every }2,...,1{ −∈ nk , 
)()( 1

** ωdmg k = , and Mmm k
k ~/ ∉′  for all kk Mm ∈′ , 

and therefore, inequalities (6) hold. Note that 
Mmn ~1 ∈− , 

)(**1 ωµi
n
im =−  for all 3−≠ ji , 

)(ˆ)( 1** ωxmg n =− , and ξ=− )( 1** n
j mt . 

Note also that for every )(** ωµ jjm ≠′′ , 

0)/( 1** =′′−
j

n
j mmt , 

)}()({)(ˆ)/( ,
1**

jjjjjj
n m

n
xmmg ωααεω −′′+=′′−  if 11, −− =′′ jjjm ω , 

and 
)()( 1

1** ωdmg n =−  if 11, −− ≠′′ jjjm ω . 

These inequalities imply that inequalities (6) hold for 1−= nk , and therefore, 1−nm  is 
BR-reachable from m . Since agent 3−j  is the single deviant from )(** ωµ , we have 
proved this lemma.                             
Q.E.D. 
 
Lemma D-5: For every Mm ~∉ , if there exists no Mm ~∈′  that is BR-reachable from m , 
then there exists Mm ~∉′  that is BR-reachable from m  in ),( ** ωG  such that there exist 

Nr ∈  and Nr ∈′  such that for every rr Ω∈′ω , 
rrim ω′≠,  for at most 2−n  agents Ni ∈ , and 

rrim ω′≠,  for at most 3−n  agents }/{rNi ′∈ , 
 

Proof: Note that for every 1≠i , and every ii Mm ∈′′ , 

)()),(()/()),/(( ******** mtmgummtmmgu iiiiiiii +>′′+′′ ωω  if Mmm i
~/ ∈′′ . 

Note also that for every ii Mm ∈′′ ,  

)0),(())/(),/(( 1,1
**** mdmmtmmg iii =′′′′  if Mmm i

~/ ∉′′ . 
Hence, there exists the best-reply ii Mm ∈′′  to m  satisfying that for every Nj ∈ , 

either 1),( , =′′ k
ji mmN , or ),(),( ,

k
j

k
ji mNmmN ω′≤′′  for all ij Ω∈′ω . 

This implies that there exists Nr ∈  and Nr ∈′  such that for every rr Ω∈′ω , 

rrim ω′≠,  for at most 2−n  agents Ni ∈ , and 

rrim ω′≠,  for at most 3−n  agents }/{rNi ′∈ . 
Q.E.D. 
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By using these lemmata, we will show that )(** ωµ  is BR-stable in ),( ** ωG . Note 
that for every Ni ∈ , and every )(** ωµiim ≠ , if iiim ω≠, , then 

)),(ˆ())(())),((( ********
iiiii xutgu ωωωµωωµ =+

))},()({)(ˆ( , iiiiiii m
n

xu ωωααεω −+>  

)/)(()),/)((( ********
iiiii mtmgu ωµωωµ +≥ , 

whereas, if iiim ω=, , then 

)),(ˆ())(())),((( ********
iiiii xutgu ωωωµωωµ =+ ξωω −> )),(ˆ( ii xu  

)/)(()),/)((( ********
iiiii mtmgu ωµωωµ += . 

These inequalities imply that )(** ωµ  is a strict Nash equilibrium in ),( ** ωG . 
Lemma D-1 implies that for every Mm ~∈ , if there exists the single deviant from 

)(** ωµ , then )(** ωµ  is BR-reachable from m . Lemmata D-2, D-3 and D-4 imply that 
for every )}(/{~ ** mMm µ∈ , there exists Mm ~∈′  that is BR-reachable from m  such that 
there exists the single deviant from )(** ωµ . Lemmata D-5, D-3, and D-4 imply that for 
every Mm ~∉ , either )(** ωµ  is BR-reachable from m , or there exists Mm ~∈′  that is 
BR-reachable from m  such that there exists the single deviant from )(** ωµ . These 
observations imply that )(** ωµ  is BR-reachable from every message profile. 

