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EMPIRICAL LIKELTHOOD-BASED INFERENCE IN CONDITIONAL MOMENT
RESTRICTION MODELS

YUICHI KITAMURA, GAUTAM TRIPATHI, AND HYUNGTAIK AHN

ABSTRACT. This paper proposes an asymptotically efficient method for estimating models with con-
ditional moment restrictions. Our estimator generalizes the maximum empirical likelihood estimator
(MELE) of Qin and Lawless (1994). Using a kernel smoothing method, we efficiently incorporate the
information implied by the conditional moment restrictions into our empirical likelihood-based proce-
dure. This yields a one-step estimator which avoids estimating optimal instruments. Our likelihood
ratio-type statistic for parametric restrictions does not require the estimation of variance, and achieves
asymptotic pivotalness implicitly. The estimation and testing procedures we propose are normalization

invariant. Simulation results suggest that our new estimator works remarkably well in finite samples.

1. INTRODUCTION

Estimation of econometric models via moment restrictions has been extensively investigated in
the literature. Perhaps the most popular technique for estimating models under unconditional moment
restrictions is Hansen’s (1982) Generalized Method of Moments (GMM). Recently, some alternatives
have been suggested by Qin and Lawless (1994), Kitamura and Stutzer (1997), and Imbens, Spady,
and Johnson (1998). All these estimators are based on unconditional moment restrictions.

Economic theory, however, often provides conditional moment restrictions. A leading example
is the theory of dynamic optimizing agents with time-separable utility. This theory typically pre-
dicts implications in terms of martingale differences. GMM and its variants can handle such models,
because a conditional moment restriction can be used to derive a set of unconditional moment restric-
tions using instrumental variables (IV’s) that are arbitrary measurable functions of the conditioning
variables. However, it is advantageous to efficiently use the information contained in the conditional
moment restrictions for better statistical inference. Earlier in the literature, Amemiya (1974) de-
rived the optimal instrumental variables for conditional moment models with homoscedastic errors.
Chamberlain (1987) allowed heteroscedasticity of unknown form and showed that the semiparametric
efficiency bound for conditional moment restriction models is attained by the optimal IV estimator.
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The implementation of the above efficient estimation concepts has been discussed, among oth-
ers, by Robinson (1987) and Newey (1990, 1993). Robinson and Newey use nonparametric methods
to estimate the optimal instruments. Such a procedure yields an asymptotically efficient estimator
under quite general and flexible conditions. It can be viewed as a feasible version of Chamberlain’s
efficient estimator. Although the feasible optimal IV estimator possesses good asymptotic properties
in terms of its generality, nonparametric estimation of optimal instruments may require very large
samples, thereby affecting the finite sample performance of the feasible estimator.

This paper extends the method of empirical likelihood, introduced by Owen (1988, 1990,1991),
to the estimation of conditional moment models. Our approach is similar to the one taken by Robinson
and Newey in that it uses a nonparametric method to allow for maximal generality. However, it
circumvents the problem of the nonparametric estimation of the optimal instruments. By using a
localized version of empirical likelihood we derive a new estimator that achieves the semiparametric
efficiency bound automatically; i.e. without estimating the optimal instruments explicitly.

Empirical likelihood is a useful tool of finding estimators, constructing confidence regions, and
testing hypotheses. It competes very convincingly with other methods, such as the bootstrap. It
is quite general and its applications can be found in a wide range of areas. See, for instance, the
review papers by Owen (1995) and Hall and LaScala (1990). In particular, Qin and Lawless (1994)
demonstrated that empirical likelihood extends to unconditional moment restriction model with iid
samples and that it yields an efficient estimator. Imbens (1993) and Imbens, Spady, and Johnson
(1998) discuss similar methods. Kitamura (1997b) showed the weak consistency of the maximum
empirical likelihood estimator and further extended the Qin and Lawless approach to weakly dependent
data series.

The framework of empirical likelihood is natural and appealing. While it is a nonparametric
procedure, it has likelihood-theoretic foundations. Many desirable features of parametric likelihood
methods carry over to empirical likelihood. For example, MELE is transformation invariant. A non-
parametric analogue of Wilks’ theorem also holds: by taking the difference between the constrained
and unconstrained empirical loglikelihood and multiplying it by —2, we obtain the empirical likeli-
hood ratio statistic (ELR) that converges to a x? distribution. This point has an important practical
implication; namely, ELR-based tests achieve asymptotic pivotalness without explicit studentiza-
tion. “Implicit pivotalness” may be useful when estimating the variance for studentization is difficult
(Chen 1996). This feature is particularly attractive when applying the bootstrap, where pivoting is
theoretically important (Beran 1988) but may lead to poor results in practice due to the difficulty of
estimating the variance. See, for instance, Fisher, Hall, Jing, and Wood (1996) and Kitamura (1997a).

ELR has other interesting and potentially useful theoretical properties. For example, as shown
by DiCiccio, Hall, and Romano (1991), ELR is Bartlett-correctable. Also, Kitamura (2000) recently
showed that ELR tests have an optimal power property in terms of a Hoeffding (1963) type asymptotic
efficiency criterion. See Hall (1990) for other desirable properties of empirical likelihood.

Our approach builds upon the empirical likelihood method for unconditional moment models
discussed above, though our goal is to achieve efficiency gain by exploiting the conditional moment
restriction E{g(z,00)|z} = 0, where x denotes the vector of conditioning variables. The estimation
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strategy follows a two-step method. In the first step we fix 8 and obtain the localized version of
empirical likelihood at each realization of x under the conditional moment restriction E{g(z, 0)|x} = 0.
These are used to construct a global profile likelihood function. In the second step we maximize the
profile likelihood from the first step to obtain an estimate of 6y. More details on this procedure are
provided in the next section.

In this paper we show that our approach uses information from the conditional moments effec-
tively, and allows us to obtain an estimate for 8y that achieves the semiparametric efficiency bound.
This approach emerges naturally as an extension of the classical likelihood paradigm, and is theoreti-
cally quite appealing. It seems to be useful in practice as well. For example, as mentioned before, our
method has the implicit pivotalness that can be important in a situation where the estimation of the
asymptotic variance is difficult.

Before we close this section, let us mention additional papers which may also be related to our
investigation. In an independent study Brown and Newey (1998) investigate the same class of condi-
tional moment models as ours. They consider the bootstrap for a conventional optimal instrumental
variables estimator such as Newey’s. They propose to resample data series according to a distribution
estimate obtained from the local empirical likelihood, evaluated at the optimal instrumental variables
estimator in question. Their approach seems to be promising, but their goal is quite different from ours
in that they considered the bootstrap of conventional estimators, whereas we propose to construct a
new efficient estimator. Following Brown and Newey’s suggestion, it should be interesting to examine
the performance of the bootstrap for our estimator.

LeBlanc and Crowley (1995) propose to use local empirical likelihood to estimate a “condi-
tional functional.” However, the class of models they consider is narrower than ours, because they
only examine regression functionals. They do not provide formal results on the consistency and as-
ymptotic normality as we do, nor do they note that the local empirical likelihood estimator achieves
the semiparametric efficiency bound. Donald, Imbens, and Newey (2001) develop an interesting em-
pirical likelihood-based estimator for conditional moment restriction models. As Donald et al note,
their approach is very different from ours in that their estimator achieves the semiparametric efficiency
bound by letting the dimension of the unconditional moments grow with sample size. The impact
of having high dimensional moment conditions on the finite sample performance of their estimator
remains to be seen.

Zhang and Gijbels (2001) independently develop a methodology close to ours. They consider
parametric and nonparametric regression models, whereas we consider parametric conditional moment
models that nest regression as a special case. Unlike us, they rule out unbounded regressors by
assuming that the conditioning variables z are compactly supported such that the density of x is
bounded away from zero on its support. Furthermore, their identification relies on the following
condition (in our notation): inf)g_g,|>s [[Eg(2,0)| # O for any § > 0. For this condition to hold,
g(z,0) cannot be a regression residual. For instance, their identification condition does not cover the
example we consider in Section 5. To identify the regression function through such an unconditional
moment restriction, an appropriate instrument vector has to be specified. But a part of our original
motivation was to avoid using arbitrary instruments. Finally, we develop a likelihood ratio-type test
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for parametric hypotheses and give a formal derivation of its asymptotic distribution. We also provide
extensive simulation results. These results have not been provided by any of the papers cited above.

A word on notation. If V is a matrix, |V = \/W denotes its Frobenius norm. This
reduces to the usual Euclidean norm in case V happens to be a vector. By a “vector” we mean a
column vector. We do not make any notational distinction between a random vector and the value
taken by it. The difference should be clear from the context. Unless mentioned otherwise, all limits
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are taken as n T oco. The qualifier “with probability one” is abbreviated as “w.p.1”.

2. THE ESTIMATOR

Let {x;, 2}, be a random sample in R® x R?. z is continuously distributed with Lebesgue
density h, while z can be continuous, discrete, or mixed. © is a compact subset of RP and g(z,0) :
R? x ® — RY is a vector of known functions. We consider the conditional moment restriction

(2.1) E{g(z,00)|z} =0 w.p.1,

where 6y € int(©) is the true parameter value. The goal is to efficiently estimate 6y under (2.1). This
setup has numerous applications. See, for instance, Newey (1993). In particular, it may be used to
model the linear or nonlinear conditional mean regression: Let z = (x,y), where z is the vector of
explanatory variables and y denotes the response variable. g(z,6) is then simply the deviation of y
from E(y|x); i.e. g(z,600) = y—E(y|r) = y— G(z,6p) where G is known. More generally, we can apply
this setup to separable models of the type g(z,6p) = £, where ¢ is a vector of unobserved errors. The
nonlinear simultaneous equations model studied in Amemiya (1977) takes this form.

