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Abstract

This paper investigates implementation of socia choice functions in the complete
information environments. We construct particularly simple mechanisms named |ocal
direct mechanisms, which require each agent to make a single announcement about her
own and neighbors’' utility indices. We assume that each agent is boundedly rational in
that she may announce any best reply, including disequilibrium messages, even if the
others play a Nash equilibrium. We require that the honest message profile be stable in
the global sense that it is reachable from every message profile and no other message
profile is reachable from it. It is shown that with a minor restriction, every socia choice
function is virtually implementable. We provide naive models of adaptive dynamics
whose convergence characterizes the static definition of stability. We also investigate
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several variants of the stability notion such as BR-stability, weak stability, and weak
BR-stability.
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1. Introduction

This paper investigates implementation of socia choice functions in the complete
information environments. We consider particularly ssimple mechanisms named |ocal
direct mechanisms, which require each agent to make a single announcement on her own
and her two neighbors' utility indices. We allow agents to be levied only small amounts.
The purpose of the paper is to address how implementation works when agents are
boundedly rational, and show the possibility that a social choice function is virtually
implementable via such simple mechanisms as local direct mechanisms.

We hypothesize that each agent is boundedly rationa so that she may change her
message into any message that is better than or indifferent to the message that she
currently announces, given that she expects the others to continue announcing the same
messages as their current messages. Hence, each agent may announce any best reply,
including disequilibrium messages, even if the others play a Nash equilibrium. We
require that the honest message profile be stable in the globa sense that it is reachable
from every message profile through finite steps, in each step of which, an agent
unilaterally changes her message, whereas no other message profile is reachable fromit.
Hence, the honest message profile is the unique strict Nash equilibrium, and there exists
no other absorbing limit cyclein terms of reachability. The main result of the paper isthat
with aminor restriction, every socia choice function isvirtually implementable in terms
of stability via local direct mechanisms.

Severa earlier worksin the implementation literature have required the uniqueness of
Nash equilibrium or its related solution concepts, and have provided their respective
possibility theorems. See Matsushima (1988), Moore and Repullo (1988), Abreu and Sen
(1990), Palfrey and Srivastava (1991), and Abreu and Matsushima (1992). See also the
survey by Moore (1992). These works indicate that it might be inevitable to construct
complicated mechanismsin that each agent must have redundant, slack messages that she
never announces as long as agents play the equilibrium behaviors. The mechanisms
constructed by these authors provide each agent with the incentive to deviate from any
unwanted message profile by announcing such a slack message.

In contrast, local direct mechanisms are so simple as to have no slack messages. The
size of the set of message profiles, however, islarger than the size of the set of preference
profiles. Thisimplies that there exist slack message profiles that agents never announce
as long as they make the honest announcements. No messages are slack, but message
profilesleading agents to announce different opinions are slack. The paper shows that the
existence of such slack message profiles is enough to provide agents with the incentives



to extricate themselves from the trap of the unwanted message profile into the honest
message profile.

A local direct mechanism is specified as follows. For each agent, there exist three
agents who announce their respective opinions about this agent’s utility index. If at least
two agents announce the same opinion, we shall regard it as the public opinion. If a
message profile has the public opinion for every agent, the mechanism almost certainly
enforces the alocation assigned by the social choice function to this profile. Otherwise,
the mechanism certainly enforces the allocation that maximizes agent 1's utility on the
supposition that sheis correct, i.e., agent 1 becomes dictatorial.

A key heuristic of the paper is as follows. Suppose that a message profile does not
have the profile of the public opinions. Then, each agent has a wide variety of messages
satisfying that whichever message she announces agent 1 remains dictatorial and the
resultant allocation never changes. This, together with the bounded rationality hypothesis,
serves to provide each agent with the incentive to announce the honest message.

When the given message profile has the profile of the public opinions, we can use the
idea of the virtualness addressed by Matsushima (1988) and Abreu and Sen (1990) to
provide each agent with the incentive to make the honest announcement about her own
utility index. We can specify the mechanism in ways that an agent isfined if and only if
she is the single deviant from the profile of the public opinions and announces different
opinions about her neighbors’ utility indices. This, together with the virtualness, servesto
provide each agent with the strict incentive to announce the honest message given that the
others announce the honest messages. Since the use of fine serves mainly for this
strictness, we can make the amount of fine as small as possible.

In order to clarify that this permissive result does not much depend on the specificity
of the stability notion, we will investigate its robustness in several ways. Firstly, we will
replace the bounded rationality hypothesis with a hypothesis that each agent who will
change her message announces only best replies. Based on it we define the notion of B-R
stability. B-R stability is more restrictive than stability in that it is impossible for alocal
direct mechanism to virtually implement asocial choice function in terms of BR-stability,
even though it is possible in terms of stability. We assume that there are four or more
agents, and we introduce amodified local direct mechanism, in which each agent not only
announces opinions on her own and two neighbors' utility indices but also announces
either integer “0” or integer “1”. The honest message for each agent is redefined as the
message, according to which, she announces “0" as well as makes the honest
announcements. Hence, messages with the announcement of “1” are slack. We show that
with aminor restriction, every socia choice function isvirtually implementable in terms



of BR-stability viamodified local direct mechanisms.

Many previous worksin the implementation literature have used integer mechanisms,
in which each agent announces any nonnegative integer aswell as opinions about agents
utility indices. The size of the set of message profilesisinfinite, athough the side of the
set of preference profiles is finite. Many other previous works have used modulo
mechanisms, in which each agent announces any integer in the set {1,...,n} as well as
opinions about agents’ utility indices.” The size of the set of message profilesisfinite, but
it tendsto infinity as the number of agentsincreases. Abreu and Matsushima (1992) have
constructed their own mechanisms, in which each agent makes multiple announcements
about all agents' utility indices. The size of the set of message profiles is finite,EIbut it
tends to infinity as the upper bound of the amount of fine decreases. In contrast, in our
modified local direct mechanisms, the size of the set of message profiles is finite, is
constant with respect to the number of agents, and is constant with respect to the upper
bound of the amount of fine.

We also show that if asocia choice function is virtually implementable in terms of
stability via local direct mechanisms, it is aso virtualy implementable in terms of
BR-stability viadirect mechanisms where each agent makes a single announcement about
all agents' utility indices. Direct mechanisms have no slack messages, the size of the set
of message profilesisfinite, is constant with respect to the upper bound of the amount of
fine, but is larger than that in modified local direct mechanisms.

In the definitions of stability and BR-stability, only a single agent is permitted to
change her message at one time. We will permit two or more agents to simultaneously
change their messages and introduce the notions of weak stability and weak BR-stability.
We, rather trivially, show that every social choice function is virtually implementable in
terms of weak stability or weak BR-stability via local direct mechanisms, even if all
agents prefer the allocation that maximizes player 1's utility to the desired outcome.

In most parts of this paper, we investigate implementation on the basis of the static
definition of stability, because of its tractability. In the last part of the paper we will
characterize this stability notion from the viewpoints of adaptive dynamics. We consider
the situation in which agents asynchronically play the component game infinitely many
times. We introduce naive models of adaptive dynamics, and show that there exists the
unigue convergent behavior if and only if the stable message profile exists in the

! Modulo mechanisms have unwanted mixed equilibria
2 The Abreu-Matsushima mechanism can eliminate all pure and mixed unwanted equilibria. The wanted

equilibrium isthe only iteratively undominated message profile.



component game, where the stable message profile will be this convergent point.

The crucia feature of our adaptive dynamicsisthat learning is not well sophisticated
in that, irrespective of the past history of play, each agent always chooses any best reply
with positive probability. Because of this, it is straightforward that every Nash
equilibrium that is not strict can be eliminated. In this respect, the present paper has some
distance from the models that were intensively studied in the evolution and learning
IiteratureEI such asfictitious play, Bayesian learning and regret based dynamics addressed
by Hart and Mas-Colell (2000). In thisliterature, learning is sometimes more involved so
that an agent can learn not to play particular best replies. This may prevent the honest
message profile from being reachable from other message profiles. Hence, we may say
that the less boundedly rational agents are, the more complicated mechanisms are needed
for implementation.

The elimination of unwanted absorbing limit cyclesisnot trivia at all, even if we use
our naive models. Hence, we have to make a careful check on how implementation works.
Especialy, when multiple agents are unlikely to adjust behaviors a one time, i.e., either
stability or BR-stability must be used, and when all agents prefer agent 1's dictatorship to
the socialy desirable outcome, the socia choice function is not necessarily virtualy
implementable. On the other hand, when at |east one agent exists who prefersthe socially
desirable outcome to agent 1's dictatorship, every socia choice function is virtualy
implementable. This point is the technical highlight of this paper.

The present paper could also be put in perspective of robustness of implementation to
non-optimal behaviors, which wereintensively studied after the survey by Moore (1992).
Related works are Eliaz (2000), Maniquet (1998), Seften and Yavas (1996), Cabrales
(1999), and others.

The organization of the paper is as follows. Section 2 provides the model. Section 3
considers stability and weak stability. Section 4 considers BR-stability and weak
BR-stability. Section 5 considers adaptive dynamics. Section 6 concludes.

3 See, for example, Fudenberg and Levine (1998).



2. The Modd

Let N ={1,...,n} denotethefinite set of agentswhere n>3. Let I' denote the finite

set of pure alternatives. Let A denote the set of all lotteries over I'. Agent i's utility is
indexed by a parameter w . Let Q, denote the finite set of her utility indices where

|Q,|=3. Agent i's preferenceis given by autility function u:AxQ, - R, and satisfies

the expected utility hypothesis. We assume that no element of Q, induces complete
indifference over all lotteries, and that any pair of distinct elementsof Q. inducesdistinct
orderings over A. Hence, for every i [IN, there exists a function a,:Q, — A such that
for every w [@Q ,, a=a,(w) is the single maximizer of u(a,w) among the set
{0,(W) DA 0Q}, ie, u(o,(w),w)>u(a(d), @) for al w' # «w. An example

of a, is asfollows. For every w, [@ ,, and every kO{L...,|T}, let y(«y, k) OT denote
the pure alternative that player i prefersin the k-th place amongtheset I, i.e.,

u (v (@0, @) 2u (v (@,2),0) 2 O u (v (@, 1)), @) .

M-k+1
Let ai(a),)(yi(a),,k))EL . Note the above inequalities hold because the
>
=1

probability o;(w)(y;(w,K)) is decreasing with respect to k O{1,...,|[} and any pair of

distinct elements of Q. induces distinct orderings over A.E|
We assume that utilities are quasi-linear. We denote by u,(a,w ) +t; the utility for
agent i of alottery a J A and a side payment t, [ R when her utility index is given by

w, .” A preference profileis described by w = (@, ..., ). Let Q=[] €; denote the set

iON

of preference profiles.

