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Abstract 

 

 The present paper shows that the Folk Theorem under imperfect (public) information 

(Fudenberg, Levine and Maskin (1994)) can be obtained under much weaker set of assumptions, if 

we allow communication among players.  Our results in particular show that for generic symmetric 

games with at least four players, we can drop the FLM condition on the number of actions and 

signals altogether and prove the folk theorem under the same condition as in the perfect monitoring 

case.   
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1. Introduction 

 The present paper shows that the Folk Theorem under imperfect (public) information 

(Fudenberg, Levine and Maskin (1994), FLM hereafter) can be obtained under much weaker set of 

assumptions, if we allow communication among players.  The FLM Folk Theorem considers 

long-term relationships, where players can publicly observe some signal, whose probability 

distribution is affected by their unobservable actions.  The FLM Folk Theorem shows that in such a 

situation, any feasible and individually rational outcomes can be sustained when the signal takes on 

sufficiently many values relative to the number of available actions.  In particular, in generic 

symmetric games with K actions for each player and L different values for the signal, the FLM Folk 

Theorem obtains when 2K-1 ≤ L.  

 While this condition covers a wide range of applications with “rich” signal spaces, it fails 

when only coarse information is available.  For example, the FLM Folk Theorem fails when the 

outcome (of the signal) is either success or failure (L=2).  What is perhaps more troubling, however, 

is the fact that we may not have a precise idea on the number of possible signal outcomes and 

actions in any given application.  Therefore, it would be valuable to know if the Folk Theorem also 

holds for the case when the number of possible outcomes is rather small.  In the present paper, we 

show that the Folk Theorem also holds for the case with small signal space, once we let players 

communicate.   

In particular, we show that for generic symmetric games with at least four players, we can 

drop the FLM condition on the number of actions and signals altogether and prove the folk theorem 

under the same condition as in the perfect monitoring case.  We mentioned the symmetric case as it 

provides a clean sufficient condition, but the symmetry is not essential; our condition for the Folk 

Theorem, (3), can also be satisfied for a wide class of (asymmetric) games, even when the signal is 

binary (success or failure) so that the available information is minimal.  

Our equilibrium has the following features.  At the end of each period, each player 

announces which action he has just taken.  Players can tell a lie but we will construct equilibria 

where they voluntarily reveal the true actions1.  Thus the players’ future payoffs can depend both on 

the signal and actions, and a rich class of information can be generated when players randomize.  

The basic logic is similar to the random sampling technique for quality control.  A factory manager 

randomly picks up one of the products assembled by workers and examines its quality.  Even 

though the outcome of the test is only binary (pass or failure), it can discipline a large number of 

workers.  Note well that, to provide incentives for the workers, their compensation should depend 

                                                        
1 Communication has been introduced in repeated games with imperfect private monitoring, where 
each player privately receive a different signal about the past actions (Ben-Porath and Kahneman 
(1996), Compte (1998) and Kandori and Matsushima (1998)).  The main role of communication in 
those works, which mainly look at pure strategies, is to coordinate the players’ actions, rather than to 
generate more information. 
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not only on the test result (the value of the signal) but also on whose product was examined (the 

action of the manager).  Similarly in repeated games, if players randomize over different actions 

and the future payoffs can depend both on the realized signal and actions, rich information can be 

generated to discipline the players2. 

 A similar idea can be embodied in games without communication.  Even without 

communication, it is possible to construct an equilibrium where players randomize over different 

actions and the future payoffs depend both on the realized signal and actions.  Such an equilibrium 

is called a private equilibrium, which is ignored by the majority of the existing work, including FLM 

and Abreu, Pearce and Stacchetti (1990).  A companion paper by Kandori and Obara (2000) 

explores this issue and shows that such an equilibrium can provide significant welfare 

improvements. 