Notice that g(z,6p) is not correlated with any function of x in (2.1). Therefore, for a matrix

of instrumental variables v(x, 6p), (2.1) implies the unconditional moment restriction
(2.2) E{v(x,60)g(z,00)} = 0.

An interesting question is to find a v which yields an asymptotically efficient estimator of §y. Let!
D(x,0) = E{2501:} and V(z,0) = E{g(z,0)d'(2,0)z}. As shown in Chamberlain (1987), the
asymptotic variance of any n'/2-consistent regular estimator of 6 in (2.1) cannot be smaller than
I71(6y), where I(0g) = E{D'(x,00)V~1(x,00)D(x,0p)} denotes the minimal Fisher information for
estimating fy under (2.1). Using standard GMM theory, we can show that the lower bound I~'(6g)
is achieved by an optimal IV estimator which uses v (z,0p) = D'(x,00)V ~!(x,00) as the instruments
in (2.2). But because y is unknown, as are usually the functional forms of D and V, an estimator
using the “optimal instrument” v, is infeasible. Newey (1993) proposed a feasible method of moments
estimator which uses a preliminary estimator of fy and estimates v, nonparametrically. Under certain
regularity conditions, Newey shows that his estimator is asymptotically efficient. However, in practice
it is often difficult to find a well-behaved estimate of v.. As a result, the feasible method of moments
estimator can perform poorly.

In this paper we propose an alternative, yet asymptotically efficient, estimation technique which
avoids estimating the optimal instruments. Our approach relies on the localized empirical likelihood.

LlWe denote the g X p Jacobian matrix of the partial derivatives of g(z,#) with respect to 6 as %.
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We use positive weights w;; = to carry out the localization. For the sake

K is chosen to satisfy Assumption 3.3, and the bandwidth b, is a null sequence of positive numbers
such that nb; 1 oo?. In a b, neighborhood of z;, w;; assigns smaller weights to those x;’s which are
farther away from z;.

Let p;; be the probability mass placed at (x;, z;) by a discrete distribution that has support on
{x1,...,2n} x {2z1,..., 2,}. The reader can interpret p;; as the conditional probability Pr{z = z;|z =
x;}. We start our estimation procedure by using the weights w;; to obtain a “smoothed” log-likelihood
Yo Z _, w;jlog pi;. Next, for each § € © we concentrate out the p;;’s by solving

max Z Z w;; log pij

DPij
1 1
(2.3) ==

n n
s.t. pij Z 0, Zpij = 1, Zg(zj,ﬁ)pij = 0, fOl" i,j = 1,... ,n

(2.3) can be conveniently solved by using Lagrange multipliers. The Lagrangian is

n n
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where p1, ...,y are the multipliers for the second set of constraints, and {\; € R?:4=1,...,n} the

Lagrange multipliers for the third set of constraints. It is easily verified that the solution to (2.3) is
. W

(24) Dij = Y

1+ )‘;g(zjae)’

where, for each 6 € ©, \; solves*

~ wijg(z,6) :
2. W T =1,...,n.
( 5) z; 1 + )\;g(zj’e) 07 ? ) , T

Using (2.4), we define the smoothed empirical loglikelihood (SEL) at 6 as

SEL(6 Z Z Ty nwi; log pij = Z Z RS T D) X (Zw o8

=1 j=1 =1 j=1

where \; solves (2.5), and T;,, is a sequence of trimming functions which have been incorporated
in the smoothed log-likelihood to deal with a technical problem. T;,, will be defined shortly. Our
“maximum smoothed empirical likelihood estimator” of 6y is defined as

A~

(2.6) 6 = argmax SEL(0).
0cO

2 Additional restrictions on the choice of by, are described in Assumption 3.7.
3Since the objective function depends upon p;; only through logp;;, the constraint p;; > 0 does not bind.
4); is shorthand for A(z;,0). Its dependence upon 6 is suppressed to reduce notation, and should not cause any

confusion. However, when necessary, we explicitly write \; as A;(0) to ensure that our arguments are unambiguous.
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As noted above, the objective function SEL(f) involves a trimming function. To see why
trimming is necessary, let h(z;) = % > j=1Kij denote the Nadaraya-Watson estimate of h(z;) and
write w;; = % The presence of the density estimate in the denominator means that the local
log-empirical likeiihood Z?Zl wjj; log p;; may be ill-behaved for x’s lying in the tails of h. This is the
well-known “denominator problem” associated with kernel estimators. Different authors have used
different approaches to deal with this problem. For instance, Robinson (1987) and Newey (1993)
choose to avoid this problem altogether by using nearest neighbor estimators. However, since kernel
estimators are mathematically and practically tractable, we retain them in this paper and deal with
the denominator problem by trimming away small values of fz(:c,) In this paper we use the indi-
cator function T;, = I{h(x;) > b7} to do the trimming, where the trimming parameter 7 € (0,1).
Lemma D.4 shows that if b, and 7 are chosen appropriately, T; L 1asn T oco. Tripathi and Kita-
mura (2000) use a version of SEL which is trimmed over a fixed set to obtain a specification test for
the validity of the conditional moment restriction E(z|z) = 0.

Implementing our estimator is straightforward. From (2.5), it is easily seen that

(2.7) Ai = argmax Z w;jlog(14++'g(2;,0)).

vERY =1

This is a well behaved optimization problem since the objective function is globally concave and can
be solved by a simple Newton-Raphson numerical procedure. Once the \;’s are calculated, 0 can be
obtained by maximizing SEL(#), which is equivalent to maximizing

n n n n
= > Tinwijlog{l + Xg(z;,0)} = =Y Tin mex > wijlog{l+g(z,0)}

=1 j=1 i1 =
with respect to 8 € ©. This “outer loop” minimization can be carried out using a numerical optimiza-
tion procedure.

Finally, we comment upon a normalization-invariance property of 6. Let A(z;,0) be a g X q
matrix which, for each 6 € ©, is nonsingular w.p.1. The null set on which A(z;,#) is singular may
depend upon 6. Obviously, the conditional mean restriction in (2.1) remains unaltered if g(z,6p) is
replaced by A(z,00)g(z,60). A nice feature of @ is that it is invariant to such normalizations since the
normalization factor A(z;,#) is simply absorbed into A\; = A(z;,0) in (2.4). Note that the two-step
estimators proposed in Robinson (1987) and Newey (1993) do not share this normalization-invariance

property.

3. LARGE SAMPLE THEORY

In this section we present some asymptotic results for the maximum smoothed empirical like-
lihood estimator of 6y defined in (2.6). In addition to the previously defined symbols, the following
notation is also used in the rest of the paper: S = {£& € R* : ||£|| = 1} is the unit sphere in R?,
() denotes the " component of the vector x, and M) is the (i,§)"" element of a matrix M.
Vi (the subscript indicates that differentiation is with respect to ) is the gradient operator; i.e.

Vog(z,0) = W, where W denotes the transpose of %. Obviously, Vgg(z,0) is a p X ¢q
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matrix. If f(@) is scalar valued, then the gradient Vyf(0) is a p x 1 vector while the Hessian Vg f(60)
is a p X p matrix.
The following regularity conditions help us in doing asymptotic analysis.
Assumption 3.1. For each 0 # 0y there exists a set Xy C R® such that Pr{z € Xp} > 0, and
E{g(z,0)|x} # 0 for every x € Xp. O
Assumption 3.1 guarantees the identification of y. It differs from the identification condition
in Newey (1993) because here we provide a proof of the consistency of a fully iterative estimation
procedure based on a global parameter search, while Newey considers an estimator obtained from one
Newton-Raphson iteration using a preliminary consistent estimate.
Assumption 3.2. E{supycg ||g(z,0)||"} < 0o for some m > 8. O
m = 8 is used in the proof of Lemma B.6.
Assumption 3.3. Forz = (2W,... 2®), let K(z) = T3_;k(2?)). Here s : R — R is a continuously
differentiable pdf with support [—1,1]. k is symmetric about the origin, and for some a € (0,1) is
bounded away from zero on [—a,al. O
K belongs to the class of second order product kernels. Since these kernels are employed to
estimate probabilities, the use of kernels with order greater than two is ruled out. Furthermore, the
nonnegativity of I is also explicitly used several times. See, for instance, the proof of Lemma B.1.
Continuous differentiability of IC allows us to use the uniform convergence rates for kernel estimators in
Ai (1997). The requirement that K be bounded away from zero on a closed ball centered at the origin,
allows us to use the consistency result of Devroye and Wagner (1980) in the proof of Lemma B.2.
Assumption 3.4. Assume that:
(i) 0 < h(z) < sup,eps h(z) < 00, h € C2(R®), and sup,egs ||Varh(z)| < 00.
(i1) E||z|'Te < oo for some o > 0.
(#i) 6 +— g(z,0) is continuous on © w.p.1, and E{supyce || ||} < 00.
(iv) (6,2) — ||Vae{E[gW (2, 0)|2]h(2)}]|| is uniformly bounded on © xR® for1 <1<gq. O

Uniform boundedness of h and its second derivatives along with (i7) is used, for instance, in