A social choice function x:Q - A maps from preference profiles to lotteries. The
lottery x(w) O A with no transfers is regarded as the most desirable allocation when the
preference profile is given by wQ . We shall fix an arbitrary social choice function
x:Q - A andan arbitrary positive real number € [1(0,1) that is closeto zero. We specify

* See the Lemma in Abreu and Matsushima (1992).

® Quasi-linearity is assumed for simplicity. All we need is that there exists a private good and each agent’s
utility is denoted U; (a,1;,) , whichisincreasing with respect to t; .



another social choice function X by
R(@) = (L-)X(@) +< T a,(@) foradl @@ .
nifx
Notethat X is €-closeto x, that is, for every w @ , x(w)OA is €-closeto X(w)A
in that the distance between them is at most € in the Euclidean metric. We call X the
€ -virtual social choice function associated with x.
A mechanismisgivenby G =(M,,...,M_; g,t) where M, isthefinite set of messages

foragent i, M =[1M;, g:M - A isan outcome function, t =(t,,...,t,), t:M - R

iON
is aside payment functionto agent i , and t isbudget-balancing inthat % t,(m) =0 for
iN

al mOM . When agents announce a message profile m1 M , the mechanism enforces
the lottery g(m)J A and each agent iLJN receives the side payment t(mUOR. An
arbitrary message ruleis denoted by = (), Where i, :Q - M, foral iON .El

Throughout the paper, we shall fix an arbitrary positive real number £ >0. We
confine our attention to mechanisms G satisfying that for every iLIN, and every
miUM ,

t.(m)=-¢.

Thisimpliesthat there exists an upper bound to the amount of fine such that each agent is

able to pay up to this amount. A mechanism and a preference profile define a game
(G, w).

® The introduction of mixed message rules will not change any results of the paper.



3. Stable I mplementation

3.1. Stability

A finite sequence (i*,m*),_, 0(NxM)" is said to be connected with a message

profile mOM if

m =m* foral kO{L..., K} andal i #i*,
where m® =m. A message profile m'OM is said to be reachable from another message
profile mOM in (G,w) if there exists (i*,m*),_, connected with m such that m* =,
and for every k{1,...,K},

U (Q(m),0,) + £, (M) 2 U, (g(M™), @) +t, (M) (1)
Hence, m' is reachable from m if and only if m can be switched to m' through finite

steps, in each step of which, an agent unilaterally changes her message into any message
that is better than or indifferent to that announced in the last step.

Definition 1: A message profile mOM isstablein (G,w) if misreachable from every
m #min (G,w) and no m # m isreachable from min (G,w).

Notethat m isstableif and only if m isthe unique strict Nash equilibrium and there
exists no other absorbing limit cycle in terms of reachability in that there exists no

nonempty subset M O M such that M #{m} , every pair of message profilesin M are
mutually reachable, and there existsno m' M that is reachable from some m' M .

3.2. Possibility Theorem

*

We specify amechanism G = (M, gﬂ,t*) named alocal direct mechanism asfollows.
Let M, =Q, , xQ, xQ,, for al i ON."We denote m =(m,_,,m;,m,,,)0M,, where
m; [@ ,.Eachagent i N makesasingle announcement about her own and neighbors’
utility indices.” The honest message rule in G is denoted by u" = (i ), Where for
every ilIN, and every w(1Q,

H () = (W4, @, @,y) -
Let M OM denote the set of message profiles m satisfying that there exists o(m) JQ

such that for every i ON,
m;, = (m) for at least two agents j O{i —1,i,i +1} .

We shall call @ (m)0Q, and ¢o(m)JQ the public opinion for agent i and the profile of
the public opinions, respectively. We specify g° by

"Wedenote i —1=nif i=1,and i +1=1if i =n.
8 Matsushima (1988) investigated a variant of modulo mechanisms where each agent announces about her
own and her neighbors' utility indices.
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g’ (M) = A-)X(@M) + a,(m,) if mOM,
iON
and
g (m)=d(m,) if mOM,
where a,:Q, - A was the function introduced in Section 2, and d:Q, - A is a
function satisfying that for every w, 0Q,,

U (d(w),w) 2 u(g (M), w) foral mMOM.
An example of d(w,) A isthe lottery that maximizes agent 1's utility.
Suppose that there exists the profile of the public opinions w(m)CQ, i.e., mO M .
Then, with probability 1- ¢, the mechanism enforces the lottery that the original social

choicefunction x assignsto w(m), i.e., x(c(m)) . With probability £ ,eachagent iOON
n

becomes dictatorial and chooses the lottery a;,(m ;) JA. As Matsushima (1988) and
Abreu and Sen (1990) have pointed out, the virtual ness serves to provide each agent with
the incentive to make the honest announcement about her own utility index. Next,
suppose that there does not exist the profile of the public opinions, i.e., m[] M . Then,
agent 1 certainly becomes dictatorial and chooses the lottery d(m ;) O A.
We specify t* by
t(m)=-¢ and t,,(m) =& if MOM , m, #G,(m) for some
jo{i-Li+1,and m =(@.,(mM),w.(mM),w.,,(m) foral i' #i,

and

t'(m)=0 and t,,(m) =0 otherwise.
Each agent i ON is fined if and only if there exists the profile of the public opinions
w(m), agent i is the single deviant from ¢(m), and she does not announce the public

opinions about her neighbors utility indices. If agent i is fined, only agent i +2 is
rewarded. The possibility of aplayer’sbeing fined, together with the virtualness, servesto
provide each agent with the strict incentive to announce the honest message when the
others announce the honest messages.

Note

g (4 (W) =X(w),and t (4 (w)) =0 foral iON.
When agents announce the honest message profile u’ (w) , the mechanism enforces the

lottery that the & -virtual social choice function X assignsto the true preference profile.
The following theorem provides a sufficient condition under which the mechanism

G and the honest message rule 1~ implement the £ -virtual social choice function X in
terms of stability in that for every wQ , the honest message profile u (w) is stablein
(G, w).

Theorem 1: For every w1Q , if there exists j #1 such that
u; (X(w),w;) 2 u;(d(w),w;) = ¢, 2
then, u' (w) isstablein (G, w).
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Since Theorem 1 holds for every € >0, we can say that x isvirtualy implementable
in terms of stability vialoca direct mechanisms. That is, for every € >0, there exists an
€ -virtual socia choice function that is implemented by the local direct mechanisms

(G', ") interms of stability, if for every wQ there exists j #1 such that
U; (X(w), w;) > u;(d(w,),w;) =< .
Notethat x isvirtually implementablein termsof stability vialocal direct mechanismsif
§ > max rpjln{uj(d(%),w,-)—uj(X(w),w,»)} :
Hence, it follows that if ¢ >0 islarge enough to satisfy that for every all A, and every
wlQ , there exists j#1 such that u;(a,w)=u;(d(w),w;)-¢ , then every socid

choice function is virtualy implementable in terms of stability via local direct
mechanisms. The following corollary is straightforward from Theorem 1.

Corollary 2: For every wl1Q , if thereexists | #1 such that
u; (X(w), ;) 2 u; (d(w), w,) ©)
then, it holds, irrespective of & >0, that " (w) isstablein (G',w).

From Corollary 2 it followsthat, irrespective of the upper bound of the amount of fine
¢ >0, asocia choicefunction x isvirtualy implementablein terms of stability vialocal

direct mechanisms, if for every wQ , there exists j #1 such that
u; (X(w), w;) 2 u; (d(w), @) - (4)
A social choicefunction x issaidto beefficient if for every w [Q , x(w) isefficient
inthat thereexistsno a JA suchthat u (a,w )= u(x(w), @) foral i ON and thestrict

inequality holds for some i ON . Note that every efficient socia choice function x
satisfies inequalities (4) for all w [@Q . Hence, it follows that, irrespective of the upper
bound of the amount of fine £ >0, every efficient socia choice function is virtually

implementable in terms of stability vialocal direct mechanisms.
The complete proof of Theorem 1 will be shown in Appendix A. The next subsection
provides an example for understanding the logical core of the proof.

3.3. Examplel

This subsection assumes that N ={1,2,3} , and that the set of utility indices for each
agent iON consists of three distinct elements. Let Q, ={w,w,w’} . Suppose that
w=(w,w,,w,) is the true preference profile, and agent j =2 satisfies inequality (2).
Let amessage profile mCJM be specified by m =(w_,,w,w,,) foral iON . Notethat
the profile of the public opinions is given by w(m) =w' = (w],w),,w),) # w . Hence, the
profile of the public opinionsis different from the true preference profile. We will show
that u' (w) isreachablefrom m in (G',w).

We specify asequence (i*,m)2_, , connected with m, by
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it=1, m = (w,w,w), i°=2, M = (a,w, ),
i°=3, m=(w,w,«), i*=1, m = (), w,w)),
i°=2, m=(of,w,,w;), i°=1, M = (w;, @, w,),
i7=2, m =(w,w,w), i° =3, and nm; = (w,, W, @,).
Note m? = 11" (w) . We can show that m® is reachable from m°, because the virtualness

provides each agent with the incentive to make the honest announcement about her own
utility index. Note i* =1, m'OM , @(m") =,

UL (@ (M), 0,) +8,(71) = U, (H@) + (@) ~a ()} ), and

u, (9" (M), w,) +t, (M) =u, (X(w),w,) .
Hence, it follows from the definition of a, ([} that inequality (1) holds for k =1, and
therefore, m' is reachable from m® =m. In the same way, the definition of a, (01 (a,())

impliesthat m* is reachable from m' (m?® is reachable from nv’, respectively).

We can show that m* is reachable from m®, because agent 1 prefers the allocation
that maximizes player 1's utility to the allocation chosen according to the profile of the

public opinions. Note i* =1, m*OM , m, =,
u.(g'(m"),w,)+t.(m") =u(d(w) w) , and

U (G (17),0.) +1. (1) = U (@) + S {0, () -0, (@)} @)

Hence, the definition of d(l) implies inequality (1) for k=4, and therefore, m* is
reachable from m®.

We can show, asthe key heuristic of the paper, that m® isreachablefrom m*, because
each agent has a wide variety of messages satisfying that whichever message she

announces, the resultant allocation never changes. Note i° =2, m"0M , m’, =,
Us (g (M), @.) +t. (M*) =u,(d(w), w,) , and
us (g (m"),w;) +ts(m') = u,(d(w), w,) .
Hence, inequality (1) holds for k =5 with equality, and therefore, m’ is reachable from
m* . In the same way, m° isreachable from nr°.
Notethat m* and m® are weak Nash equilibriaif for every i 21, and every @ # w,
u(d(w) o) zu(X(@),w).

We can show that m’ is reachable from m®, because inequality (2) for j =2 implies
that agent i’ =2 prefers the alocation chosen according to the profile of the pub~l ic
opinions to the alocation that maximizes agent 1's utility. Since i’ =2, m'OM |,
om)=w , agent 3 is the single deviant from @(m’) , and
(m;,,m;,) # (@,(m”), @, (m")), it follows that

U, (g'(M"), @) +t5 (") = U, (X(w),w,) +& , and

u- (g (m’),@,) +t: (M) =u,(d(w), @) .