 

2. The Model 

 A group of players i=1,2, …, N repeatedly play a stage game over an infinite time horizon, 

t=0,1,….  The stage game payoff function for player i is given by ui(ai, ω), where ai ∈ Ai is player 

i’s action and ω ∈ Ω is publicly observable signal.  Each player’s action is not observable to other 

players.  Given an action profile a ∈ A = A1×⋅⋅⋅×AN, the probability of ω is denoted by p(ω|a).  (We 

assume that Ω and A are finite sets).   Player i’s expected stage game payoff is defined by 

g a u a p ai i i( ) ( , ) ( )=
∈∑ ω ω

ω Ω
.  The average payoff of player i in the repeated game is given by 

0
(1 ) ( ( )),t

it
g a tδ δ∞

=
− ∑  where a(t) refers to the action profile in period t and δ∈(0, 1) is the 

discount factor.  We denote a mixed strategy profile by α∈∆=∆1×⋅⋅⋅×∆N, and abuse the notation to 

represent the corresponding expected payoff and signal distribution by gi(α) and p(ω|α).  Finally, 

we define the stage game payoff profile by g=(g1,…,gN). 

 Let us now introduce communication in the model.  In each period, each player i takes an 

action, observes ω, and then3 (simultaneously with other players) announces a message mi.  As we 

examine the case where the players reveal their action, we assume mi∈Ai.  The players can tell a lie 

but we will construct equilibria where they voluntarily tell the truth, as we will see in the next 

section.   

 

3. The Folk Theorem Conditions under Communication 

                                                        
2 More detailed explanation can be found in Section 2 (see the discussion following Table 2). 
3 Alternatively, we can assume that the players communicate before the realization of ω.  Our 
results in Section 4 and 5 show that the players truthfully reveal their actions after each realization of 
ω.  Then, under the same arrangements the players have incentives for truth-telling before observing 
ω.  Hence our results hold for either specification. 
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Our equilibrium has the property that each player’s future payoff is independent of what 

he announces.  (Therefore, he has a weak incentive to tell the truth4.)  At the same time, we need to 

avoid punishing players simultaneously, as it entails welfare loss (see the explanation below).  To 

put these ideas together, we employ the following construction; for any given pair of players, say 1 

and 2, we transfer some of 1’s future payoff to 2, when 1’s cheating is suspected (and vice versa).  

Compared to the case where 1 and 2 are punished simultaneously, the transfer entails negligible 

welfare loss.  This is one of the essential ideas employed by the FLM folk theorem.  The transfer 

between 1 and 2 is based partly on the publicly observable signal ω, as in FLM, but partly on the 

announced actions of other5 players (i=3,4,…,N ), which is the key to the improved efficiency 

obtained in the present paper.  The transfer scheme to provide the right incentives can be 

constructed whenever player 1’s actions are statistically distinguished from player 2’s, so that we can 

tell which player is suspected of deviation (the precise conditions will be presented shortly).  Note 

also that it needs at least three players, which will be assumed throughout the paper. 

 First let us introduce some notation. For a given pair of players i and j, we denote their 

opponents’ action profile by a A Aij ij k
k i j

− −
≠

∈ ≡ ∏ ,
,

and their mixed action profile α-ij∈∆-ij is defined 

similarly.  Let Ri be the matrix whose rows and columns are indexed by ai and (ω,a-ij) respectively, 

with its (ai,(ω,a-ij))-element given by 

 

 Pr( , | ) ( ) ( ).ω ω αa a p a aij i k k
k ia j

−
≠

= ∏∑   

Roughly speaking, Ri summarizes the observability of various actions of player i.  Each row in Ri 

represents the distribution of (ω, a-ij) given each action of player i, and recall that (ω, a-ij) is the 

relevant information to determine the transfer between i and j.  As this matrix depends on who else 

is in the given pair (i.e., player j) and other players’ mixed action profile α-i, we denote Ri= Ri(j,α-i).  

Now define Qij(α) by “stacking” Ri on Rj; 

.
),(
),(

)( 







=

−

−

jj

ii
ij iR

jR
Q

α
α

α  

If Qij(α) has the maximum row rank, we can statistically distinguish what i does from what j does, 

                                                        
4  It is possible to provide a strict incentive for truth telling by modifying our equilibrium 
construction.  Kandori and Matsushima (1998) show that when players privately observe random 
variables that are not independent, we can provide strict incentive to tell the truth.  Hence it is not 
obvious that mixed actions, which are totally independent, can also be revealed with strict incentives.  
The crux of the matter is that, conditional on ω, the mixed actions are in fact not independent.  The 
details can be found in the discussion paper version of the present paper (Kandori (1999)). 
5 This induces the truth-telling: players i=2,3,…,N has an (weak) incentive to tell the truth, as their 
future payoffs are not affected by what they say. 
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by looking at (ω,a-ij), and it is possible to construct the efficient punishment (transfer) discussed 

above.  This is basically the pairwise full rank condition of FLM, except that we utilize both ω and 

a-ij to police player i and j, while FLM utilize only ω.  The crux of the matter here is that letting 

players randomize and supplementing the signal ω with realized actions a-ij provide more 

information.   