8929

the proofs of Lemmas B.3 and D.8. (i) and (iv) are useful when showing the consistency of 6.
Assumption 3.5. There exists a closed ball By around 0g such that for 1 <i,r <qand1 < jk <p:
(i) 8 — D(x,0) and 0 — V (z,0) are continuous on By w.p.1.
(i1) inf(e oz oyesaxroxsy &'V (2,0) >0 and sup¢ , gesaxrexn, &'V (7,0)§ < 00.
(711) Supgegp, \ag(;;(f)e | < d(2) and supyeg, \%\ < (z) hold w.p.1 for some real valued functions
d(z) and l(z) such that Ed"(z) < oo for some n > 4, and El(z) < co.
(i0) SUP( p)eRs w3, | Vaz{ D) (2, 0)h(x)}]| < oo.
(0) B ycrey | Vaad VO (2, O)h() ] < oo. O

(i), (#1), and (i) imply 6 — I(6) is continuous on By. By (i4), sup, gyersxp, |V " (z,0)] < o0

and sup(g gyers <8, E{[l9(2, 0)|?|z} < oo. These facts are used in the proofs. In (ii), existence of d(z)
ensures that E||D(z,6p)|" < co. n =4 is used in the proof of Theorem 3.2. (iv) and (v) are used, for
instance, in the proofs of Lemma B.5 and Lemma B.6 respectively.
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Assumption 3.6. When solving (2.5) for Ai,...,\n, we only search over the set {y € R? : ||y| <

en~ Y™} for some &> 0. O
This is similar to Assumption 4.2(b) of Newey and Smith (2000). Since the \;’s converge to
zero under (2.1), when solving (2.5) for Aq,..., A, it is reasonable to search for the solution in some
neighborhood of the origin. Because Pr{max;<;<, suppeo [|9(2;,0)|| = o(n*/™)} = 1 as n T oo by
Lemma D.2, restricting the \;’s to a n~Y/™-neighborhood of the origin ensures that
(3.1) Pr{ max sup |[Ng(z;,0)| =0(1)} =1 asn occ.
1<i,j<ngco

This, for instance, is used in the proof of Theorem 3.2. Note that we only need Assumption 3.6 to
establish the asymptotic normality of 6. We prove consistency of 6 without using Assumption 3.6.

Finally, the following assumption collects the conditions on p, 7, and b, under which our
consistency and asymptotic normality results hold.

nt2ys
Assumption 3.7. Let 7 € (0,1), 0 > 1.5/m+1/4, b, | 0, and 3 € (0,1) such that: nl_ﬂbi””)2 1 00,
n!BOTEIMGEHAT 1 00, nebiT 1 00, ne Vb, 1 0o, and n¢=? ™Mb, 1 oo, O

7 < 1 is required in the proof of Lemma D.5, and ¢ > 1.5/m + 1/4 is used in the proof of

nt2ys

Theorem 3.2. b, | 0 and nb;, T oo, the latter following when nl=~ 62"72)2 T 0o, are standard conditions

on the bandwidth to ensure consistency of kernel estimators. The parameter 8 appears because we
are using uniform convergence rates for kernel estimators due to Ai (1997).

We are now ready to present our findings. The first result shows that 6 is consistent.
Theorem 3.1. Let Assumptions 8.1-3.5 and 3.7 hold. Then 62 0.

Next comes asymptotic normality.
Theorem 3.2. Let Assumptions 3.1-3.7 hold. Then n'/?( — 6y) 4 N(0,171(6p)).

I71(6p) coincides with the efficiency bound in Chamberlain (1987) for estimating p under
(2.1). Therefore, 6 is asymptotically efficient.

4. HYPOTHESIS TESTING

We now consider testing restrictions on 6y. While it is straightforward to define an analog
of the Wald test by using an estimate of I=1(6p), obtaining good estimates of I(fy) can be difficult.
Furthermore, explicit studentization destroys “implicit pivotalness”, which is one of the attractive
features of empirical likelihood. A more natural approach which fully exploits the pseudo-likelihood
character of our methodology is to construct an analog of the conventional parametric likelihood ratio
test. In the parametric likelihood framework, Wilks’s theorem enables us to conduct asymptotic x?
inference based on the likelihood ratio test. We extend Wilks’s theorem to models with conditional
moment restrictions.

Suppose we want to test the parametric restriction Hy : R(6y) = 0 against Hy : R(6p) # 0,
where R(6p) is a r x 1 vector and r < p. The constrained version of g is

0% = argmax SEL(0) s.t. R(#) =0,
0O
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where SEL(6) was defined earlier. A SEL version of the likelihood ratio statistic for testing Hy is then
LR,, = 2{SEL(0) — SEL(6%)}.

To get some intuition behind the limiting behavior of LR,,, consider testing the simple hypoth-
esis Hf : 6 = 0 against H} : 6y # 0, where 0 is known. The restricted estimator is now 6f = 6, and
LR, reduces to LR, = 2{SEL(#) — SEL(#)}. Taylor expand SEL(f) around 6 to get

_ . . N L
SEL(A) = SEL(6) + (6 — 0)'V¢SEL(0) + 5(0 — 0)VgeSEL(0*)(0 — 0),
for some 6* between 6 and 6. But from (2.6) we know VySEL(f) = 0, and Lemma C.1 shows that
| — VgoSEL(0*)/n — I(6p)|| = op(1). Therefore, by Theorem 3.2 it is straightforward to see that

2{SEL(0) — SEL(f)} 4, x; under Hy. To handle the general case, we make the following assumption.

Assumption 4.1. R: © — R" is twice continuously differentiable and % has rank . O

The asymptotic distribution of LR,, is then given by the following result.
Theorem 4.1. Let Assumptions 8.1—4.1 hold. Then LR, 4, X2 under Hy.

We can also invert LR,, to construct asymptotically valid confidence intervals. For example, if
one is interested in constructing a confidence interval for the j** component of 6y, treating the other
components as nuisance parameters, an approximate (1 — «) level confidence interval is given by

{60) . 9(1)’.“’0(]__111)1’1‘51(]_*_1)’.“0@) 2[SEL(0) — SEL(0)] < uq},
where u, satisfies P(x3 > us) = a. As in Qin and Lawless (1994) and Kitamura and Stutzer (1997), it
is also possible to construct Lagrange Multiplier and Wald-type statistics, although these alternatives
are less attractive because LR,, achieves pivotalness without requiring the estimation of variance.

It is straightforward to see that confidence intervals based on LR,, are invariant to nonsingular
transformations of the moment conditions. They also automatically satisfy natural range restric-
tions. See a related discussion by Owen (1990, Section 3.2) for models with unconditional moment
restrictions. Empirical likelihood has other nice theoretical properties such as Bartlett correctability
and GNP-optimality at least in unconditional moment models. It is reasonable to expect that some
of these features would carry over to the smoothed empirical likelihood approach considered here,
although it is a technically challenging task to establish them rigorously.

Finally, it is also useful to note that even though SEL(#) was obtained on nonparametric consid-
erations, it behaves very much like a parametric likelihood. This can be seen from Theorem 3.2, which
shows that maximizing SEL(f) leads to an asymptotically efficient estimator of 6. Additional sup-
port is provided by Lemma C.1, which demonstrates that the “observed information” —VggSEL(6)/n
converges in probability to I(6p), the minimal Fisher information for estimating 6y in (2.1).

5. MONTE CARLO EXPERIMENT

We now compare our estimator with some competitors using a Monte Carlo experiment. This
experiment also provides some guidance regarding the choice of bandwidth for our estimator in prac-
tice. Our simulation design basically follows Cragg (1983). This design, also used in Newey (1993), is
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a linear model with heteroscedastic errors; namely,

(5.1) Y = 01+ Poxi +uy,  u; = 61'\/0.1 +0.2x; + 0.31’12.

Here the true 1 = (B2 = 1, In(z;) ~ N(0,1), &; ~ N(0,1), and z; and &; are independent. The
number of replications is set to 500. Simulation results not reported here show that the performance
of our estimator is relatively insensitive to the choice of the trimming parameter 7. Hence in this
experiment we set T;, = 1 for each i; i.e. we do not trim h when computing our estimator. Fol-
lowing Newey (1993), we also report estimates for 5, and (2 using ordinary least squares (OLS),
(infeasible) generalized least squares (GLS), and feasible GLS (FGLS). Note that FGLS requires the
knowledge of the functional form of the heteroscedasticity, while GLS requires perfect knowledge of
the heteroscedasticity function.

The label “k-NN” denotes Newey’s semiparametric efficient IV estimator where the heteroscedas-
ticity function is estimated by nearest neighbor methods. For details about FGLS and “k-NN”, the
reader is referred to Newey (1993). The label “kernel” refers to an estimator similar to “k-NN,” the
only difference being that Nadaraya-Watson estimators are used in place of nearest neighbor estima-
tors. Interestingly, “kernel” works favorably compared with “k-NN,” as mentioned below. The final
estimator we consider is the new estimator (2.6), denoted by “SEL”.

In general, comparing semiparametric estimators is tricky since they depend on the choice
of nonparametric techniques (e.g., nearest neighbor or kernel), as well as the choice of bandwidth
parameters. Calculating “kernel” is therefore useful, because it enables us to compare a Newey type
semiparametric estimator with our estimator using the same nonparametric regression methodology.

Newey’s semiparametric IV estimator (with nearest neighbor or kernel) and our estimator
depend on the choice of the number of nearest neighbors (denoted by k,, in the tables in Appendix E)
or the bandwidth (b,). The tables contain results with reasonable range of k,’s and b,’s. Also, the
rows labeled “automatic” are obtained by choosing k and b,, by a cross-validation procedure suggested
in Newey (1993).

Following Newey (1993), we use infeasible GLS as our baseline. “Ratio RMSE,” for example,
refers to the ratio of the RMSE of an estimator relative to that of GLS. For each estimator, the first
(second) row corresponds to the estimate for 51 (82). The results for OLS, FGLS, and “k-NN” in the
tables match Newey (1993)’s simulation results with a reasonable degree of accuracy.