13

These inequalities, together with inequality (2) for j =2, imply inequality (1) for k =7,
and therefore, m’ is reachable from m°.

In the mechanism G’ , thefinethat agent j —2 paysisawaystransferred to agent j .
Agents | and j—2 have the same neighbor, i.e., agent j —1, and announce opinions
about this agent’s utility index. This property is crucia in showing that the message
profile can move from the set M /M totheset M .

Note i® =3, m*OM , m® = i/’ (w),

Us (g (M), @)+, (M) = uy(X(w), w3) , and
Us (g*(m7),a)i8) +ti*s (m7) = U3()A((a)),a)3) —<.
These imply inequality (1) for k =8, and therefore, m® is reachable from m’.
From these observations, we have proved that m® = " (w) isreachable from m.
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3.4. Discussions

We will show below that when there exist four or more agent, the local direct

mechanism G~ cannot virtually implement a social choice function x in terms of either
Nash equilibrium or undominated Nash equilibrium. Fix wQ arbitrarily. Assume

X(w) #d(w) .
First, consider a message profile mOM satisfying that m, =, , and for every
iON/AL, thereexists j[{i +2,...,i =2} such that

m_; ¢mj’j £m ;tmj_l’j.

41
Note that m is a Nash equilibrium in (G',w), and g (m) =d(w,) # X(w). This implies
that G* cannot virtually implement x in terms of Nash equilibrium.
Next, for every i JN, consider a message m M, satisfying that m ; =w, . Choose
m_; OM_, satisfying that
m; =(@,_,(m),®, (M), @;,,(m)) foral j#i,and
(MM 4) = (@, (M), @, (M) -
Note that
* y & y *
g (m) =(1-&)x(e) +;{ai(w.)+zaj(w,-)}, t(m) =0,
IE3]
and for every m zm,
. , ) /
g’ (m/ ) = (@-e)X(@) +—{ay () + 5 a; (@)}

IEAl

t(m/mf) ==& if (M;0, M 1.0) # (@-,(M), &, (M),
and

t(m/m)) =0 if (], 1;.) = (@ -y (M), @,a(M)) .
Hence, the definition of a; impliesthat m isthe strict best reply to m_;, and therefore,
m is undominated in (G",w) . From the above arguments, we have shown that every
message profile m'OM satisfying that m; =w and m_,, #m; #m,,; #m_,, for all
i ON , is an undominated Nash equilibriumin (G, w) . Hence, it followsthat G* cannot
virtually implement x in terms of undominated Nash equilibrium.

We will also show that when there exist five or more agents, G' can virtually
implement x in terms of stability, simply by using sequences (i*,m)y_, satisfying that
ml"k is undominated for every k [{1,...,K} . Assumethat € isso smal relativeto & that
forevery iOON ,every w 0Q,, and every ' 1Q, ,

€ :
H{ui (ai (a%)!w.) _ui(ai(w.):wl)} <é.
Fix iON, w0Q,,and m UM, arbitrarily. Choose m_, M _; satisfying that

mOM ,
m; = (@,_,(m),w, (M), @;,,(m)) foral jzi-2,
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M_ys % @ 5(m), and (M, ,,m ;) = (&, (M), @, (M) .
Since n>5, it follows i —30{i —1i,i +1}, and therefore,
m/m’DM forall mOM,.
Hence,
. ~ € ~ \
g (m) =(1-&)x(cw(m)) Y > aj(w;(m), t(m)=¢,
jON
whereas for every m #m,
. ~ € , ~ .
g (M) =(1-&)x(cw(m)) +H{ai(m,i) + 5 a;(w;(m)}, and t; (m) =0.
IEA
These equalities, together with the definition of o, imply that
U (g(m),w.) +t(m) >u (g(m/m).@) +t. (m/m) forall mf #m,
and therefore, m is the strict best reply to m, . Hence, we have shown that every
message is undominated, and therefore, G° can virtualy implement x by using
sequences (i*,m*),, satisfying that mf; is undominated for every k O{1,...,K} .

3.5. Weak Stability

A message profile mOM is said to be weakly reachable from another message
profile mOM in (G,w) if there exists a sequence of message profiles (m*)f_, OM X
such that m* =m', and for every kO{1,...,K}, and every iON,

u (g(M™/m),w) +t (M /M) 2u (g(m™), @) +t (M), (5)

where m® =m. Hence, m' isweakly reachablefrom m if and only if m can be switched
to m' through finite steps, in each step of which, multiple agents simultaneously change
thelr messages to messages better than or indifferent to the messages announced in the
last step, provided that each agent expects the others to continue announcing the same
messages. Note that if m' isreachable from m, m' isweakly reachable from m.

In each step, every agent who can change her message may misperceive what the
others will announce. She expects the others to continue announcing the same messages,
but there may exist other agents who will also change their messages at the sametime. In
contrast to weak reachability, reachability guarantees that an agent who can change her
message will correctly perceive the others’ announcements because there exist no other
agents who can change their messages at the same time.

Definition 2: A message profile mOM is weakly stable in (G,w) if mis weakly
reachable from every m' # min (G,w) and no m' # m is weakly reachable from m in
(G,w).

Note that m is weakly stable if and only if m is the unique strict Nash equilibrium
and there exists no other absorbing limit cycle in terms of weak reachability. Note that if
m is stable, it is weakly stable. The following theorem states that, without requiring the
existence of | #1 satisfying inequality (2), every socia choice function is virtually
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implementable in terms of weak stability by using (G™, 1) .
Theorem 3: For every w0Q, u (w) isweakly stablein (G, w).

Consider Example | and think about m®OM . Each agent makes the honest
announcement about her own utility index, and she and her two neighbors announce
different opinions about her own utility index. Even if each agent iCJN unilaterally
changes her message into the honest message, the resultant allocation never changes. This
implies that 1" (w) is weakly reachable from m® through the single step that all agents
simultaneously change their messages into the truthful messages. In this step we do not
requirethe existence j #1 satisfying inequality (2). For the detailed proof, see Appendix
B.
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4. BR-Stable Implementation

4.1. BR-Stability

A message profile mOM is said to be BR-reachable from another message profile
mOM in (G,w) if there exists (i, m*)<_, connected with m such that m* =n, and,
forevery k=1...,K,and every m, OM , ,

U (9(M),0,) +t, (M) 2 u, (g(m /1), 6,) + £, (m /) (6)

Note that m' is BR-reachable from m if and only if m can be switched to nt through
finite steps, in each step of which, an agent unilaterally changes her message to the best
reply to the profilein the last step. If nf is BR-reachable from m, m' isreachable from
m.

Definition 3: A message profile mCO M is BR-stable in (G,w) if mis BR-reachable
fromevery m Z min (G,w) andno m' # m is BR-reachable from min (G, w).

Note that m is BR-stable if and only if m is the unique strict Nash equilibrium and
there exists no other absorbing limit cyclein terms of BR-reachability in that there exists

no nonempty subset M 0 M such that M #{m} , every pair of message profilesin M

are mutually BR-reachable, and there existsno m'0M that is BR-reachable from some

m'OM . If misBR-stable, itis stable.
A stable message profile is not necessarily BR-stable. The following proposition
provides a sufficient condition on wQ under which the truthful message profile

U (w) isstable but not BR-stable in the game (G, w) .

Proposition 4: Fix wQ arbitrarily. Suppose that for every i N, and every «w'0Q,
U (X(w), @) >u (X(w),w) if 0 =, foral jO{i-1i,i+1} and
(W 0 wy) 2 (W, 0,0 ).-
Then, for every sufficiently small € >0, and every sufficiently small & >0, the truthful
message profile u’ (w) isnot BR-stablein (G, w).

Consider Example | and think about m’ M . Let m, = (w;, w,,w,) . Note that
g (M) =Xw), (M) =¢,
g (' /M) = (e, ,,0,) + {0 (@) ~ 0, (@)}, and g’ /m,) =0.
Suppose that the supposition of Proposition 4 holds. Choose ¢ >0 so close to zero that
U, (g"(m"/ M), w,) +t,(m'/m,)
=, (R(0], 2, 0) + {01(62) - 1 (@)} )

> U, (X(w),w,) +& =u,(g" (M"),w,) +t,(m").
Then, agent 2 prefers m, to m; = u,(w) when the others announce m°,, and therefore,
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m, = 1, (w) isnot the best reply to m®. Hence, inequalities (5) do not hold for k =7, and
therefore, ' (w) is not BR-reachable from m by the sequence (i*,m*)}_, . For the
detailed proof, see Appendix B.

4.2. Possibility Theorem

We specify amechanism G* = (M, g*,t") named a modified local direct mechanism

asfollows. Let

M, =Q,_, xQ;xQ, ,x{01 forall iON.
Wedenote m =(m ., m;,m,,m;.,)JM; where

m,; @ ; foral jO{i-1i,i+3,and m;,,0{0% .
Each agent announces not only an opinion about her and her two neighbors' utility
indices but also either integer “0” or integer “1”. The honest message rule in G* is
denoted by p* = (14")., ,» Wherefor every i N, and every wQ,

H(w) = (W, W, 0,,,0).
Each agent never announcesinteger “1” aslong as she announces the honest message. We

redefine M O M by the set of message profiles m satisfying that there exists the profile
of the public opinions co(m) 0Q such that for every i ON,

m;; =@ (m) foral jO{i-Li,i+1 if m_, =1,
and
m;; =@ (m) for at least two agents j O{i —1,i,i +1 if m_,; =0.
The definition of the public opinions & (m) for agent i in G* differsfromthat in G™ in
that it must be announced by all three agentswhenever agent i —2 announcesinteger “1”.
Given this modification, we specify g by
g"(m) = (L= e)x(@(m) + 3 a(m,) if MO,
iON
g*(m)=d(m,) if mOM,
and specify t* by ~
t'(m)=-¢ and t.(m)=¢& if mOM
(m,i—l’rni,i+1’m,i+2) % (a)i—l(m)!a)i+l(m)1o) ’
and m. =(@._,(m),@.(m),®.,,(m),0) foral i' #i,
and
t"(m) =0 and t’,;(m) =0 otherwise.
Each agent i ON is fined if and only if there exists the profile of the public opinions
w(m), sheisthe single deviant from @(m) and either announces integer “1” or does not

announce the public opinions for her neighbors. If she is fined, only agent i +3 is
rewarded. Note that

9" (1" (w)) = X(w) ,and t" (u" (w)) =0 forall iON.
Hence, the mechanism enforces the alocation assigned by X to the true preference
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profile when agents announce the honest message profile. The following theorem
provides a sufficient condition under which (G*,u") implements X in terms of
BR-stahility.

Theorem 5. Suppose that n>4. For every wQ , if there exists j #1 such that
inequality (2) holds, then, u*(w) isBR-stablein (G*,w) .