From the above arguments, we have proved that )(** ωµ  is BR-stable in ),( ** ωG , 
and therefore, we have completed the proof of Theorem 7. 
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Appendix E 
 
Proof of Proposition 10: We can choose a positive real number 0>b  satisfying that 
for every Ni ∈ , every ii Mm ∈ , and every Mm ∈′ , 

bmmp ii ≥′)|(  if 0)|( >′mmp ii . 
Suppose that Mm ∈  is stable in ),( ωG . Choose a positive integer K  sufficiently 

large. For every Mm ∈′ , and every 1≥t , there exists K
k

kk mitm 1),(),( ==Γ  that is 
connected with m′  such that mm K = , and for every },...,1{ Kk ∈ , inequality (1) holds 
and )( ktiik += . Fix 1≥t  and tt Mm ∈=1))(( ττ  arbitrarily, and denote 

K
k

kk mittm 1),()),(( ==Γ . Given the history tm 1))(( =ττ  up to period t , it holds at least with 
probability 0>Kb  that the realized history Ktm +

=1))(( ττ  up to period Kt +  satisfies that 
kmktm =+ )(  for all },...,1{ Kk ∈ , 

and therefore, 
mKtm =+ )( . 

This implies that agents almost certainly come to continue announcing m  in the long 
run, and therefore, m  is the long-run behavior in G  with alternating play with respect 
to p . 

Suppose that m  is the long-run behavior in G  with alternating play with respect to 
p . Note from the definition of the long-run behavior that once agents announce m , 

they continue announcing it forever. This implies that for every Ni ∈ , there exists no 
other message that is better than or indifferent from im , provided that the other agents 
announce im− . Hence, m  is a strict Nash equilibrium, and therefore, there exists no 
other message profile that is reachable from m . Note also from the definition of the 
long-run behavior that for every Mm ∈)1( , there exists a positive integer 0>K  and a 
history 1

1))(( +
=

K
ttm  up to period 1+K  such that mKm =+ )1( , and for every 

}1,...,2{ +∈ Kt , 
0))1(|)(( )()( >−tmtmp titi , and 

)1()( −= tmtm ii  for all )(tii ≠ . 
This implies that there exists K

k
kk mi 1),( =  connected with )1(m  such that mmK = , and 

for every },...,1{ Kk ∈ , inequality (1) holds, where )1(0 mm = . Hence, m  is reachable 
from every message profile, and therefore, we have proved that m  is stable in ),( ωG .   
Q.E.D. 
 
Proof of Proposition 12: We can choose a positive real number 0>b  satisfying that 
for every Ni ∈ , every ii Mm ∈ , and every Mm ∈′ , 

bmmp ii ≥′)|(  if 0)|( >′mmp ii . 
Suppose that Mm ∈  is weakly stable in ),( ωG . Choose a positive integer K  

sufficiently large. For every Mm ∈′ , there exists K
k

kmm 1)()( ==Γ  such that mm K = , 
and for every },...,1{ Kk ∈ , and every Ni ∈ , inequality (5) holds, where mm ′=0 . Fix 
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1≥t  and tt Mm ∈=1))(( ττ  arbitrarily, and denote K
k

kmtm 1)())(( ==Γ . Given the history 
tm 1))(( =ττ  up to period t , it holds at least with probability 0>nKb  that the realized 

history Ktm +
=1))(( ττ  up to period Kt +  satisfies that 

kmktm =+ )(  for all },...,1{ Kk ∈ , 
and therefore, 

mKtm =+ )( . 
Hence, agents almost certainly come to continue announcing )(ωµ  in the long run, and 
therefore, m  is the long-run behavior in G  with simultaneous play with respect to p . 

Suppose that m  is the long-run behavior in G  with simultaneous play with respect 
to p . In the same way as in the proof of Proposition 10, there exists no other message 
profile that is weakly reachable from m . Note that for every Mm ∈)1( , there exists a 
positive integer 0>K  and a history 1

1))(( +
=

K
ttm  up to period 1+K  such that 

mKm =+ )1( , and for every }1,...,2{ +∈ Kt , 
0))1(|)(( >−tmtmp ii  for all Ni ∈ . 

Hence, it follows that there exists a finite sequence K
k

km 1)( =  such that mmK = , and for 
every },...,1{ Kk ∈ , and every Ni ∈ , inequality (5) holds, where )1(0 mm = . Hence, m  
is weakly reachable from every message profile, and therefore, we have proved that m  
is weakly stable in ),( ωG .                             
Q.E.D. 
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