Tables 1 and 2 show results for n = 50. OLS is clearly inefficient, and FGLS works well, given
the small sample size. The performance of “k-NN” and “kernel” is in between OLS and FGLS, although
“kernel” works slightly better than “k-NN.” SEL is as flexible as “k-NN” and “kernel” in terms of the
treatment of heteroscedasticity, but its performance is better than these two. Notice that this good
relative performance of SEL holds at each b, over the range of bandwidths considered here. Naturally,
SEL continues to work best among the three semiparametric estimators when cross-validation is used.
For example, “Ratio RMSE” of SEL for 35 is 1.22, whereas for “k-NN” and “kernel” it is 1.59 and 1.57,
respectively. With n = 100 (Tables 3 and 4), all of the semiparametric estimators (“k-NN”_ “kernel”,
and SEL) behave well, though the performance of SEL is still considerably better than the other two.
With n = 200 (Tables 5 and 6), SEL works remarkably well. After cross-validation, its RMSE and
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MAE are only 9.5% larger than those for GLS. Recall that SEL achieves this excellent performance
without using any knowledge of the optimal IV. It should also be noted that SEL is robust with
respect to the choice of bandwidth. For instance, “Ratio RMSE” of SEL for (35 is between 1.09 and
1.25 (i.e., an efficiency loss of 9% to 25%). The other estimators sometimes have large “Ratio RMSE”
depending upon the bandwidth. In summary, our empirical likelihood-based estimator performs very
well, at least within Cragg’s simulation design considered here. Even though the performance of the
estimators varies with the choice of bandwidth, SEL outperforms other estimators uniformly over the
range of bandwidths used in our experiment.

6. CONCLUSION

In this paper we show how to extend the empirical likelihood methodology to estimate models
with conditional moment restrictions. By using a localized version of empirical likelihood, we obtain
a new normalization-invariant estimator that achieves the semiparametric efficiency bound automat-
ically; i.e. without estimating the optimal instruments explicitly. The smoothed empirical likelihood
approach also lends itself naturally to hypothesis testing. In particular, we propose a likelihood ratio
type statistic for testing parametric restrictions. This statistic does not require the estimation of
any variance term and we demonstrate that it achieves asymptotic pivotalness implicitly. Finally,
we carry out a Monte Carlo experiment to examine the efficacy of our estimator in finite samples.
Simulation results show that our estimator works remarkably well in practice when compared with
some competing estimators. ]

APPENDIX A. PROOFS OF MAIN RESULTS

Notation. Henceforth, the letter ¢ denotes a generic constant which may vary from case to case.
Furthermore, B(0, €) denotes an open ball of radius € centered at 6, V(xl, 0) = Z?Zl wi;i9(25,0)9 (25,0),
Q(ﬂiz‘, 0) = % Z?:l Kijg(2, 9)9/(21'7 0), Ui, 0) = V(2s, 0)h(7;), Kmax = SUPgze[—1,1]5 K(z), Sp ={z €
R |z < n}, Tip = Tinh(@i)/h(:), Tin = i € Sp}, 1§, = 1= Lip, g4(2) = supgee [l9(2,0)]), and

Vog'(z,0) = %. The qualifier “with probability approaching one” is abbreviated as “w.p.a.1”. O

Proof of Theorem 3.1. Our consistency proof utilizes the approach developed in Kitamura (1997b)
and Kitamura and Stutzer (1997). Recall that 6 maximizes the objective function

Gal0) = = 373" Ty log(1 + X(0)g(.0)).
i=1 j=1
For a constant & € (0,1), define C,, = {2 : supgeg [|9(2,0)| < én/™} and g,(2,0) = I{z € Cy, }g(z,
Define u(z,0) = Elg(z,0)|x]/||E[g(z, 0)|z]|| with the convention that 0/0 = 0. Let g,(x,z,0)
—log(1 +n~""u/ (,0)gu(2,0)), f5(x,2,0) = supgecp(o.5) W' (x,0%)g(2,0%), f(z,2,0) = u(x,0)g(2,0)
and H(0,6) = E[fs(x,2,0)]/3. Note lims|g f5(x,2,0) > f(x,2,0) for all ,z and §. This and the
Monotone Convergence Theorem imply that

0).

161?013H(67 d) = lalﬁ)lE[.ﬁ(x?Zve)} = E[%ﬁ)lfé(wvzﬂe)] > E[f(l‘,Z,@)],
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where the last term is bounded by
Ef(z,2,0) = E[u'(z,0)g(z,0)] > E[{I{z € Xy}||E[g(z,0)|z]|].

But by Assumption (3.1), E{I{z € Xp}||E[g(z, 8)|z]|]] > 0 at each 6 # 6y. Therefore, for sufficiently
small 0, H(6,6) > 0 at each 6 # 6y. By the mean value theorem, for some ¢ € (0,1),

(A.1) an(2,2,0) = —n Y™ (2,0)g(z,0) + Ra(t),

where R, (t) = n~ Y™/ (z,0)g(z,0)(1-1{z € C,,})+ 2J:ZTJ%%@%’;;’Q'E))2 . By repeated applications

of the Cauchy-Schwarz inequality,

—1/m 1 —2/m
(A.2) R, (t)] < n” Y™ supllg(z,0)[|(1 - I{z € Cy}) + —n" "M sup ||g(z,0)|%.
0cO 2(1-¢) 0O

Therefore E[n'/™R,(t)| can be made arbitrarily small by choosing large enough n; in particular,
we can find an integer n(6, ) such that Eln'/™R,(t)| < H(8,0) for all n > n(6,s). By (A.1), for
sufficiently small §,

nYME  sup  gn(z, z,0%) < —3H(0,6) + E[nY/™ R, (t)| < —2H(6,6) <0
0*cB(,5)

at each 0 # 6 for all n > n(#,0). By the compactness of ©, we can find a finite number of open balls
B(0,0) that cover O =l ©\B(6p, d) and also satisfy

(A.3) nYME[ sup g, 2z, 0%)] < —2HR(5), n > ng(6),
9+ B(0,,9)

for Hi(6) = H(0k,9), ng(d) = n(bx,0), and k = 1, ..., K. Now define ¢, (z,0) = E[g,(z, z,0)|z]. Then

E[ sup gu(z,0)] <E[E[ sup gu(z,20")a]| =E] sup gu(z,2 0%,
0*€B(04,5) 0*€B(01,5) 0*€B(04,6)

which means that (A.3) continues to hold if we replace ¢,(z, z,0%) with g, (z,0*). With this result

and a pointwise weak law of large numbers, there exists a large enough 7y = nj(d) such that

Pr{— Z sup  qn(2i,0°) > —n"YMHL(8)} < 6/(2K), k=1,..,K,
= 10*€B(Gk,

for all n > ng(9). These K inequalities imply that

Pr{ sup —an 23,0%) > —n"VTMH(§)} < §/2, H(6) :mkinHk((S),
6xcos; 1 i=1

for all n > n(d) = maxy ng(d). Applying Lemma D.4 to this we obtain

Pr{ sup —ZTznqn 2, 0%) > —n VT H(8)} < 6/2
9*6@5 i=1
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eventually. By Lemma D.2, maxi<;<n Supg-cp,5) [19(25,0)[| = o(n'/™) w.p.1 as n T co. This justifies
the use of g in place of g, after the second equality below (almost surely) for sufficiently large n:

sup —Z']I}nqn z;,0%) = sup —ZZT nWiiqn(Ts, 25, 0" )+0p(n_1/m)
0*cOz T i—1 0*€0; i=1 j=1

" gco *ZZ ~T; wis log (1 +n~ Y™ (25, 6%)g(25, 67)) + 0p(n~ V™)
"€0s s j=1

Zesug *ZZ ~Ty pwij log(1 + X;(0")g (Zjag*))+0p(n_1/m)
"€0s = 1j=1

= sup Gn(0%)+ op(nfl/m),
0*€0B;

where the first equality follows from Lemma B.8, and the inequality follows from the optimality of
Ai’s (see (2.7)). We conclude that

(A.4) Pr{ sup Gn(0)>-n"Y"H()} <5/2 eventually.
9O\ B(60,5)

Next, we evaluate Gy, at the true value 6. Note that maxi<;<p Tinl|Xi(6o)|| = op(4 /#52,) +
op(-= —L—) follows by (B.4). Use Lemma B.3 to obtain

1 n n 1 n n
Gu(bo) =2 — > Tiwwijlog(1+ Aj(60)g(z5, 60)) > - D TinXi(60) > wijg(z;,60)

=1 j=1 i=1 j=1
nb nf 1 def
= {Op(\/ W) + 0p( e l/m)} {on(y/ b3+27) + Op(w) op(dy).
Therefore,
(A.5) Pr{G, () < —d>H(5)} < 6/2 eventually.