Hence, given n> 4, asocial choicefunction x isvirtually implementable in terms of
BR-stability by (G*, u™) under the same condition as in terms of stability via modified
local direct mechanisms. The following corollary is straightforward from Theorem 5.

Corollary 6: For every wQ, if n>4 and there exists j #1 satisfying inequality (3),
then, it holds, irrespective of £ >0, that u*(w) isBR-stablein (G*,w) .

Hence, given n =4, irrespective of the upper bound of the amount of fine ¢ >0, a

socia choice function x isvirtually implementable in terms of BR-stability via modified
local direct mechanisms under the same condition as in terms of stability vialocal direct
mechanisms.

The complete proof of Theorem 5 will be provided in Appendix C. The next
subsection provides an example for understanding the logical core of the proof.

4.3. Examplell

This subsection assumesthat N ={1,2,34} , and that the set of utility indices for each
agent iON consists of three distinct elements. Let Q, ={w,w,w’} . Suppose that
w=(w,w,,w,) is the true preference profile, and that agent j =2 satisfies inequality
(2). Let amessage profile m M be specified by

m=(w_,w,w,,,0) foral i =123.
Note that the profile of the public opinionsis given by

(M) = ' = (0], 0}, W3) # ..
Hence, the profile of the public opinionsis different from the true preference profile. We
will show that the honest message profile u*(w) is BR-reachable from m in (G*,w) .

We specify (i*,m");_, , connected with m, by

i'=2, m = (), w,,@,0), i* =1, m = (w}, w;, w;.1),

i*=4, mj = (), w,, w0, i*=3, rnj = (), 05, w,,0)

i°=2, m; = (W, w,,0),0), i°=4, mff = (W, w,,0,,0),

i"=1, ml7 =(w,, w;,@,,0), i°=2, mg = (W, w,,w,,0),

i°=3,and m} = (w,,w,,,,0).
Note m’ = u*(w) . We can show that nt is BR-reachable from m, because the
virtualness provides each agent with the incentive to make the honest announcement
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about her own utility index. Note that for every m, JM,,

m/m, OM , &(mt/m) =,

U (g™ (M /m,),w,) +t; (M /m) < u,(X(w) +%{az(mz,2) —a,(w)} w,) |
and

(9" (), )+ (1) = U, (R(@) + {01, () =0, (@)} ).

Hence, it follows from i* =2 and the definition of a., () that for every m, 1M,
U,(g" (M), ;) +t; (M) 2 (9" (N7 / M), w,) +t; (M / ),
i.e., inequalities (6) hold for k =1, and therefore, m" is BR-reachable from m.

We can show that n? is BR-reachable from m', because agent 1 prefers the
allocation that maximizes her utility to the allocation chosen according to the profile of

the public opinions. Note m*0M , m?, =, and t;(m*/m) =0 for all m OM, . Hence,
forevery mOM,,

u(g*(m*),w) +t (M) = u,(d(w), w)

2u, (9" (M*/m), @) = w(g"(M*/m),wy) +t (m'/my),
which, together with i =1, implies inequalities (6) for k =2, and therefore, m* is
BR-reachable from nv'.

We can show, as the key heuristic of the paper, that m’ is BR-reachable from m?,
because whichever message an agent announces, the resultant allocation never changes.

Note that for every m, OM,, m*/m, OM , and therefore,

u4(g+(m3/m4),a)4) +t:1(m3/m4) =U,(d(w),w,) .
This, together with i®=4, implies inequalities (6) for k =3 with strict equality, and
therefore, m® is BR-reachable from m*. In the same way, m*, m>, m°, and m’ are
BR-reachable from m*, m*, m°, and m°®, respectively.

For every k[0{3....,7} , every message for player i* isthe best reply to m*. For every
k{3...,.6} , every agent is indifferent among all her messages. Moreover, for every
k0{2,...,7} , the message profile m* isaNash equilibriumin (G*,w) .

We can show that m? is BR-reachable from m’, because inequality (2) for j =2
implies that agent i® =2 prefers the allocation chosen according to the profile of the
public opinions to the allocation that maximizes agent 1's utility. Note that m? 0 M,
@(m*) =w, agent 3 isthe single deviant from " (w), and (M},,m;,,m;,) # (¢, w,,0) .
Hence, it followsthat t; (m®) = —t; (m?) =& , and therefore,

U, (9" (m*),w,) + 15 (M*) = U, (X(w), w,) +¢ .
Note that for every m, # 1, (w) ,

u,(g* (M /m,),w,) +t (M /m,) = u,(d(w,),@,) if m*/m,0OM ,
and

Uy (g" (P / my), )+ (P / m,) =u2(%(w>+§{a2(rm,z)—az(wz)},wz)
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if

mt/m,0M .
These inequalities, together with i® =2 and inequality (2) for j =2, imply inequalities
(6) for k =8, and therefore, m® is BR-reachable from m’.

In the modified local direct mechanism G* the fine paid by agent j -3 is aways
transferred to agent j . Agent j announces her opinion about agent j —1's utility index.
Agent j—3 does not announce her opinion about agent j—1's utility index, but the
announcement of either integer “0” or integer “1” by agent j —3 influences how to
determine the public opinion for agent j —1. This property is crucia in showing that the
message profile can move from the set M /M to the set M through the agent j's
best-reply behavior.

Finaly, note i°=3, mOM , m° = u*(w), and therefore,

U (9" (M°), @) + 15 (M°) = Uy(X(w), ),
whereas, for every m,[IM,,

Uy(g" (m°/my), ;) + 15 (M° / my) < Uy (X(w), ) -
Hence, inequalities (6) hold for k =9, i.e., m’ = u*(w) is BR-reachable from m®.
From these observations, we have proved that u*(w) is BR-reachable from m.
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4.4. Direct M echanisms

This subsection shows that not only modified local direct mechanisms but also direct
mechanisms virtually implement x interms of BR-stability. Suppose n> 4, and |Qi| >4
for al i ON . Specify amechanismn G =(M,g",t") asfollows. Let M, =Q, x X Q,
for al i ON. We denote m =(m,,...,m ,)0OM; where m; @ ; for dl jON. Each
agent announces opinions about all agents’ utility indices. The honest message rule in
G” is denoted by ™ = (1), Where ' (w)=w for al wOQ . There are no slack

messagesin G”, but |Q"| >|Q/

foral iCON, i.e., the size of the set of message profiles

in G islarger thanin G*.
Weredefine M O M by the set of message profiles m satisfying that there exists the
profile of the public opinions c(m)0Q such that for every i ON,

m;; =@ (m) for n-1 or more agents.
We specify g~ by
g" (M) = L-e)x@m) += Y a,(m,) if mOM

nit

g”(m) =d(m,) if mOM,
and, we specify t~ by

7 (m) ==& and t,(m) =& if mOM , m_ #@,(m), and m. =&(m)

for
al i #i,

and

t”(m)=0 and t,,(m) =0 otherwise.
Note that

g (U (w)) =X(w),and t” (1 (w))=0 forall iON.
The following theorem provides a sufficient condition under which (G™,u")
implements X in terms of BR-stability.

Theorem 7: Suppose that n=4, and |Q|=4 for all iON. For every wOQ, if there
exists j #1 such that inequality (2) holds, then, ™ (w) isBR-stablein (G, w).

Proof: See Appendix D.

Hence, given n=4 and |Q;|= 4 for all iON, asocial choice function x is virtually

implementable in terms of BR-stability by (G~, ") under the same condition as by
(G*,u"). Thefollowing corollary is straightforward from Theorem 7.

°InG", the public opinions are not determined according to either the majority rule or the unanimity rule.
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Corollary 8: For every w0Q, if n24, |Q|=4 for all iON, and there exists j #1
satisfying inequality (3), then, it holds irrespective of € >0 that u~ (w) is BR-stablein
(G, w).

Hence, given n>4 and |Q;[=4 for all i 0N, irrespective of the upper bound of the
amount of fine ¢ >0, asocia choice function x is virtually implementable in terms of
BR-stability by (G™, ") under the same condition as (G*, u*).

45. Discussions

In the same way as local direct mechanisms, it follows that when n>4, either
modified local direct mechanisms or direct mechanisms cannot virtually implement a
socia choice function x in terms of either Nash equilibrium or undominated Nash
equilibrium. In the same way aslocal direct mechanisms, it followsthat when n>5, both
direct mechanisms and direct mechanisms can virtualy implement x in terms of
BR-stability by using sequences (i, m"),, satisfying that m', is undominated for every
kO{%...,K}.

Either integer mechanisms or modulo mechanisms cannot virtually implement a
socia choice function in terms of BR-stability. In integer mechanisms, the wanted
message profile is never BR-reachable from every message profile triggering off the
integer game. In modulo mechanisms, the set of all message profiles triggering off the
modulo game is an absorbing limit cycle in terms of BR-stability. On the other hand, the
Abreu-M atsushima mechanisms can virtualy implement it in terms of BR-stability.

We can construct other mechanisms that virtually implement a social choice function
in terms of BR-stability. Assume n=>5. Consider a class of mechanisms in which each
agent i N announces about her own and her four neighbors’ utility indices, i.e., about
(w_,,...,,,). We can construct a mechanism within this class that, together with the
associated honest message rule, implements the virtual social choice function X interms
of BR-stability, provided that thereexists j #1 satisfyinginequality (2). Hence, for every
socia choice function with the existence of | #1 satisfying inequality (2), there exist

mechanisms that virtually implement it in terms of BR-stability such that there exist no
slack messages, the size of the set of message profilesisfinite and constant with respect to
the number of agents as well as the upper bound of fine.
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4.6. Weak BR-Stability

A message profile m' M is said to be weakly BR-reachable from another message
profile mOM in (G,w) if there exists a sequence of message profiles (m*),_, such that
m* =m', and for every k=1,...,K , and every i ON, either m =™, or

U (g(m"),@) +t (M) 2 u (g(m* /), @) +t (m*/my) foral n{OM,,
where m’ =m. Hence, m' is weakly BR-reachable from m if and only if m can be

switched to m' through finite steps, in each step of which, multiple agents
simultaneously change their messages to their best reply to the message profilein the last

step.

Definition 4: A message profile mOM is weakly BR-stable in (G, w) if mis weakly
BR-reachable from every mf # min (G,w) and no m' # m is not weakly BR-reachable
from min (G,w).

Note that m is weakly BR-stable if and only if m is the unique strict Nash
equilibrium and there exists no other absorbing limit cycle in terms of weak
BR-reachability. Note that if m is BR-stable, it is weakly BR-stable. The following
theorem states that without requiring the existence of j #1 satisfying inequality (2),

every social choice function x is virtually implementable in terms of weak BR-stability
by using (G*, ")

Theorem 9: If n>4, then, for every wQ, u*(w) isweakly BR-stablein (G*,w) .