 The crude intuition for this can be obtained by the random sampling analogy discussed in 

the introduction, but let us provide more detailed explanation here.  Suppose we have a joint 

production problem with three players, where each player’s (unobservable) effort level is either H 

(high) or L (low).  The observable signal ω takes on two values, S (success) or F (failure).  Assume 

now a (possibly mixed) action profile α is being played.  Without communication, we must 

determine the transfer between player 1 and 2 solely on the basis of ω.  This is the traditional 

approach taken by FLM.  The probability distribution of ω is given by the following matrix6 (the 

counterpart of our matrix Qij(α)): 

 
 S F 

a1=H   
a1=L   
a2=H   
a2=L   

Table 1 

 

For example, the first row represents the distribution of ω, when a1=H, given that other players are 

mixing according to α-1.  To distinguish 1 and 2’s behavior, we need that those rows are “distinct” in 

the sense of linear independence.  As there is one linear constraint 7  for the rows, the 

distinguishability holds when the matrix has the maximum possible row rank 3.  This is the FLM 

pairwise full rank condition.  This condition, however, cannot possibly be satisfied in this example, 

as the matrix has only two columns.  In other words, the binary signal ω=S,F cannot possibly 

distinguish two players’ actions.   

 Suppose, in contrast, that we let players randomize and introduce communication, to use 

both ω and a3 (the truthfully announced action by player 3) to determine the transfer between player 

1 and 2.  The distribution of (ω, a3) changes according to 1 and 2’s actions, and it is summarized by 

our matrix Q12(α): 

 

 

                                                        
6 The entries are left blank, as they are not essential for the argument here. 
7 α1(H)×(the first row)+α1(L)×(the second row) represents the distribution of ω under α, which is 

also equal to α2(H)×(the third row)+α2(L)×(the fourth row). 
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a3=H a3=L  
S F S F 

a1=H     
a1=L     
a2=H     
a2=L     

Table 2 

 

Now that we have more columns8, it is possible that the matrix has the maximum row rank 3 (for a 

generic choice of entries9).  In other words, with the richer information (ω, a3), we can now 

distinguish player 1 and 2’s actions.  To understand why this is the case, following consideration 

may help.  When player 1 reduces his effort, it may always increases the chance of failure (F), but 

the magnitude of this effect depends on (among other things) player 3’s effort level.  For example, if 

there is a strong complementarity between 1 and 3’s efforts, the reduction of 1’s effort sharply 

increases the chance of failure, when 3 is working hard (while the effect may be minute when 3’s 

effort is low, as 1’s effort is rather useless without the help of 3).  When the complementarity is not 

so strong between 3 and 2’s efforts, in contrast, the reduction of 2’s effort has somewhat different 

effects on the relative likelihood of (ω, a3).  Hence we may statistically distinguish 1 and 2’s effort 

levels by looking at (ω, a3).   

This is why letting 3 randomize and reveal his action through communication may be 

useful.  Although 3’s action itself does not contain any information, the informativeness of the signal 

ω (concerning 1 and 2’s actions) does in general depends on 3’s action.   

 Let us now generalize the observations obtained in the above example.  Let qij(ak) (k=i,j) 

and qij(ω,a-ij) be the ak-th row and the (ω,a-ij)-th column of matrix Qij(α).  The simple case presented 

in Table 2 would be useful to understand the (unavoidably) heavy notation.  The number of the 
columns is | | | |Ω× −A ij , but as in Table 2 (see footnote 8), the identity 

Pr( , | ) Pr( ) ( )ω α
ω

a a a aij k ij ij ij− − − −= =∑  for k=i,j imposes some linear dependence among them.  