Under our conditions n'/™d2 | 0. Thus by (A.4) and (A.5), for any § > 0 there exists a positive
integer no(d) such that Pr{f € B(fy,8)} > 1 — 4§ for all n > ng(8). The proof is complete. O

Proof of Theorem 3.2. The first order condition for (2.6) is VgSEL(é) = 0. By a Taylor expansion,

1 .
(A.6) 0 = n~Y/2V4SEL(6,) + ~ V3 SEL(6") n*2(0 — 6o)

for some 6* between § and 6. From (C.1), —V,SEL(6p) = 327, > e Ti’”lsz/[\y(%%gzj(’iogo) i) Thus by

Lemma B.1 we can write —n~"/2V,SEL(fy) = n~1/2A + n=1/23" | > i Til”j:s\ij(z)")i((zf’gg))n, where
% 72

i def ww 89/(zj, 00) \ -1 , - o
A ZTzn{Z 1+)\/ Z]’QO) 89 }V (xzyg()) {j:leng<Z]700)}.
Now we can use (3.1) to show that
1

A7 max sup ——————- = O(1) holds w.p.1 as n | oc.
(A7) 25508 T Vg0 O plasnl



14 KITAMURA, TRIPATHI, AND AHN

Thus by (A.7) and Assumption 3.5(ii7)

TinwijVog(24,00)ri B ' 4 n.n o
”ZZ 1+ Xj(60)g(z, o) | _O(l)lrgiag}%Tl’”H”Hsz(za)wlav

i=1 j=1

where the O(1) term does not depend upon i, j, or § € ©. Hence by Lemma B.1 and Lemma D.6

,1/2 I3 anJVQQ 25, QO)TZ . n26+2/m 1 o
H ZZ 1 + )\/ 90 2]790) || - OP( nb%s+4q— ) + Op(n29_3/m_1/2) - OP(1)7

since Qbiiﬁ:n 1 0and ¢ > 1.5/m + 1/4 under our conditions. It follows that

(A.8) —n"Y2VySEL(0y) = n~ Y2 A + 0,(1).

Next, write A = A + A, where

def (2,00)  ~_ .
(A.9) ZTm wa ] O))V Hwi,00) (O wijg(25,00)), and
j=1
n n g’ (z,00) ’ n
def 90 99'(25,00) |\ vr—1
A=) T, - i 0 i19(%5,60))-
S il )3 )
Observe that |[|A|| is majorized by
89(ZJ790) o
g(Zj,eo)
ZTznZwmul _|_>\/ ) (Zj,@o)i o0 H 1Ii1a<X TlTLHV ($Z,90)” max Tln” wag ZJ’90)||'

7j=1

Since sup,, cgs ||V (24, 00)|] < oo by Assumption 3.5(i4), maxi<i<y V=1 (x4,600)|| = Op(1) follows by
Lemma B.7. Hence by (A.7) and Assumption 3.5(i77)

2= 0p(1) puax T, ||ngz o)l ZT Zw M SR Y
vl inll 2 wisg i 00l 75 2 i D will ot a0

= Op(1) max T;p|| sz‘jg(zgw b0 | — ZTi,nIIAi(Qo)II sz'jd(zg‘)g*(z]')

1<i<n

n

= Op(vn 1@?5 T;, Zwmg (25, 00)[I(— ZTZ nl|Ai(6o)| )1/2 ZZdQ (%)) g*(z])fw”)l/Z,

Z_lj 1

where the last equality follows by Cauchy-Schwarz and Jensen. Since n > 4, by Lemma D.6 it follows
that D7 >0 d?(z;)92(zj)wij = Op(n). Hence by Lemma B.3 and (B.4)

A n2P 1
Hﬁ“ = Op( nb%5+47—) + Op(nQQ,Q/m,l/Q) = Op(l)a

which implies that n~ /24 = n=1/24 4 0,(1). Thus (A.8) becomes

(A.10) —n~Y2V,SEL(6y) = n~ Y2 A + 0,(1).



15

By (A.10), Lemma C.1, and the continuity of § — I(#) on By, (A.6) implies that
0=—n""2A+ 0,(1) +{I(6o) + 0p(1)}n"/*(0 — b0)
n~Y2A 4 1(60)n'/?(0 — 60) + 0p(n'/2[10 — Goll) + 0p(1)-

Therefore,
(A.11) n'2(6 — 0p) = —I"1(Bo) n~Y2A + 0,(1).
Since n=1/24 % N(0,1(0y)) by Lemma B.2, the desired result follows. O

Proof of Theorem 4.1. The basic idea behind this proof is outlined in Amemiya (1985, Section

4.5.1). Since 81:(59(90 0) has rank r, it must contain a nonsingular r x r submatrix. Relabeling if necessary,
dR(6p) oR(09)
ao(p—r+1) " 5p(p)

Define o = (81, ..., 0%=")) and ay = (9((]1), e ,Gép_T)). By the implicit function theorem, there exists
a neighborhood A of 6y, an open set i/ C RP~" containing ag, and a twice continuously differentiable
function ¢ : U — R", such that {§ € N : R(#) = 0} = {(a,¢(0)) : « € U}. Hence if we let
R(a) = [4(c)], then any 6 € N can be expressed as § = R(a) for some a € U. In particular,
0o = R(og). Note that R is twice continuously differentiable function from ¢ — RP, and DaR(cy)
has rank p — r. Letting

we can assume without loss of generality that | |rxr is the aforementioned submatrix.

(A.12) & = argmax SEL(R(a)),
acU

it follows that #% = R(&). Because (A.12) is unconstrained, it can be handled in the same manner as
(2.6). In particular, since

(A.13) n2(0 — 6y) = —Il(ao)\/lﬁ i vi(t,00)9(2t, 00) + 0p(1)
t=1

follows from (A.11), (B.5), and (B.6), we can also show that

n'2(& — ag) = —[E{D,(z, R(ag)) V"' (z, R(cx)) Da(z, R(ag)}] "

in > Dilae, R(ao)) V™ (ar, R(ao)) 9z, R(ao)) + 0p(1),

where Dq (2, R(ag)) = E{22800) 14 — (g gy) 2R00), 5

3R{;$40)I(90)3}2(2‘0)]1 aRéEyao f Zv* (@1,60)9(2t,60) + 0p(1).

(A.14)  n'?(a—ag) = —|

By a Taylor expansion, SEL(6)—SEL(6y) = —%(é—@o)’VQQSEL( (0—6y) holds for some 6* between 0
and 6. Similarly, using Vo SEL(R(&)) = 0, SEL(6y) —SEL(R(&)) = 1 (6—ap)' VaaSEL(R(a*))(d—aq)
holds for some a* between o and &. Thus we get that
(A.15) LR, = n'/2(6 — 00)'{—n"'VggSEL(6*)}n'/2(0 — 6p)

n'/2(& = ag)'{=n""VaaSEL(R(a")}n'/*(a - ao).
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def 1
T Vn

(A.16) n'2(6 — 09)' {—n"1VgeSEL(0*)}n/2(8 — 09) = €, 17 (60)en + 0p(1).

Henceforth, let €, Yoty vs(xt, 00)g(2t, 00). Using (A.13) and Lemma C.1, it is easy to see that

A little algebra reveals that

IR ()
Oa

VooSEL(R( ZvaaR<k w.

vaaSEL(R(O‘» H9k)

Thus we can use Lemmas C.1, C.6, and the twice continuously differentiability of R, to show that
_ . 9R(a) R ()
—n"'V4oSEL(R(a")) = o 1(6) 2 T op(1).

Hence by (A.14),

(A.17) n2(6 — ap)'{—n""VaaSEL(R(a*))}n'/?(& — ag)

. 8]:2(&0) 8R’(ao) BR(ao) 1 8R’(ao)
" a [ Oa 1(60) Oa ) da " +0p(1).
Using (A.16) and (A.17), (A.15) reduces to LR,, = [I71/2(0g)en) M [I71/%(6p)en] + 0p(1), where
8R(a0) 8R’(a0) 81%(&0) _ BR’(ao)
_ _1/2 1 1/2

M is a symmetric idempotent matrix of rank r, and 1*1/2(90)% 4, N(Opx1, Ipxp) by the CLT. There-
fore, LR, 4, X2 by the continuous mapping theorem. (|

APPENDIX B. AUXILIARY RESULTS FOR ESTIMATION

Lemma B.1. Let Assumptions 3.2-8.5 hold. For some (3 € (0,1) and b, | 0 let nl_ﬁ_2/mbfl+27 1 o0,

m+4 A~
no—2/m 1 00, and n'~ ﬁb( > 1 o0. Then Tin\i(0o) = Ti,nV_l(xi,Go) Z;L:1 wijg(25,60) + Tipnri,
nB+1/m 1
where maxi<i<n Tinl|7ill = 0p("s727) + 0p(ze=37m )

Proof of Lemma B.1. Since \;(fp) solves (2.5),

“~ wijg(z;,00) —~  wi;g(z,00)
0= J =
; 1+ Xi(60)g(j, 60) ; 1+ Xj(00)g(j, 6o)

(Xi(60)g(z;,60))*
L+ Xi(00)g(z5, 00)

= Zwijg(Zj, 0o){1 — )\;(90)9(*23390) +

S - wijg(24,60)(Ni(60)g(25,60))
=D wijg(2j,00) = V(xi, 60)Xi(60) +Z e N(00)g(z; W

By Lemma B.6, maxj<i<n Ti,nHV(Ii,eo) — V(zi,60)|| = op(1). Since infy eprs qese &'V (2, 60p)0 >
0 by Assumption 3.5(i¢), inf,,crs aesa a’V(wi,Qo)a is also bounded away from zero w.p.a.l. Thus
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']I‘i,nf/(a;i, o) is invertible w.p.a.1l. Consequently,

(B.1) TimAi(00) = TinV " (2i,00) > wijg(25,00) + TigV " (i, 00)r1,s,
=

where ry; = Y7, YN0 () 5) also shows that
i 7

° wi-(/\’.(Ho) (Z 90
B.2 T; JA A =Tin Wi\ g(z,0
. T 1+ AGo)g (23,90 Z ! i 60)

Hence, as 1+ X,(6p)g(zj,60) > 0 (because p;; > 0),

“mm<mwM@%lemJ%n%mzomlmzwj )9(25.60),
7=1

where the equality follows from Lemma D.2, and the o(nl/ ™) term does not depend upon i, j, or
0 € ©. Thus by Lemma B.3

B.3 Tinllriill = TinlAs(6 L/m L !
(B.3) inllr1ill = TinllAi(6o)[lo(n™™){op( W) OP(W)}a

where the o, terms do not depend upon i. Next, let \;(fy) = p;&, where p; > 0 and §; € S?. Since

Lemma D.2

0 <14 X(00)g(z,00) <1+ pillg(z,00)]| 1+ pio(n'/™),

(B.2) becomes 1+§g&ff/m) < mzsjvl(:l;g)z(zj’ 0 Using Lemma B.6 and the fact that &V (x;,0p)¢; is
i ,V0)Si

bounded away from zero on (z;,&;) € R® x S9, it follows that

T; nPi . nf
1<@<n m = op( W) + Op(w).