Consider Example Il and think about m® 0 M . Each agent i N makes the honest
announcement about her own utility index, and she and her two neighbors announce

different opinions about her own utility index. She also announces ny’;,, =1, and
therefore, the public opinion for agent i +2 must be announced by all relevant agents.
Evenif eachagent i ON unilaterally changes her message into any message, the resultant
allocation never changes. Hence, " (w) isthe best reply to m®, and therefore, u*(w) is
weakly BR-reachable from m® through the single step that all agents simultaneously
change their messages into the honest messages. In this step we do not require the
existence of | #1 satisfying inequality (2). We do not use this assumption in the steps
that m° is BR-reachable from m also. Hence, we have shown without requiring the
existence of j #1 satisfying inequality (2) that u" (w) isweakly BR-reachable from m.
For the detailed proof, see Appendix B. In the same way, we can show that given that
n=4,forevery w0Q, u (w) isweskly BR-stablein (G ,w) . We can show the same
result for the mechanism in Subsection 4.5. Hence, given that n= 4, every socia choice

function can be virtually implemented by either G*, G or the mechanism in Subsection
4.5, together with their respective honest message rules.
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5. Adaptive Dynamics

This section characterizes stability and its variants from the dynamical viewpoint. Fix
amechanism G and a preference profile cwQ arbitrarily. Consider situations in which
agents are faced with the same game (G, w) infinitely many times. At the end of every

period t =12,..., al agents can observe their announced message profile m(t)OM .
Agents behavior is described by a naive model of adaptive dynamics defined by
(m(0), p), where m(0)OM , p=(p)ign,» B = (R M),y » and p(dm):M; - [0]]
isaconditional probability functionon M, . Two different scenarios, i.e., alternating play
and simultaneous play, are provided.

5.1. Alternating Play

This subsection assumes that at the beginning of each period, at most one agent can
change the announcement. For every t =1, we define i(t) N by

t=vn+i for some nonnegative integer v >0,
that is, i) =1, i(2)=2,...,i(n+1) =1,..., and so on.”In period 1, all agents except
agent (1) =1 announce the message profile m(0) M . In every period t =1, agent i(t)
announces any message m,, M, with probability p,,(m, [m(t-1)), whereas any

other agent i Zi(t) announces the message announced in the last period, i.e., m(t-1).

Definition 5: A message profile mOM isthe long-run behavior in G with alternating
play with respect to p=(p,),,., if for every m(0)JM , and every A[1(0], there exists

a positive integer T such that on the assumption of aternating play, at least with
probability 1- A, the model (m(0), p) induces agents to announce m(t) =m in every

period t =T .

Note that m is the long-run behavior if and only if, irrespective of which message
profile agents announce in period 1, agents come to continue announcing m in the long
run. We introduce a condition on (w, p) asfollows.

Condition 1: Forevery iON, m OM,,andevery mOM ,
p(m|m)>0 if and only if
u (g(m'/m),w) +t(m/m) 2u (g(m),w) +t(m).

Condition 1 implies that in every period t =1, agent i(t) announces any message
with a positive probability if and only if this message is better than or indifferent to

'° The specificity of (i(t));., may not be necessary. All we need is that for every i (I N, there exists an
infinite increasing sequence of periods (t(i,S)) <., such that i(t(i,s)) =i for al s=12,..., i.e, each
agent i JN hasinfinitely many chances to change her message.
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m, (t—1). The following proposition states that Condition 1 is a sufficient condition

under which the stable message profile is characterized by the long-run behavior in G
with aternating play.

Proposition 10: Suppose that (w, p) satisfies Condition 1. Then, a message profile
mOM isstablein (G,w) ifandonlyifitisthelong-runbehavior in G with alternating
play with respectto p.

Proof: See Appendix E.

We introduce another condition on (w, p) asfollows.

Condition 2: For every iON, m OM,, andevery mOM ,
p,(m |m) >0 if and only if either m =m or u,(g(m/m),w)+t (M /m)
2 U (g(m'/m), ) +t;(m'/my) foral m'OM;,

Condition 2 implies that in every period t =1, agent i(t) announces any message
with positive probability if and only if this message is either equa to m,,(t —1) or the
best reply to m(t —1) . The following proposition states that Condition 2 is a sufficient

condition under which the BR-stable message profile is characterized by the long-run
behavior in G with alternating play. We can prove the proposition in the same way as
Proposition 10, by replacing stability and inequality (1) by BR-stability and inequalities
(6), respectively.

Proposition 11: Suppose that (w, p) satisfies Condition 2. Then, a message profile
mOM is BR-stable in (G,w) if and only if it is the long-run behavior in G with
alternating play with respectto p.

5.2. Simultaneous Play

This subsection assumes that at the beginning of each period, two or more agents may
simultaneously change their announcements with positive probability. In every period
t>1 , each agent iON announces any message m UM, with probability

p(m [m(t-1).

Definition 6: A message profile mOM is the long-run behavior in G with
simultaneous play with respectto p=(p,),,, iIf forevery m(0)JM , andevery A1(0/]],

there exists a positive integer T suchthat onthe assumption of simultaneous play, at |east
with probability 1-A, the model (m(1), p) induces agents to announce m(t) =m in

every period t >T.

The following proposition states that Condition 1 is a sufficient condition under
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which the weakly stable message profile is characterized by the long-run behavior in G
with simultaneous play.

Proposition 12: Suppose that (w, p) satisfies Condition 1. Then, a message profile
mOM is weakly stable in (G,w) if and only if it is the long-run behavior in G with
simultaneous play with respect to p.

Proof: See Appendix E.

The following proposition states that Condition 2 is a sufficient condition under
which the weakly BR-stable message profile is characterized by the long-run behavior in
G with simultaneous play. We can prove the proposition in the same way as Proposition
12, by replacing weak stability and inequalities (5) by weak BR-stability and inequalities
(8), respectively.

Proposition 13: Suppose that (w, p) satisfies Condition 2. Then, a message profile
mOM isweakly BR-stablein (G,w) if and only if it isthelong-run behavior in G with
simultaneous play with respect to p.

5.3. Discussions

We have assumed that each agent always has static expectations on the other agents
announcements. We can provide the same results when we replace this assumption by a
weaker assumption that each agent has static expectations only if the others have
announced the same messages for a long time. As a generalization of (m(0), p), we

define amodel of adaptive dynamics by (m(0),q) where g =(q,),,, h denotesa partial
history of message profiles, g =(q (dh)),.u,» @d g, (dh):M, - [0]] is a conditional
probability function on M, . Similarly we define the long-run behaviorswith respect to q.
We introduce two conditions on (w,q) asfollows.

Condition 3: Thereexist apositiveinteger T >0 and apositivereal number p >0 such
that for every i N, every m OM,, every t =T , and every h=(m(1))!_,,
a(m|h) = p if g(m|h)>0,
q(m|h)>0if m()=m,
and if thereexists m'O0M suchthat m(t) =m' foral 7 O{t-T +1,...,t}, then
g (m [h) >0 if and only if u (g(m'/m),c) +t(m'/m) = u (g(m),w) +t (mM).

Condition 4: There exist apositiveinteger T >0 and a positive real number p >0 such
that for every i N, every m OM,, every t =T , and every h =(m(1))!_,,

a(m [h)=p if g(m|h)>0,

g(m[h)>0 if m(t)=m,
and if there exists MOM such that m #m and m(t) =m’ for al T O{t-T +1,...,t},
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then
g(m [h)>0if u(g(m/m),w)+t(m/m)
2 U (g(m'/m), ) +t;(m'/m) foral m'OM;,
and
g (m [h) =0 if u(g(m/m),c) +t(m/m) <u(g(m),w) +t(m).

Condition 3 holds if Condition 1 holds. Condition 4 holds if either Condition 2 or
Condition 3 holds. Condition 4 is the weakest among these four conditions.

In the same way as in the “only if” part of Proposition 10, it follows that under
Condition 3, the stable message profile isthe long-run behavior with alternating play with
respect to g. In the same way as in the “only if” part of Proposition 11, it follows that
under Condition 4, the BR-stable message profile is the long-run behavior with
alternating play with respect to g. In the sameway asin the“only if” part of Proposition
12, it follows that under Condition 3, the weakly stable message profile is the long-run
behavior with simultaneous play with respect to g. In the same way as in the “only if”
part of Proposition 13, it follows that under Condition 4, the weakly BR-stable message
profile is the long-run behavior with simultaneous play with respect to q. Hence, it
follows that under Condition 3, the stable message profile is the long-run behavior with
respect to q. Under Condition 4, the BR-stable message profile is the long-run behavior
with respect to q irrespective of whether with aternating play or with simultaneous play.
Both aternating play and simultaneous play may be even unnecessary for the long-run
convergence to the stable, or BR-stable, message profile. All we have to require is that
each player has infinitely many chances to change her message.

From the above arguments, we can obtain the following convergence results. With the
existence of j#1 satisfying inequality (2), the honest message profile ' (w) is the
long-run behavior in the local direct mechanism G™ under Condition 3 whenever each
agent has infinitely many chances to change her message. Under Condition 3, 1" (w) is

the long-run behavior in G* with simultaneous play. With the existence of j#1
satisfying inequality (2), the honest message profile u* (w) is the long-run behavior in
the modified local direct mechanism G* under Condition 4 whenever each agent has
infinitely many chances to change her message. Under Condition 4, u*(w) is the

long-run behavior in G* with simultaneous play. The same results hold for the direct

mechanism G~ and the mechanism in Subsection 4.5.

In modulo mechanisms, under Condition 2, the wanted message profile is always the
long-run behavior with simultaneous play because it is weakly BR-stable. However, in
modul o mechanisms, under Condition 2, the wanted message profileis never thelong-run
behavior with alternating play because it is not BR-stable. In integer mechanisms, under
Condition 2, the wanted message profile is aways the long-run behavior with
simultaneous play because it is weakly BR-stable.

This point is related to Cabrales (1999), which retrieved the honor of integer
mechanisms by showing that the wanted outcomes can be achieved by boundedly rational
agents. However, in integer mechanisms, under Condition 2, the wanted message profile
is never the long-run behavior with alternating play because it is not BR-stable. On the
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other hand, in Abreu-M atsushima mechanisms, the wanted message profileis always the
long-run behavior with respect to q under Condition 4 irrespective of whether with
aternating play or with simultaneous play, because it is BR-stable. Cabrales (1999)
pointed out that Abreu-Matsushima mechanisms have an instability property in that if
agents are alowed to announce even worse messages, there exists a trade-off between
close implementability and stability of the wanted message profile. In the mechanisms
studied in the present paper there exists no such trade-off.