Namely, we have 

                                                        
8 Note, however, that there is one linear dependence for the columns, as the first two columns add up 
to α 3 1111( )( , , , )'H , which is proportional to the sum of the last two columns α 3 1111( )( , , , )'L . 
9 It is not completely obvious that we can suitably perturb the entries by slightly changing the 
information structure p(ω|a), as they also depend on the mixed strategy profile under consideration.  
Note that we have to consider various mixed strategy profiles to obtain the Folk Theorem.  Lemma 
2 formally addresses this issue.   



 6























= −−−∑

1
.
.
.
1

)(),( ijijijijq αααω
ω

 

for each a-ij, and this implies that we have |A-ij|–1 linear constraints for the columns10.  (Note that 

those constraints do not exist in FLM (see Table 1)).  Therefore, at most 
(| | | |) (| | ) (| | )| |Ω Ω× − − = − + =− − −A A Aij ij ij1 1 1  

 

(| | )
,

Ω− +
≠
∏1 1Ak
k i j

     (1) 

columns can be independent.  The number of rows are |Ai|+|Aj|, but as in the above example (see 

footnote 7), there is one linear constraint among them.  Namely, we have 

 

q a a q a aij i i i
a

ij j j j
ai j

( ) ( ) ( ) ( )α α=∑ ∑  

 

as both sides are equal to the probability distribution of (ω, a-ij) under mixed strategy profile α.  

Hence at most  

 

|Ai|+|Aj|–1      (2) 

 

rows can be independent.  (Note that the same constraint also appears in FLM.)  Therefore, a 

necessary condition for Qij(α) to have the maximum row rank is (1) ≥ (2), or 

 

 (| | ) | | | | | | .
,

Ω− ≥ + −
≠
∏1 2A A Ak
k i j

i j  for each i≠j (3) 

 

Once this is satisfied, matrix Qij(α) has the maximum row rank for a generic choice of its elements.  

However, it is not completely obvious that we can freely perturb each element by changing the 

                                                        

10 Fix any a ij−
0 , we have 

  ))'1,...,1()(,(
)(

1),(
)(

1 0
0 == ∑∑ −
−−

−
−− ωω

αω
αα

αω
αα ijij

ijij
ijij

ijij

qq  for all a aij ij− −≠ 0 .  
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underling information structure p(ω|a) (see footnote 9).   Lemma 2 in Appendix shows that this is 

not a problem.  This leads us to the following folk theorem.  Let vi be player i’s minimax value 

v g ai
a i i i

i i

=
−

−max min ( , )
α

α .  Define the set of feasible and individually rational payoff set by 

V*={v∈cog(A)|∀i vi ≥ vi }, where cog(A) is the convex hull of pure strategy stage payoffs. 

 

Proposition (Folk Theorem with Communication).  Suppose N≥3 and V* has non-empty interior.  

Under (3), for a generic choice of the signal distribution, any feasible and individually rational 

payoff profile can be approximately achieved by a sequential equilibrium with communication, if the 

discount factor is sufficiently close to unity: 

  

A sketch of proof is presented in Appendix, and the full proof can be found in the discussion paper 

version Kandori (1999).   

 

 Condition (3), (| | ) | | | | | |
,

Ω− ≥ + −
≠
∏1 2A A Ak
k i j

i j , is always weaker than the FLM condition, 

| | | | | |Ω ≥ + −A Ai j 1, 

whenever N≥3.  Recall that our equilibrium with communication works only when N≥3, and we are 

assuming |Ak|> 1 (otherwise player k has nothing to choose).  Let us now examine when (3) is likely 

to be satisfied.  Note that (3) is most difficult to hold when |Ai| and |Aj| are large and |Ak| is small 

(k≠i,j).  However, even in such a strongly asymmetirc case, (3) can be satisfied if there are many 

players.  As we may assume that |Ω|>1 (otherwise no information is available) and each player has 

something to choose, the left side of (3) is at least 2N-2.  This quickly becomes a large number as N 

increases, so we conclude that our Folk Theorem is likely to hold when there are many players.  If 

players have similar numbers of actions, in contrast, our Folk Theorem quite generally holds.  A 

clean statement is possible when players have the same number of available actions, such as in (the 

finite version of) the Green-Porter oligopoly model (1984), where Ai = {0,1,2,…,H} is the set of 

possible outputs.  Let K=H+1 be the number of available actions.  Then, condition (3) reduces to 

(|Ω|–1)KN-2 ≥2K–2, and this is always satisfied11 when N≥4.  In other words, we can drop the FLM 

conditions altogether for generic games in this class. 