B+2 . .
But as ’:Lbs% |1 0 and ng%/m | 0 under our assumptions, we can solve for p; to obtain
n

nB 1
(B.4) 1I2?<X Tinpi = 0p( W) + OP(W)'
nﬂ+1/m

Therefore, by (B.3), maxj<ij<, T

= 0p( nbi 2T )+Op(n29 S/m) Since maxi<j<n T i, 00)| =
0,(1) by Lemma B.7, (B.1) can be written as T; ,\;(6o) = T;.,V =1 (x, 6o) > i1 wmg(z], o) + T nras,

where maxi<j<p Tin||72,i]| = op(%) + Op(m)‘ The desired result follows. O
n

Lemma B.2. Let Assumptions 3. 273 5 hold. Furthermore, for some 3 € (0 1) and b, | 0 assume
Jel 2 ( +7)
that Inax{ 3sn/2+2r’ ZT ’ e ll/an ’ ne- Q/mbT ymexp(—5 8}C2 )} L 0. Then n 125 N(0,1(6o)), where A

is defined in (A 9).
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Proof of Lemma B.2. Since A is a p x 1 vector, we use the Cramér-Wold device to prove asymptotic
normality. Let ¢ € SP be arbitrary. Then

(A= Zm{zwmc 09000y 0 ) w2 00)

7=1
(25,0
= Z Z ZTznwzjg ] 0) (%ﬁo)witg(zt,@o)
i=1 j=1 t=1
(2,600)
= ZC {Z Tzn sz] ] 0 )V (xzaGO)wzt}g Zt,go ZC'U* xtaGO) (%90)
=1 t=1

where the px g matrix 0. (w¢, 00) = > 21y T {5 wij o’ Zj’eo WL (24, 0 )wie, and the third equality
follows upon changing the order of summation. Recall that vy (24, 00) denotes the matrix of optimal
instruments. It is apparent that 0.(x, 6p) estimates vi(z,0y). Now write

(B.5) (A= (ol 00)g(z,00) + Y _{¢"0u(xt,60) — (vl 60) b (22, 60).
t=1 t=1

By the CLT, n =237 | ('v.(1,00)g(21, 00) 4, N(0,¢'I(6p)¢). Hence we are done if we can show that

n
(B.6) n12N {0 (@, 00) — Cval, 00) g (21, 00) = 0p(1).
t=1
To show (B.6), we proceed as follows. First, let 7,1 et max{ 3:};27’ Zi, — 11/an’ —= 2/mbT} By

where 7,; is a ¢ X 1 vector such

Lemma B5, TZ,’I’L Z;L:I wl]d% — Ti,nng,(xi’e ) E ; + Ta“
that maxi<i<p ||7q,i]| = Op(Tn,1). By Lemma B.7, ']TWV Y, 00) = TinV " (24,00) + Rp; where Ry

is a ¢ x ¢ matrix such that maxi<i<p || Rp ;|| = Op(7n,1). Hence

h(x:)
h(z;)

= Z Tin va (i, o) wie + Z TinC' D' (i, 00) Rogwie + > Tinrly V" (@i, 00)wie + > 4 i Roiwir.

i=1 i=1 i=1 i=1

¢'0u (1, 60) = Z{TMCD’ 2i,00)

+ 7o} X {Ti.nV (2, 00) + Ry bwie

Since sup,, cgs |V (z,00)]] < oo and Y0 wy = 1, maxi<i<y || Doy ']I‘mré,ivfl(:ni,ﬁo)witﬂ =
Op(Tn,1). Similarly, maxi<i<n || Yooy Ta,i Rbiwit|| = Op(Tg?l). Therefore, it follows that

(B.7) max [|¢"0. (2, 60) — Z T; (v (s, O0)wis — Z T;.0C D (1, 00) Ry swit]| = Op(Tn1)-

1<t<n : .
=1 i=1
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We are now ready to show (B.6). Let

5(/1(3%) = CIQA)* (xtv 00 Z Tz nC Vs (xu 90 wzt - Z Tz nC D’ (.CC,, HO)Rb 1 Wit,

i=1
Op(¢) ch* (i, O0)wie — C'val(@e, 00),  On(we) = 3 (Tim — 1) vs(s, 00 )wit,
i=1 i=1
O(ze) =Y ¢'D'(wi,00)Rygwy, and Ol (x) = > (Tipn — 1)¢'D' (i, 00) Ry jwis,
i=1 i=1

and observe that

n n
(B.8) n2Y {0, 00) — Cva(@, 00)Yg(z,00) = Y 02 S (i) g(zr, 0o)-

t=1 ke{a,b,c,d,e} t=1
Define U = {{ € R?s.t. ||&]] < 1}. Pick € > 0 and let M;. denote a positive number that
may depend upon e. The appropriate M; will be determined later on. Since (B.7) shows that

Pr{max<i<y |75, “a(ze)| > 1} = o(1), we have

Pr{|n" 1/22 Tt 280 () g (21, 60) > My}

< Pr{|n~ 1/22 28 (20)g(z, 00)| > M, max HT Sa(ze)| < 1} + o(1)
t=1 -

< Pr{sup In~ 1/2259 zt,00)] > My} +o(1)
=1

where the last inequality follows because maxj<;<p ||7‘T:}/25a(xt)|| < 1 implies that ’7‘71_&/25(1(.7}1), cee

—1/2%
Tl 0,

Pr{|ln=1/237 | T;i/2gfl(xt)g(zt,90)| > My} < Pr{supeey [§'an] > Mic} + o(1). From Cauchy-
Schwarz, |{'an| < ||€|| - |an]] < ||an||. Therefore, by Chebychev,

o(r,) are elements of U. In short, letting a, = n~ /23" g(2,60), we have shown that

(B.9) Pr{|n 2" 7128 (20)g(24, 00)| > My} < Ellan|?/M3, + o(1).
t=1

But since E||g(z,60)|*> < oo and E{¢'(2,60)g(zr,00)} = 0 for t # r,

Ella, || = —{ZEQ 2,00)9(2:00) + > > Eg'(26,00)9(zr,00)} = O(1).
t=1

t=1 r=1r#t

So for large enough M ., (B.9) reduces to Pr{|n=1/231" n_i/zgg(a:t)g(ztﬂo)] > M} < e+o(l).

Since € was arbitrary, this means that n=/2 37", Tn_’i/Qéa(xt) (zt,600) = Op(1). Hence as 7,1 | 0,

(B.10) n~ 2N 60 (@) gz 0) = op(1).

t=1
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Next, we show that n=1/2 3" | 8 (24)g(2t,60) = 0p(1). Since E{d)(x1)g(2t,00)0(2+)g(2r,00)} = 0 for
t # r, by Cauchy-Schwarz we have

(B.11) E{n_”zZSé(wt)g(%@o)}QS%Z{ E18y(ze)|1* vEllg (=, 60) 1}
t=1 t=1

Devroye and Wagner (1980, Theorem 1, Page 232) show that if f : R® — R is a Borel measurable
function such that E|f(z)|* < oo for some a > 1 and the kernel K satisfies Assumption 3.3, then

(B.12) E| Zf(a:l)ww — f(z;)|*—=0 as n7 oo.

By the ¢-inequality, [|6y(z:)||* < ¢ S [Coa@i, 00)]Dwiy — [Cvala, 00)] D}, Furthermore,
E{[¢"vs (21, 00)) D} < Ellvw(@e, 60)[|* < cE[D (s, 60)[|* < 00 because sup,, cgs [V~ (27, 60)|| < o0 by
Assumption 3.5(ii) and E||D(x¢,00)]|" < oo (for n > 4) by Assumption 3.5(¢i7). Thus the conditions
of Devroye and Wagner are satisfied, and we can use (B.12) to show E||dy(x)||* = o(1). Since
E|\g(2t,60)||* < 0o, (B.11) reduces to E{n=/2 31" | & (x)g(2t,60)}> = o(1). Hence,

(B.13) n2N 6w g (1, 00) = 0p(1).

t=1

Next, we show that n="/2 37 8. (2¢)g (2, 60) = 0,(1). By Lemma D.5

, 2(s+7)
- def o1 nby,
1o Ti =11 = Op(Tn2),  Tn2 = max{ b2 by né’b;’nexp( 8K Fax &
Hence mat<ice (T — 1Byl = Op(ramnz). As 7y 7uamas | 0 under our assumptions, it

follows that Pr{max;<i<y |’7’;§/2(Ti7n—1)Rb’i” > 1} = o(1). Now define V = {R € R™*? s.t. |R| < 1}

to be the set of all ¢ X ¢ matrices with norm bounded by unity. Pick € > 0, and let M5, denote a
positive number that may depend upon e. Since maxi<i<p HTn_é/z(’]AI‘m — DRyl < 1 implies that
1/2(’JI'1 n—1Ry1 €V, ..., T 1/2(']1‘”,” —1)Ry, € V, following the argument for 5, we have