The mechanisms studied in the paper have a nice feature with respect to the speed of
convergence. In the local direct mechanism G, the honest message profile " (w) is
always reachable from every message profile through at most 5n+ 2 steps. This number
of steps does not depend on the upper bound of the amount of fine. The same property
holds for BR-reachability in the modified local direct mechanism, in the direct
mechanism, and also in the mechanism addressed in Subsection 4.5. In contrast, in
Abreu-Matsushima mechanisms, the number of steps crucially depends on the upper
bound of the amount of fine. Indeed, this number tends to infinity as the upper bound of
the amount of fine approaches zero, which impliesthat it takes very long time to converge
to the wanted outcome in Abreu-Matsushima mechanisms relative to the mechanismsin
the paper.
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6. Concluding Remarks

This paper has investigated implementation of social choice functions in terms of
stability and its variants. We have shown that with aminor restriction every social choice
function is virtually implementable in terms of stability via local direct mechanisms,
which are of particularly ssmpleform. We have shown that it isvirtually implementablein
terms of BR-stability via dlightly more complex but still very simple mechanisms such as
modified local direct mechanisms and direct mechanisms. Moreover, if multiple players
are alowed to simultaneously change their announcements, every social choice function
isvirtually implementable with no restrictions.

The paper could be regarded as an early attempt to provide new ideas of designing
mechanisms with bounded rationality. The results of the paper depend on the assumption
that models of adaptive dynamics are naive so that irrespective of the past history of play,
each agent always chooses any best reply with positive probability. This naive
assumption might be inappropriate in some case when agents are more sophisticated so
that they may learn not to announce a particular message even if it isabest reply. Hence,
afurther attempt might be needed to investigate other definitions of stability on the basis
of more general and careful dynamic refinement of equilibrium.

It is important to investigate stable implementation in the incomplete information
environments. The paper depends on the assumption that an agent’s utility index isknown
to other agents. This assumption guarantees that alocal direct mechanism and its variants
have slack message profiles. The results rely on the existence of such slack message
profiles. In contrast, in the incomplete information environments, direct mechanisms
have no slack message profiles, because agents have no jointly possessed information.
Hence, a question in the incomplete information environments would be what is the
minimum requirement of adding slack messages to direct mechanisms.
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Appendix A: Proof of Theorem 1

Fix w[@Q arbitrarily. Lemma A-1 is based on the fact that the virtualness serves to
provide each agent with the incentive to make the honest announcement about her own
utility index.

Lemma A-1: For every m[l M, if a message profile m' [ M is given by
M = (& ,(M), @, @ ,,(m)) for all iON,

then, M OM isreachablefrom m in (G, w).

Proof: Note @(m') =é@(m). Consider (i*,m*)2", connected with m satisfying that for
every k=1,...,n,

i =k, ml =(@_ (M), m. @, (M),
and, forevery k=n+1,...,2n,

i“=k-nand m| =(@._ (M),w.,@, (M).
Note m*" =m' . Note that for every k =1,...,2n,

t (m) 2t, (M),
forevery k=1,...,n,

. . ~ £
g (M) =g'(m) =@-g)x(@(m) += % a;(m,),

nig
and for every k =n+1,...,2n,

(M) = (1- 0 +£ (. +£ (m ).
g (m") = (1-&)x(cw(m)) n;Of.(w.) n;a.(m,.)
Hence, it follows from the definition of a, ([} that for every k =1,...,2n,

u. (9" (M), w,) +t, (M) =u, (9" (M), w,) +t, (M),
and therefore, m' isreachable from m. Q.E.D.

Lemma A-2 is based on the fact that agent 1 becomes dictatorial when there does not
exist the profile of the public opinions.

Lemma A-2: For every mOM , if
m =(&_,(m), @, @.,(m)) for all iON, and
w @ (m) for someiON,
then, there exists m' M that is reachable from m in (G, w).

Proof: Suppose w, # ,(m). Specify m' by
my =y, M, 0{@,(m),w}, M, =&, (w),and m{=m foral i#1.
Suchan m exists because |Q,| > 3. Since M OM , it follows that

u (g (M), @) +t (M) = u(d(w), @)
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e g * *
2 U, (1 &) x(w(m)) e > a;(w;)w) =u(g (M),w)+t (M),
joN
and therefore, m' is reachable from m. By replacing 2 and n by n and 2, respectively,
we can obtain the same result in the case of w, Z @,(m).
Next, suppose w, =@,(m) and w, =,(m) . Assume that agent 3 is not the single
deviant from @(m) . Consider (i*,m*)2_, connected with m satisfying that

=3, M, 2w, (M, L) = (@, @, (M),

iT+1 im+1
i”=1, m, 0{w,,m, ,}, and (M ., ) = (&, _,(M),w.) .
Such a sequence (i*, m*)2_, exists because |Q,| > 3. Note m' M because w, = @,(m),
but note m? M . Hence, it follows that
g (m)=g'(m) =(1- f)X(w(m))Jf—za (w;), t.(m) =0,

n on
g (m*) =d(w,), and tiz(m )=0.
Hence, for each k[1{1,2},
u. (g (M), @)+t (M) 2u, (g (M™),w,)+t, (M),
and therefore, there exists m' M that is reachable from m. Next, assume that agent 3is
the single deviant from ¢(m) . Since agent n —1 isnot the single deviant from cw(m) , we
can obtain the same result by replacing 3and 2 by n-1 and n, respectively.  Q.E.D.

LemmaA-3isbased on the key heuristic that for each agent, there exist awide variety
of messages such that whichever message she announces, the resultant allocation never
changes.

Lemma A-3. For every mOM , there exists mMOM that is reachable from m in
(G",w) such that for every iON,

m, =w,and m_,; #m, #m,; #m_;.

Proof: Since mDM we can choose i N satisfying that
CEMEM, EM

T+1,0

Consider (ik,m )k:1 that is connected with m satisfying that for every k =1,...,n
i“=k, m\.=m,.,

mkk.k =w, if ik¢f,

mk|k+1D{a)k Yif ik +1#i,

+1’ | +2| +1
rnl",ik—lm{a)ik—l’mkﬂ,ik—l} if i _l;tl !
forevery k=n+1,...,2n,
i“=k-n, m,, =w,k.

mk|k+1D{a)k }if ik +1=1,

+1’ | +2| +1



m|kk,ik—1D{wik—rm|kk_+l1,ik—1} if ik _1:iA’
and

mi = if jE
Note that for every k[{1,...,2n},

m‘OM ,
for every k=1..,n+i -1,

g (m)=d(m,) and t, (m")=0,
and, for every k =n+i,...,.2n,

g’ (m*) =d(c) and t, (M) =0.
Hence, for every k=1,...,2n,

u. (9" (M), w,) +t, (M) 2u, (9" (M™),w,) +t, (M),
and therefore, m™" isreachable from m. Note that for every iON,

M = and m, # e # i, #

Q.E.D.

Lemma A-4 is based on the fact that there exists an agent j #1 satisfying inequality
(2), together with the key heuristic of the paper.

Lemma A-4: For every mOM , if for every iON,
m; =w and m_; 2m; #m,,; #m_,,
then, there exists m' OM that is reachable from m in (G",w) suchthat @(m)=w.

Proof: Let j#1 be the agent satisfying inequality (2). Consider (i*,m*)!} that is
connected with m satisfying that
m = (., . w.,) foral k=1.,n-1,
i*=k+j foral k=1..,n-3,
i"2=j-1,andi"=].
Note that for every k=1,..,n-2, m*OM , m{, =,
g (M) =d(w),and t (m)=0foral iON.
Notethat m"*0OM , &(m" ) =w, and agent j -2 isthesingle agent i satisfying that
m'™ # (@0 (M), (M), @, (m™™).
Note also that m~5 , , # @, ,(m"™). Hence, it follows that
g (m'™) =X(w) and t,. (M) =£.
These imply that for every k =1,...,n-1,
U (g (M), @) +t, (M) 2u, (g" (M), @) +t, (M),

and therefore, m"™ isreachable from m. Q.E.D.
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By using these lemmata, we can show that u" (w) is stable in (G, w). For every
iON,andevery m # it (w), if m; #a, then

U (g (U (@), @)+t (' (@) = U (R(@), @)
>ui(%(w)+§{ai (M) -, (@)}, @)

2u (9" (K (w)/m),@) +t (1 (w)/m),
whereas, if m; =« , then

u(g (1 (@), w) +t (1 (W) = u(X(w),w) >u (X(w),w) &

=u (g (1 (@)/m),w)+t (4 (w)/m).
Hence, ' (w) isastrict Nash equilibriumin (G, w) . LemmaA-1impliesthat if mOM
and @(m) =w, then u (w) is reachable from m. Lemmata A-3 and A-4 imply that if
mOM , then there exists M OM reachable from m such that (M) =w. LemmaA-2
implies that if mOM and w(m) #w, then there exists m OM reachable from m .
Hence, u’ (w) is reachable from every message profile, no other message profile is
reachable from " (w) because it is a strict Nash equilibrium, and therefore, ' (w) is
stablein (G, w).
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Appendix B

Proof of Theorem 3: Fix wQ arbitrarily. Note that the proofs of Lemmata A-1, A-2,
and A-3 do not depend on the existence of | #1 satisfying inequality (2). In the same

way asin the proof of Theorem 1, u’ (w) isastrict Nash equilibriumin (G, w) . Wewill
show that for every mOM , if m,=w,and m_;#zm,#m,; #m_, for al iON,
then u'(w) is weakly reachable from m in (G',w) . Note that for every iON ,
m/ i (w)OM , and therefore,

U (g (M/ 1 (@), @)+t (M/ 1] (@) = (d(@). @) -
Hence, for every iIN ,

U (g (M/ g (@), @)+t (M/ 1 () =u, (g (M), )+ (M),
and therefore, 1" (w) is weakly reachable from m in (G',w). This property, together
with Lemmata A-1, A-2, and A-3, implies that for every mOM , u (w) is weakly

reachable from m.
Q.E.D.

Proof of Proposition 4: Suppose that 11" (w) is BR-stablein (G',w) . Then, there exist
mOM , iON, and (0, al,al,,) % (@_,@,w,,) suchthat for every jO{i —1i,i +1},
m,.; =, foratleasttwoagents j'0{j -1 j,j+1,
forevery jO{i—1i,i +1},
m, ; =w; forsome j'O{j -1 j, j +§ Ai},
and for every m'OM;,
u (g (m/ i (w), )+t (M/ & (@) 2u(g (M/n),w) +t (m/nY)
(B1)
Note from the Supposition of Proposition 4 that

u (g (m/ 1 (@), @) +t (M/ 1 (w)) SUi(?(w)+£Z{0!j(mj,j) —a(w)}w)+< .

J#

Let m =(w_, @, a,,),andlet @Q denote the preference profile satisfying that
@, =, foral hO{i -Li,i+3,and @, =w, foral hO{i —-Li,i+1.
Notethat w(m/m) =&, m =(&_,,&0,&,,) , and therefore,

(g (M), @)+t (/) 20, (R@) + 3 {ary(m; )~ (@)}, @)

J#I

Since € >0 and & >0 are small, the supposition of Proposition 4 implies that

B(R@) + 5 {0 (M, ) - (@)} @)

>U (%) + 5 @, (m, ) -a(@)})@) +£.