 

Corollary 1.  Consider a game where the players have an equal number of actions, and suppose 

N≥4 and V* has non-empty interior.  Then, for a generic choice of the signal distribution, the Folk 

                                                        
11 As we exclude the case where there is no information, we have |Ω|≥2 .  Then N≥4 implies 
(|Ω|-1)KN-2 – (2K-2) ≥ K2 – 2K + 2 ≥ (K-1)2+1 ≥ 0. 
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Theorem under imperfect public information holds with communication. 

 

 A similar result also holds for symmetric games.  As some restrictions are imposed by the 

symmetry of p(ω|a), we have to check if the generic full rank properties (Lemma 2 in Appendix) also 

hold for symmetric games.  The answer turns out to be positive, and we obtain the following result 

(see the discussion paper version Kandori (1999) for the proof). 

 

Corollary 2. Consider symmetric games, and suppose N≥4 and V* has non-empty interior.  Then, 

for a generic choice of the (symmetric) signal distribution, the Folk Theorem under imperfect public 

information holds with communication. 

 

Remark: As d’Aspremont and Gerard-Varet (1998) note, the contract problem in Appendix with 

λ=(1,…,1) can be interpreted as the static contract (moral hazard) problem in joint production with 

risk neutral players.  Our proof shows that efficiency can generically be achieved with 

communication in such a problem, under a quite weak condition (3).  In particular, players in a joint 

production problem may well have the same number of available actions, and our Corollaries show 

that we can generically achieve efficiency with at least four players, when the compensation scheme 

depends not only on the outcome ω but also on verifiable messages of players. 
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Appendix  
 

 

 

Here we present the sketch of proof of our Folk Theorem (Proposition).  This is done by the 

Fudenberg and Levine (1994) (FL hereafter) algorithm, which allows us to determine the limit 

(δ→1) equilibrium payoff set in the repeated game by means of a set of associated static contract 

problems.  Let us present the modified version of the FL algorithm to fit our model with 

communication.  Let mi=ci(ai,ω) be player i’s communication strategy in the stage game (i.e., player 

i announces that mi=ci(ai,ω)∈Ai is the action he has taken, when he actually chose ai and the realized 

signal is ω).  Let x(ω,m)=(x1(ω,m),…, xN(ω,m)) represents the “transfer” to each player, given ω 

and announced action profile m.   For a given welfare weight λ=(λ1,…,λN)≠0, we define the 

“maximized welfare” (or, following FL, maximum “score”) k(λ) by 

 

 
, ,

sup ( ( ) E[ | , ])
c x

g x c
α

λ α α⋅ +  

 
s.t. (IC) ( ' , ' ) ( ) E[ | , ] ( ' , ) E[ | ' , , ', ]

(B) ( , ) 0,
i i i i i i i i i i i ii a c g x c g a x a c c

m x m
α α α α

ω λ ω
− − −∀ ∀ + ≥ +

∀ ∀ ⋅ ≤
 

 

where E[x|α,c] is the expected value of x(ω,m) under (α,c).  This could be interpreted as a static 

contract problem, where the social planner tires to maximize the social welfare by means of side 

payment scheme x.  This is closely related to the incentive constraints for the repeated game, where 

x corresponds to the variation of continuation payoffs in the repeated game12.  This is a rough 

intuition why the above programming problem is useful in calculating the equilibrium payoff set in 

the repeated game.  Define half space D(λ) = {v∈ℜN|λv≤k(λ)} and let Vc(δ) be the set of perfect 

semipublic13 equilibrium payoffs in the game with communication under discount factor δ.  Then 

we have the following14. 

 

 

 

                                                        
12 Condition (B), which may be interpreted as the budget constraint in terms of the contract problem 
interpretation, stipulates that the payoff variations cannot go beyond the boundary of the equilibrium 
payoff set, whose tangent vector is given by λ. 
13 A perfect semipublic equilibrium is a sequential equilibrium where each player’s action at time t 
depends only on the realization of past signals ω(s) and messages m(s), s<t.   
14 This is the modification of FL algorithm by means of communication, obtained by Compte (1998) 
and Kandori and Matsushima (1998). 
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Lemma 1 (FL Algorithm with Communication).   