Pr{|n" 1/22 28 () g(21, 60)| > Mo}
< Pr{|n~*/? ZTn 328 (24)g (21, 00)| > Mo, max 175" (Ti — DRyl < 1} +0(1)

< Pr{sup |n~ 1/222419 (4, 00) Ry (z¢, B0 )wie| > Ma.c} + o(1).
t=1 i=1

For convenience, let d, = Y| ¢'D'(x;,00)wy. Since |tr(AB)| < ||A||||B| and ||R| < 1,

IZZCD’ i, 00) Rg(z1, Oo)wie| = ItrRZZg 21,00)C' D' (2, Oo)wir| < | Zg 21, 00)dj.

t=1 =1 t=1 i=1
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Hence by Chebychev, it follows that

e _1/2: E| 327, gz, 00)d; )2
B.14 p 2y 1241 My} < 1=1 91 *t: 70) % 1).
( ) r{’n v Tn,3 (55(1'1})9(215,90” > Mo, } 7,'“]\4226 + ( )

But as || o7y 9(z6, 00)di|1* = tr{31_; 9z, 00)di} {301, dig (21, 00)}, we have

HZgzt,eo )dj||” Zdtdtg zt,00)g(2t, 6o) +Z Z didy g (24,00)9(zr. o).

t=1 r=1,r#£t

Now E{d}d, ¢'(z,00)9(zr,00)} = 0 when r # ¢, because E{g(z,00)|z:} = 0 and the observations are

independent. Hence by Cauchy-Schwarz and the fact that E||g(z,6p)||* < oo,

E[ Y g(ze.60)dil* =D E{Idil|* lg(=2, 60) 17} < ¢ Y \/Elldel.
t=1 t=1 t=1

Since ||di||* < S, | D(xi, 60)||*wis by Jensen’s inequality and E||D(x;,60)[|* < oo by assumption,
Lemma D.6 shows that E||d;||* < co. Therefore, E|| 7, g(z,00)d}||> = O(n), and (B.14) reduces to

Pr{|n~1/? ZTH_;/Q(SI (x4)g(2t,00)] > Mae} < e+o0(1) for large enough My ..

Since € was arbitrary and 7, 3 | 0, this immediately implies that

(B.15) n_l/QZn:gé(xt)g(zt,Go) = op(1).
t=1
Using the same argument we can also show that
(B.16) n~1/? f:ég(xt)g(zt,ao) —o0,(1) and n~1/2 Z(sd 21)g(z,60) = 0p(1).
t=1 t=1
(B.8), (B.10), (B.13), (B.15), and (B.16) show that (B.6) holds. The desired result follows. O

Lemma B.3. Let Assumptions 3.2-3.4 hold. Assume that b, | 0 and n' b( s

B €(0,1). Then maxi<i<n Tinl| Zj:l wijg(25,60)|| = p(\/ bafzr) + Op(ng l/m)

Proof of Lemma B.3. Decompose

T oo for some

Tinll wag 2j,00)|| < max Tm|| Zwmg 2j00) || Lin + max ’]I‘MH wag z],90)|| max I,
J=1 Jj=1 j=1

By Lemma D.3 and Lemma D.7, maxi<i<, [, = op(5) and sup,, cgs 13 25=1 wizg(25, 00) || vt

o(n'/™) as n T co. Therefore, maxi<i<, Ti . | > j=1 wijg(25, 00) || maxi<i<y I Op(ingfll/m)‘ Next,

i,n

pick any € > 0, ¢, | 0, and observe that

Pr{ max Ty | Zw,]g (2,00)|| Tim > €cn} < Pr{ sup Tin | Zwmg (2,00)|| > ecn}.
7j=1 zi€ 7=1
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Using the definition of T; ,, it follows that

PI“{ sup Tzn H sz]g ZJ,Q())’
xzesn ] 1

> Kijglz, 00 > eenti).

Now let 1 <1 < q and fix ; € S,,. Define p(z;,z;,2;) = g(l)(zj,GO)ICij/bZ. Under Assumptions 3.2,
3.3, and 3.4, it can be easily verified that®:

() b5 (@i, 75, 2))| < cllg(z, 00)l, and Ellg(z;, 60) | < oo for m > 2;

(b) b5+ | 2252 | < gz, 60) |, and Ellg(zi, 60)| < oo

() {12 (i, 0y, )} < b,

Thus the sufficient conditions in Ai (1997, Lemma B.1, Page 955) are satisfied, and

np

Ci D (5. 0] =
By =

(Bt3)s

holds if n'=Ab,, T oo for some 3 € (0,1). Hence Pr{sup,. g, Hnbé > =1 Kijg(z,00)|| > ecabl} <€

if ¢, = 4 /nbs%. This shows that maxi<i<y Tip || Zj:l wij9(25,60)| Lin = 0p(4/ bg+27) The desired
result follows. ]

Lemma B.4. Let Assumptions 3.3 and 3.4 hold. Assume that b, | 0 and n'=Pb3 1 oo for some
B € (0,1). Then maxi<i<y |h(z;) — h(zi)| = oyl /nb& )+ O(b2) + 0p(:5).
Proof of Lemma B.4. Observe that

max \h(mz) — h(z;)| < max \h(xl) — h(z;)| L, + max \h(xz) — h(zi)| 17,

1<i<n 1<i<n 1<i<n
< sup |h(x;) — h(zi)| + sup |h(z;) — h(z;)| max I5,.
;€S z, ERS 1<i<n

Fix z; € S, and define ¢(z;,z;) = K;;/b;,. Under Assumptions 3.3 and 3.4, it is easily verified that:
(a) b [o(ai,2;)] < ¢ (b) b5 225 || < ¢ and () E{b2 ¢*(xs,2;)} < cbj. Thus the sufficient
conditions in Ai (1997, Lemma B.1, Page 955) are satisfied, and sup,, ¢g, \h(z;) — Eh(z)| = op(\/%)
provided n'=b% 1 oo for some B € (0,1). Since sup,,cps ||[Vaah(2;)| < 0o by assumption, we algo
have sup,,. cgs |Eh(z;) — h(z;)| = O(b2). Hence SUP,,es, \h(z;) — h(z;)| = op(\/g) +O(b2), provided
n'=Pb5 1 oo for some 3 € (0,1). From Prakasa Rao (1983, Page 185) we know that sup, cgs (i) —

h(z;)] 250 flog” 1 0, while Lemma D.3 shows maxi<i<, I, = op(55). Therefore, sup,. cps (i) —

h(z;)| maxi<i<p Hi,n = 0p(-5) provided %6 | 0. The desired result follows. O

n+2ys
Lemma B.5. Let Assumptions 3.2-3.5 hold. Let b, l O and nl*ﬁb;”*z)2 1 oo for some (B € (0,1).
0, , i
Then maxi<i<n SUPgep, Tinll 27— g(azé 2 ij—D(, ) )” op(4/ W)#—O(w)—i—op(m).

5(a) and (b) are obvious. To show (c), notice that since SUP,  eps E{”g(Zj,HO)H2|.Tj} < 0o by Assumption 3.5(i7), we
have E{b%*¢0” (z:, 25, 2;)} < cE{E[||g(2;,00)*|z;]K5;} < cEKZ; < cbyy; ie., (c) follows.
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Proof of Lemma B.5. Observe that T; | > 7 gé’e) wij — D(z4,0)

()= oo, sup

Z 89(;;: %Kiy — D(ws, 0) h(s)]|.
7j=1

nbs

Write (1) < (1)a + (1), where

Tim 1 <= 99(2;,0)
(0= s omp 5 ”nb; > 5 s = D) bl

(0o = i, sup 5

00

ag(Z',e) c
ol LS 20 ) D) b,
j=1
Let us examine (1)p first. Define (1)p; = H# S 89(Zj’0) Kij — D(z4,0) h(z;)||, and observe that

7=1
1
(1)p < maxi<i<n SUPgeg, (b)TBl - maxi<i<n ]Im But since sup,, cgs h(z;) < o0,

max sup (1)p; < ¢{ sup

g( zj, 0)
1<i<n gep, 2 eRe nbs, Z sup =711 + ma<x ;up 1 D(zi, 0)||}-

By Lemma D.8, sup,,cgs %E] 1 SUDpes, Hag(z]’ | Kij = o(n'/7) holds w.p.1 as n 1 co. More-
over, since E{supycp, ||D(z;,0)||"} < oo by Assumption 3.5(74), as in Lemma D.2 we can show that
maxi<i<n SUPgep, || D4, 0)| = o(n 1/7) holds w.p.1 as n 1 co. Hence (1)p = o bT/n) maxj<i<p I§

in
OP(W) by Lemma D.3. Next, use the triangle inequality to write (1)4 < %, where

L WDy

n =1

W= swp =320 gy

(0,2:)€Bo %X Sn, nbs, = 00 nb,

o= s B 25D ey a6y ).

(1
(0.)eBoxSn  Nn = 00

~—

Now under Assumption 3.5(iv), it is straightforward to show that

sup  ||E{
(9,x¢)€BO><R9 nbs _]—1

— Jg(zj,0)

= > D ) Dl ) ()| = O2),
ar) (.