Hence, it follows from the above inequalities that
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u (g (m/mf), @)+t (m/mf) > u, (g (M/ 1 (@), @) +t (M/ 14 ().
This contradicts inequalities (B1). Q.E.D.

Proof of Theorem 9: Fix wQ arbitrarily. The proof of Lemmata C-1, C-2, and C-3 do
not depend on the existence of j # 1 satisfying inequality (2). In the same way asin the

proof of Theorem 5, u*(w) is astrict Nash equilibrium in (G*,w) . We will show that
for every mOM , if for every iON, m_#Zm, =w #m,,; #m_; and m_,; =1, then
U (w) is weakly BR-reachable from m in (G*,w) . Note that for every iOON ,
m/ " (w) O M , and therefore,

U (9" (M/ 1 (@)),@) + (M7 17 (@) = U, (d(@),@).
Hence, for every iON ,

u (9" (M/ g (@), @) +t7(M/ 7 (w)) =u (9" (M), @) +t7(m),
and therefore, u*(w) is weakly BR-reachable from m in (G*,w) . This property,
together with Lemmata C-1, C-2, and C-3, implies that for every mOM , u*(w) is
weakly BR-reachable from m in (G, w)
Q.E.D.
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Appendix C: Proof of Theorem 5

Fix (0,mOQxM arbitrarily.

Lemma C-1: For every mOM , if there exists a single agent iJN such that
m % i’ (w), then, u*(w) isBR-reachablefrom m in (G*,w).

Proof: Note c(m) =w, m/ u" (w) = u* (w) , and therefore,
g"(m/ i (w)) = X(w) , " (M/ " (w)) =0,
and, for every mOM,,

+ S & + /
g"(m/m) = X(w) +E{ai(m,i)_ai(w|)} ,and t"(m/m) <0.
The definition of a; (0] impliesthat for every m M,
(g™ (m/ 1" (w)), @)+ (M/ 47 (w)) 24, (9" (M/ 1Y), @) + 7 (m/ny),
and therefore, that p'(w)=m/y’(w) is BR-reachable from m
Q.E.D.

Lemma C-2: For every mOM , either u*(w) is BR-reachable from m in (G*,w), or
there exists M OM that is BR-reachable from m in (G",w).

Proof: Suppose that " (w) is not BR-reachable from m and there exists no m'[J M
BR-reachable from m. Then, there exists (i, m*);_, connected with m such that for
every k=1...,n,

i =k ' m* 0 M ' (m|kk,ik—1’ quk,ihl’mkk,ihz) = (GJik—l(m)’(Dihl(m)’o) ’
and, for every m', OM, ,

U (g7 (M), @)+t (M) 2u, (g7 (M /M), @)+t (m* /) .
Note that (m";_,,m",,,m".,) =(@_,(m),,,(m),0) for al iON, and that m" is BR-

reachable from m. Hence, without loss of generality, we can assume that m satisfies
that

(M iz M jars M i12) = (@0, (M), @, (m),0) foral iON.
Consider (i, mk)*? that is connected with m satisfying that for every k =1,...,n,
ik = k H ITIIIT( = ((Ijik_l(m))(AJiK )('Bik_'_l(m)lo) H

for k=n+1,
=0, (M mimt ) = (@ (M), @, @, (M),
m , =0 if &,(m) # w,,
m. , =1if @,(M) = w,,

for k=n+2,

ik :1’ (rnlkk]ik_lln‘llliyiklmli ):((:)ik_l(m)!a}iklo)l and n‘llkklz D{(:)‘Z(m)7w2} .

ik+2
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Note m*OM foral kzn+2,but m™*20M .

Fix k =1,...,n arbitrarily. Suppose inequalities (6) for every k'<k-1. Then, m**
is BR-reachable from m, and thereforg, it follows from the supposition at the beginning
of this proof that there existsno m' M BR-reachable from m*™. For every mi, OM.,

Uik(g+(mk)7a)ik) +tit (m) = U (g+(mk/rn|"k)1a)ik)+ti+k (mk/m,"k) if mk/m:'k 0M.
Since m* OM , mf , =co, , and (', ', mY'.,.) = (@, (M), & ,,(m),0) for all i DN,
it follows that for every mf, M, ,

Uik(g+(mk)7a)ik) +tit (m) = U (g+(mk/rn|"k)1a)ik)+ti+k (mk/m,"k) if mk/m:'k OM .
Since inequalities (6) automatically hold for k=1, the above arguments imply
inequalities (6) for every k =1,...,n, and therefore, m" is BR-reachable from m.

Since m" is BR-reachable from m, it follows that u*(w) is not BR-reachable from

m", and there existsno m' M BR-reachable from m", Hence, for every m, OM.,,
u.(g"(m"),w,)+t (m") 2u,(g"(m"/n,),,)+t (m"/m) if m"/m, OM.
Since m" =(@_,(m),w,@,,(m),0) for al iON, it follows from Lemma C-1 that there
exist two agents iON such that m’ #a@(m") . This implies that
th.(m"™) =t%..(m") =0, and therefore, for every m,, OM. ...,
U (97 (M), @) + 85 (M) 2 U (@ (M7 10,),00,) + 0 (¥ / 1L
m"™ /., O M .
Hence, inequalities (6) hold for k =n+1, and therefore, m™* is BR-reachable from m.

Inqualities (6) for k=n+2 are straightforward from the fact that i"* =1,
m™?0M , and m';? =w,. Hence, m"*? is BR-reachable from m. But this contradicts
m“20M .

Q.E.D.

Lemma C-3: For every m[] M , there exists ' OM that is BR-reachable from m such
that for every iON, m{_;; #m}; =w #m,,; #m_;; and m_,; =1.

Proof: Since mOM , there exists r N such that either
m,#m.,#m, #m, adm_, =0,
or
m, . #m  forsome j0{r-1r+L% and m_, =1.
We can choose (i(1),...,i(4)) O{r - 2,...,r +1}* asfollows. If m_,, =0, then,
iD=r-2,i(2=r-1,i(3=r+1l,and i(4)=r.
If m_,, =1, then,
IQO{r=-Lr+3 , iQ0{r-Lr+3AiQ} , My, #m,, i(d=r-2, ad
i(4)=r.
We specify (i, m)2", connected with m in the following way.
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(1) For every k[{1,...,2n},

M =@, and my =1,
(2) For every k{1,...,n},

i*=r+k+1if KO{1..,.n—-4

i*=i(k-n+4) if KO{n-3,...,n},
for every i O{i* -1,i* +1},

mi, #w and my #m* foral jO{i-1i,i +3 /i*} if there exists

w 0Q, suchthat w' #w and w{#m'j‘yi‘l foral jO{i —Li,i +3 /i*},
and

m , = if there exists no such o 0Q; .
(3) For every kO{n+1,...,.2n},

i*=k-n,
and, for every i O{i* -1,i* +1} ,

mk, #@ and m #m forall jO{i-Li,i +3 Ai%}.
Note that for every k[{1,...,2n},

m* / n, OM for all m’, OM,, , and

g (m) =d(w) if i*=1.
Hence, inequalities (6) hold for every k 0{1,...,2n}, and therefore, m™ is BR-reachable
from m. Note that for every iON , mf, 2m = #n?, 2y, and nf, =1.
Q.E.D.

Lemma C-4: For every mOM , if for every iON,

Moy 20, =w #m,,; #m_; and m_,; =1,
then, there exists M OM that is BR-reachable from m such that there exists a single
agent i ON satisfying that m # 1" (w).

Proof: Consider (i*,m*)72; connected with m satisfying that for every k O{1,...,n -1},
m' = i (w),
i*=j+k if kO{L...,n—-4},
i"=j-2,i"=j-1,andi" =],
where inequality (2) holdsfor j #1. Note that
m‘OM and g*(m*) =d(w,) foral kO{1,...,n-2}, m"*0OM ,
M= (w) foral iz -3, g"(m"™) =X(w), and t; (M) =¢.
Note that for every m{ # u; (w),
t(m"/m) =0,
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g (0 /1) = (@) + ey (o )~ (@)} =,
and

g"(m™) =d(w) if M # 0.
These imply inequalities (6) for every kO{1,..,n-1} . Hence, m"" is BR-reachable
from m. Since agent j -3 is the single deviant from u*(w), we have proved this

lemma.
Q.E.D.

By using these lemmata, we will show that u*(w) is BR-stable in (G*,w) . Note
that for every i ON, and every m # " (w), if m; #a , then

U (0" (U (@), @)+t (1" (@)) = U, (@), @)
>ui(ﬁ(w)+%{ai(m,i>—ai(w.>},w.)

2u (9" (1" (w)/ m),w) +t" (1" (W) I m),

whereas, if m; =« , then

U (9" (1" (@), @)+t (1" (@) = u (X(w),w) >u (X(w),w)~¢

=u (9" (M (@)/m),w) +t (1" (w)/m).
These inequalities imply that u* (w) isastrict Nash equilibriumin (G*,w) . Lemma C-
1 implies that for every mOM , if there exists the single agent iON such that
m # i’ (w), then u*(w) is BR-reachable from m. Lemmas C-3 and C-4 imply that for
every mOM , there exists m OM BR-reachable from m such thgt there exists the
single deviant from u* (w). Lemma C-2 implies that for every mOM , either u*(w) is
BR-reachable from m or there exists mMOM that is BR-reachable from m. These
observations imply that u*(w) is BR-reachable from every message profile. Note that
no m# u*(w) isreachablefrom u*(w) because u*(w) isastrict Nash equilibrium.

From the above arguments, we have proved that u*(w) is BR-stable in (G*,w),

and therefore, we have completed the proof of Theorem 5.
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Appendix D: Proof of Theorem 7
Fix wOQ and mOM arbitrarily.

Lemma D-1: For every m(l M , if that there exists the single agent i 0N such that
m # i, (w), then, u” (w) isBR-reachable from m in (G, w).

Proof: Notethat @(m)=w and m/ u (w) =~ (w) . Hence,
g (m/ " () = X(w), t (m/ " (w)) =0,
and for every m M,

g (m/ ) = %(@) +{a, () - a1 (@)}, and " (m/nf) <O,
The definition of a, () impliesthat for every m{OM,,

u(g” (M/ 1 (), @)+t (M/ 1" () 2u(g” (M/ M), @)+t (m/ ),
and therefore, that pu (w)=m/y (w) is BR-reechable from m
Q.E.D.

Lemma D-2: For every mOM , if p” (w) is not BR-reachable from m in (G™,w),
then, there exists i M that is BR-reachable from m in (G™,w) such that there exist
rON and r'ON such that for every «w, JQ,,

m, #w foratmost n—-2 agentsiON, and

m , #w, for at most n—3 agents i ON /{r'},

Proof: We specify (i*,m)?", that is connected with m asfollows.
(1) For every k=1,...,2n,

m‘OM , M i« =@, (M),
and for every m\, IM_ ,

u (97 (M), )+t (M) 2u, (g7 (M /), )+t (m/nd) if m/nd, OM .