⊃
→

)(lim
1

δ
δ

cV ∩D(λ), 
             λ≠0 

if the right hand side has non-empty interior15. 

 

The proof of Proposition is obtained by showing that the maximum possible welfare can be attained 

for each λ≠0 in the above programming problem.  Lemma 2 below, which corresponds to the 

pairwise and individual full rank conditions of FLM, plays a key role in designing incentive 

compatible side payment schemes which entail no welfare loss (λ•E[x|α,c]=0).  An informal 

description of such transfer schemes is given at the beginning of Section 3, and the formal 

construction can be found in the discussion paper version (Kandori (1999)). 

 

Lemma 2 (Generic Full Rank Conditions with Communication). Under (3), the following 

statements are true for a generic choice of signal distribution p(ω|a). 

(i) For any ε>0 and any pure strategy profile a, there is a mixed strategy profile α such that 

||g(a)-g(α)||<ε and Qij(α) has the maximum row rank for any pair i, j. 

(ii) Take any ε>0 and any profile (ai, α-i) where ai is a best response against α-i.  Then there is a 

profile (a’i, α’-i) such that ||gi(ai, α-i)- gi(a’i, α’-i)||<ε, a’i is a best response against α’-i, and Rj(i, (a’i, 

α’-ij)) has full row rank for each j≠i. 

 

Remark: (i) and (ii) are generic versions of the pairwise and individual full rank conditions of FLM, 

suitably modified to fit our model with communication.  The individual full rank condition (ii) is 

necessary to support the point that gives player i his maximum payoff.   

 

Proof. (i)  For each pair i, j, fix a profile α(i,j)=(a0
i,a0

j,α0
-ij), where α0

-ij is completely mixed16.  

Then, each element of matrix Qij(α(i,j)) is p(ω|a) times a positive constant (i.e., the probability of a-ij 

under α0
-ij).  Since (3) guarantees that the number of potentially linearly independent columns 

exceeds the number of potentially linearly independent rows, it is clearly possible that Qij(α(i,j)) has 

the maximum row rank for a particular choice of the information structure of the game (we denote it 

by p*(ω|a)). Take any (|Ai|+|Aj|–1)×(|Ai|+|Aj|–1) submatrix of Qij(α(i,j)) that is nonsingular when 

p(ω|a)= p*(ω|a), and denote its determinant by Dij.  Since Dij is a polynomial in p(ω|a) and nonzero 

for p*(ω|a), we conclude that it is nonzero on an open and dense set, say P(i,j), in the space of all 

                                                        
15 If we used mixed communication strategies in the definition of kc(λ), we would have equality 

rather than set inclusion ⊃.  For our purpose this weaker version suffices. 
16 The first two elements in α(i,j), a0

i, and a0
j, are interpreted as the degenerate mixed strategies 
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possible signal distributions.  In other words, Qij(α(i,j)) has the maximum row rank under (3) in an 

open and dense set, say P(i,j), in the space of all possible signal distributions p(ω|a).  Thus in an 

open and dense set ∩ P(i, j), for each pair i,j, Qij(α(i,j)) has the maximum row rank.  Now fix a  
             i≠j 

p(ω|a) in this generic set. Since Dij is also a polynomial in α and nonzero for α=α(i,j), we conclude 

that it is nonzero on an open and dense set, say ∆(i,j), in the space of mixed strategy profiles.  Thus, 

for a generic choice of the signal distribution, Qij(α) has the maximum row rank for each i, j on an 

open and dense set ∩ ∆(i, j). Claim (i) then follows from the continuity of the stage payoff function  
             i≠j 

g. 

(ii) By a similar argument as above, we can show that for a generic choice of the signal distribution, 

there is an open and dense set ∆’ such that for any pair i,j and any a”i,  matrix Rj(i, (a”i, α”-ij)) has 

full row rank if α”∈∆’.  Choose α’∈∆’ so that α’-i is sufficiently close to the given profile α-i.  

Then, we have ||gi(ai, α-i)- gi(a’i, α’-i)||<ε by Berge’s Theorem (on the continuity of maximized value), 

and Rj(i, (a’i, α’-ij)) has full row rank for each j≠i. � 

                                                                                                                                                                   
which play a0

i, and a0
j with probability one. 
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