(2) Forevery k=1...,n,

i*=n-k+1,
and for every k=n+1,...,2n,

i“=2n-k+1.

If for every k=1...,.2n, and every mf, UM, satisfying m"/rrfk OM ,

u (g7 (M), +t (M) 2u, (g7 (M/m),w) +t, (m/nf),
then inequdities (6) hold for every k=1,...,2n, and therefore, m*" = 1" (w) is BR-
reachable from m, which is, however, a contradiction. Hence, there exist k' (0{1,...,2n}
and m, OM_, such that m"/nil'k OM , inequalities (6) hold for every k <k', and



Ui (g**(m"),a)ik) +ti*k*(mk) <Uik(g**(mk/n'rk):wik)"'t::(mk/”fk) .
Suppose that k'0O{n,2n} , i.e, i* #1. Then, there exist rON, iON/i*}, and
i"ONAi,i“} suchthat mf # ", . Notethat for every ni, OM, ,
g” (M /) =d(m) and (M /) =0 if m“/ml, OM .
Hence, without loss of generality we assume that mf,  O{m’,,m\" } . For every o 0Q,
m. #a, foratmost n—2 agents r"ON,
and for every r'ON/{i,i",i¥},
m., #w foratmost n-3 agents r" ON /{r'}.
Thisimplies that the lemma holds true.
Supposethat k' 0{n,2n} , i.e., i¥ =1. Note that
m =, foral iIONAS andal jON/i}.
Hence, mk"lzwl for all iON/AL , and therefore, there exist r ON /AL and i ON AZ
suchthat m # w, . Note that for every i, OM, ,
g” (M /) =d(m) and (M /) =0 if m“/ml, OM .
Hence, without loss of generality, we assume m', O{m'{,«} and m} =c,. For every
w 0Q,,
m., #w foratmost n-2 agents r"ON,
and for every r' ON/{i',i¥},
m., #a, foratmost n—3 agents r"ON/{r'’}.
Thisimplies that the lemma holds true. Q.E.D.

Lemma D-3: For every mOM , if there exist rON and r'ON such that for every
w 0Q,,

m, #w, foratmost n—-2 agentsiON, and

m , #w, for at most n—3 agents i ON /{r'},

then, there exists M OM that is BR-reachable from m such that for every rON,

m,r :a)f’
for every r'ON,
m’,r ¢wr'

and for every « 0 Q, ,
m , #w, for at most n—3 agents i ON/{r'}.

Proof: Without loss of generality, we can assume r' #r , because there are at least two
such agents r' when n>4. Let N(w,m) O N denote the set of agents i' N satisfying

that m.; = . We specify (i, m“):Z; that is connected with m asfollows.
(1) For every k[{1,...,2n},



My =0
(2) For every k[{1,...,n},
i“zi* foral K O{L...,n} {K},
it=r',i"=r,
and for every i O{i* -1i* +1},
either |N(m|"kyi,m")| =1,0r |N(m|"k’i,m")|s|N(a)l',m")| foral wOQ,.
(3) For every kO{n+1,...,2n},
i*=k-n.
and for every i O{i* -1,i* +1},
mi £,
and
either |N(m|"kyi,m")| =1, or |N(m|"k’i,m")| s|N(a)|',m")|
foral & 0Q, {w}.
Since n=4 and |Q;|=4 foral iON, it follows that for every k O{1,...,2n},
m*/m, OM fordl ml, OM,, , and
g’ (M) =d(w,) if i* =1.
This implies that inequalities (6) hold for every k0{1,...,2n}, and therefore, m*" is BR-
reachable from m. Note from the specification of (i*,m*)?", that for every rON,

=,
forevery r'dN,
m # @,

and for every w, Q. ,
n’' # o for at most n—3 agents i ON /r'} .
Q.E.D.

Lemma D-4: For every mOM , if for every rON,

m,r :wr’
for every r'0ON,
rnr’,r ¢(Jl)r’

and for every « 0 Q, ,
m, #w, for at most n—-3 agents i ON/{r'},

then there exists MM that is BR-reachable from m such that there exists the single
agent i ON satisfying that m{ # y;" (w) .

Proof: Choose j #1 satisfying that inequality (2) hold. Consider (i*,m)!; that is
connected with m satisfying that for every k0{1,...,.n-1},



m = 1 (@),
i*=j+kif kO{L..,n-4},
i"*=j-2,i"*=j-1,andi""=j.
Note that for every k{1,...,n—-2},
g (M) =d(w),and m/m OM foral m,OM,,
and therefore, inequal itleﬁ (6) hold. Note that
m~OM ,
m™ =y (w) foralizj-3,
g" (M) =X(w) , and £} (M™) =& .
Note also that for every mi’ # " (w),
t;*(mn_l/rﬁj’) =O,
*% n—: " A~ 8 i H Ui
g (m l/rr{j):X(w)+ﬁ{aj(rr{j,j)_aj(wj)} if m; ., =W,
and
g (M) =d(w) if M, zw,,.

These inequalities imply that inequalities (6) hold for k =n-1, and therefore, m"™* is
BR-reachable from m. Since agent j —3 is the single deviant from u™ (w), we have
proved this lemma.
Q.E.D.

Lemma D-5: For every mOM , if thereexistsno M OM that is BR-reachable from m,
then there exists M OM that is BR-reachable from m in (G, w) such that there exist
rON and r'ON such that for every «w, JQ,,

m, #w, foratmost n—-2 agentsiCON, and

m , #w, for at most n—3 agents i ON/{r'},

Proof: Notethat for every i #1, and every n{OM,,

u(g” (m/n),@) +t" (m/nf) >u,(g” (M), @)+t (m) if m/n{OM .
Note also that for every n'OM. ,

(g” (m/m),t" (m/nf)) =(d(m,),0) if m/nOM .
Hence, there exists the best-reply nfC0M, to m satisfying that for every jON,

either |N(n1fj,mk)| =1,0r |N(m’fj,mk)|s|N(a)’j,mk)| for all o 0Q;.
Thisimpliesthat thereexists r N and r' 0N such that for every ) 0Q,,

m, #w, forat most n-2 agents i N, and

m, #w, fora most n—3 agents i N /{r'} .

Q.E.D.
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By using these lemmata, we will show that u” (w) is BR-stable in (G,w) . Note
that for every iOON, and every m # 1" (w) , if m; #c, then

U (9" (U (@), @)+t (1" (@) = U (X(0), )
> U (X(w) +§{ai(m,i) ~a,(@)}w)

2u(g" (K (W)/m),w)+t (1 (w)/m),

whereas, if m; =« , then

U (g (1" (@),w) + (1 (W) =u (K@), @) >u(Xw),w) ¢

=u(g (K (@)/m),w)+t" (U~ (w)/m).
These inequalitiesimply that ™ (w) isastrict Nash equilibriumin (G, w).

Lemma D-1 implies that for every m[l M , if there exists the single deviant from

U (w), then u” (w) is BR-reachable from m. Lemmata D-2, D-3 and D-4 imply that
for every mOM A ™" (M)}, there exists M OM that is BR-reachable from m such that
there exists the single deviant from ™ (w) . Lemmata D-5, D-3, and D-4 imply that for
every mOM , either 11" (w) is BR-reachable from m, or there exists M OM that is
BR-reachable from m such that there exists the single deviant from u™ (w). These
observationsimply that 1" (w) is BR-reachable from every message profile.

From the above arguments, we have proved that 1~ (w) is BR-stable in (G, w),
and therefore, we have compl eted the proof of Theorem 7.
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Appendix E

Proof of Proposition 10: We can choose a positive real number b >0 satisfying that
forevery iON,every mOM,,andevery mOM ,
p;(m |m)=bif p(m|m)>0.

Suppose that mOM is stable in (G,w) . Choose a positive integer K sufficiently
large. For every mOM , and every t>1, there exists M(m,t) =(i*,m)<, that is
connected with m' such that m* =m, and for every k 0{1,..., K}, inequality (1) holds
and i*=i(t+k) . Fix t=1 and (m(r))',0M"' arbitrarily, and denote
M (m(t),t) = @i*, m)E_,. Given the history (m(r))!_, up to period t, it holds at least with
probability b >0 that the realized history (m(7))'"5 up to period t + K satisfies that

m(t + k) =m* for al kO{1,...,K},
and therefore,

m(t + K) =m.
This implies that agents almost certainly come to continue announcing m in the long
run, and therefore, m is the long-run behavior in G with aternating play with respect
to p.

Suppose that m is the long-run behavior in G with aternating play with respect to
p . Note from the definition of the long-run behavior that once agents announce m,

they continue announcing it forever. This implies that for every i O N, there exists no
other message that is better than or indifferent from m , provided that the other agents

announce m, . Hence, m is a strict Nash equilibrium, and therefore, there exists no

other message profile that is reachable from m. Note aso from the definition of the
long-run behavior that for every m(1) ] M , there exists a positive integer K >0 and a

history (m(t));' up to period K+1 such thaa m(K+1)=m , and for every
t0{2,...,.K+1,

P (M, (1) [m(t -1)) >0, and

m(t) =m((t -1 foral i zi(t).
This implies that there exists (i, m*)<, connected with m(1) such that m =m, and
for every k O{1...,K}, inequality (1) holds, where m° =m(1). Hence, m is reachable
from every message profile, and therefore, we have proved that m is stable in (G, w).
Q.E.D.

Proof of Proposition 12: We can choose a positive real number b >0 satisfying that
forevery iON, every mOM,, andevery mOM ,
p;(m |m)=bif p(m|m)>0.
Suppose that mOM is weakly stable in (G,w) . Choose a positive integer K
sufficiently large. For every m' OM , there exists I'(m) = (m*), such that m* =m,
and for every k O{1,...,K}, and every i ON, inequality (5) holds, where m’ =m' . Fix



t>1and (m(r))', OM" arbitrarily, and denote I'(m(t)) = (m*);,. Given the history
(m(1))!_, up to period t, it holds at least with probability b™ >0 that the realized
history (m(1))!2 upto period t + K satisfiesthat

m(t + k) =m* for al kO{1,...,K},
and therefore,

m(t + K) =m.
Hence, agents almost certainly come to continue announcing u(w) in the long run, and
therefore, m isthe long-run behavior in G with simultaneous play with respect to p.

Suppose that m is the long-run behavior in G with simultaneous play with respect
to p. In the same way as in the proof of Proposition 10, there exists no other message

profile that is weakly reachable from m. Note that for every m(1) M , there exists a
positive integer K >0 and a history (m(t))<;' up to period K+1 such that
m(K +1) =m, and for every t 0{2,...,.K +1} ,

p(m(t)|m(t-2) >0 foral iON.
Hence, it follows that there exists a finite sequence (m*“),, such that m* =m, and for
every kO{L,...,K}, and every i ON, inequality (5) holds, where m° = m(1). Hence, m
is weakly reachable from every message profile, and therefore, we have proved that m
is weakly stable in (G,w)
Q.E.D.
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