As S, C R®, this yields (1)a2 = O(b2). Let 1 <1 <p, 1 <7r <gq, and W denote the (I,7)%"

element of the ¢ x p Jacobian matrix %. To find the rate at which (1) 41 goes to zero in probability,

it suffices to determine the rate for

1 09" (2,0 1 = 09"(z,0
sup | — MK@‘—E{ 5 ZMKU}’
(6,2;)€EBy xS, nbn = 89 nbn = 89
To do so, we use a result of Ai (1997) on the uniform consistency of kernel estimators over compact
r) (..
but expanding sets. Fix (6,z;) € By x S, and define p(0,2;,x;,2;) = %ai(g%mlCij/bfl. Under

Assumptions 3.3, 3.4, and 3.5, it can be easily shown that®:

6(a) and (b) are straightforward. (c) follows by Cauchy-Schwarz and the fact that n > 4.
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(a) b} (0, xi, x5, 25)| < cd(z;), and Ed"(z;) < oo for n > 2;

(b) bett H%H < c{d(zj) + bnl(z;)}, and the RHS has finite expectation;
(c) E{bZ 02(0, 21,25, 27)} < b,

Thus the sufficient conditions in Ai (1997, Lemma B.1, Page 955) are satisfied, and

1 <= 99 (2, 0) 1 < gt (z,0) nB
sup |y —— = Ky —E 99 ) e v = o (| —
(6,x;)€By x Sn, nbfl = 00 J {nbfz jz; o6 J}| p( nb?fm)

n+2 )

provided nl*ﬁb;”*2 * 1 oo for some B € (0,1). This implies (1)a1 = 0p(, /#@2). Combining the
results for (1) 41 and (1) 2, we have (1)4 = op(4 /W) + O(bT) Hence using the result for (1)z,
(1) = op(,4 /W) + O(bT) + op(m). The desired result follows. O

Lemma B.6. Let Assumptions 3.2-3.5 hold. If b, | 0 and min{n'~ Bb(’" 4)5 1_5bfl} T oo for some
nB b2
B € (0,1), then maxi <i<n supgep, Tinl[V (i, 0) — V(2:,0)|| = op(4/ W) +0(7#) + OP(W)-

Proof of Lemma B.6. By the triangle inequality

max sup Ty ||V (24,0) — V(24,0)|| < (I) 4+ (IT), where
1<z<n9€B

i,n Tin 7
(I) = maxicicn supges, 2 [0(a1,0) — wi,0)], (IT) = maxicicn suppeg, 22 [V (zs, 0)][|h(zs) —
h(z;)|. Write (I) < (I)a + (I)B, where

. TLn A . TLn A
(1a = max 2 1900w 6) = Aot O T, (D = e 1 [0 0) = Qi O,

Because sup(y, g)ers x5, |V (2i,0)|| < 00 and sup,, cgs h(zi) < oo,

R 1
sup  [|Q(ws,0) — Q(z;,0)|| < sup 75 Supllg 2, 0)|* Kij + c.
(z4,0)ER® xBo z;€R®

Since E{supgeg [l9(z,0)]|?}™/? < 0o, from Lemma D.8 we know that if log” 1 0, then

n
.p.1
sup —= > [lg(z DI Kiy "2 o(n?/™) asn T .

n2/m

Hence using Lemma D.3, it follows that (I)p = 0p(z5r ) if 12%5" 1 0. Next write (I)a (I)Albﬂ

where (I) a1 = SUP(y, g)es, x5, Ui, 0) Bz )H and (1) a2 = SUP(y, g)es, x5, [IE@i, 0)— (i, 0)]].

Fix z; € S, and for 1 < 1,7 < ¢ define (0, x;, 25, 2;) = gV (24,0)9") (2j,0)K;;/b5. Under Assump-

tions 3.2-3.5, it is easy to verify that:

(@) G100, )| < csupnco o0 Elsupaco lo(z3 )% < oo and 5 > 2

(b) bs“!l%u < cfsupgeo [19(25, 0) |2 + bn supgeg [|9(25, 0)|| supges, || 242 o )|}, and the right
hand side }fzixs finite expectation;

() E{b2 ¢2(0, zi,25, 7))} < cbi/” if E{supgee [l9(z5,0)[8} < oo.
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Thus the sufficient conditions in Ai (1997, Lemma B.1, Page 955) are satisfied, and

np

sup Q0 (2,0) — B{Q (s, 0)} = 0,y | —5:75)
NOn

(a:i ,9) €Sn xBy

if nt— ﬁb(m ok 1 oo for some 3 € (0,1). Under Assumption 3.5(7i7), it is straightforward to show

sup  [|EQ (z;,0) — QU (2;,0)[| = O(b7),
(xi,G)ERS x Bo

and it follows that (I)4 = op(, /W) + O( ) Combined with the result for (I)p, we have

nB 2/m

3s/2+2
nbns/-‘,-r

n

2
(B17) (1) = oy )+ O + o).

Finally, since sup g, g)crs x5, ||V (i, 0)|| < 0o by Assumption 3.5(iv), by Lemma B.4

nb b2 1

(B.18) (I1) = op( bs+27) + O(bT) + OP(W

)

£1981 10 and n'=Pbs 1 oo for some § € (0,1). The desired result follows by (B.17) and (B.18). [

nbs,

A 2
Lemma B.7. maxi<i;<n Tz‘,nHvil(.fl', 90)—‘/71(1'1', 90) H = Op(, / W)—FO(%)—FOP(W) under

conditions of Lemma B.6.

Proof of Lemma B.7. For convenience, let op(, /m) + O(bT) + op(m) et O,(ay,). By

Lemma B.6, maxj<;<p SUp,csq ']I‘m\oz'f/(xi, 0p)a—a/ V(:Bz, bo)a| = Op(ay,). Also, (v, z;) — &'V (24, 00)
is bounded away from zero on S? x R® by Assumption 3.5(i7). Hence by Lemma D.1,

1 1
max sup T — = Op(ay).
1<i<n oeSa Zn‘a V(gji,@O)a O/V(aji,eo)a‘ p( n)
’ 1¢\2
Thus for any £ € S, maxi<ij<n SUpgesa Tinl ,V(f)eo) — a,é?‘xf?eo)a| = Op(an). Therefore,
(a'¢)? (a'¢)?

max']I‘ supi—supi—Oa .
1<i< ‘ n’ a€SY o V(IL‘@, 00) acSs & V(xh 90) | p( n)

Since V(wi,Qo) is invertible w.p.a.l, maxj<j<n ']I‘m]f’v_l(xi,@o)g — &V, 00)€] = Oplay). The
desired result follows as £ € SY was arbitrary. O

Lemma B.8. Let Assumptions 3.2-3.4 hold. Furthermore, for some 3 € (0,1) and b, | 0 as-

2
sume that max{ 39”/;27, ZT, n,,bT} 1 0. Then recalling the notation defined in proof of Theorem 3.1,

SUPgeco; |% Z?:l Zy:l anqu(x“ Zjs 0) — n Zi:l Tim%(xia 0)| = Op(n_l/m)'
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Proof of Lemma B.8. By (A.1) and the fact that ||u(z;,0)| <1,

1 n
Sup ‘* ZZT’L anQn 1'172]7 - E ZTi,nQn(xiye)

96@5”113 1

< supfzﬁrmnzwwg 25,0) — E{g(z.0)la Y|

9695 i=1

™ sup |— Z Z T pwij Ry (t) — % Z T; nE{ Ry, (t)|2}|.
i=1

USCR nz 1j=1

Using (A.2) and the fact that maxi<j<, I[{z; € Cr} = o(1), it is straightforward to show

™ sup |—Z:Z:’IFZ nwij R - %ZTi7nE{Rn(t)|xi}\ = o0p(1).
i=1

96@5”1 1j=1

Letting (A) = suppeo, + >oiq T, i wijg(2j,0) — E{g(zi, )|z} }], it follows that

(Blg) Sup ’*ZZT nwzJQn .’EZ,Z], - *ZT’ann m’bv ’ < ( )+Op( )

96@5”11] 1

By the triangle inequality (A) < (A1) + (As2), where

(A1) = jesug fZTmH b Z/ngg (25, 0) — E{g(zi, 0) s h(zi) |,
5 i=1

(A2) = blTeSEug - ZTanIE{g(zz, 0)[wi} | () — h(w:)]

max |(a;) — h(z; \*ZE{ sup lg (=i, 0)] | }-

But 1377 | E{supyeo, l9(2,0)| |2i} = Op(1). Thus by Lemma B.4,

nf b2 1
(A2) = Op( W) + O(ﬁ) + OP(W) = Op(l)

n

under our conditions. Now to (A;). By the triangle inequality (A1) < (A1) + (A1p), where

(A1a) = —Tgsu@p *ZTZ nll— nbs ZICZ]g (2,0) — E{g(2:, 0)|zi}h(:) [ Lin,
5

=1

(Alb P SUP *ZTz n” nbs ZKUQ Zja E{g(zl, )|zl}h($l)“ﬂf’n

’T
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Using Lemmas D.3 and D.9, it follows that

(Aw)sbégag I, anszlcm sup lg(z5,0)] + ZEsup lg(zi, )l 1]}
= 0z HOD) + Oyl1)} = 0y(1),

because # | 0 by assumption. To handle (Ai,), note that

(Ala) S

1
—  sup 19(25,0) — E{
b7, (o, :Bl)€®5><sn R nb;,

chmg %, 0)}

1
+.= sup |IE{
O, (6,2:)€05x 5,

ol LS Kijglz1,0)} — ElgCer, Oleath(zol

7j=1

Under Assumption 3.4(iv), it is straightforward to show that

sup  [[E{

1 n
Kiig(zi,0)} — E{g(z, 0)|x;}h(x; ZObi.
(0,2:)€OXRS nb;]; 39(25,0)} = E{g(zi, 0)|with(z:)|| (b2)

As b277 | 0 by assumption, it follows that

1 n
(Ara) < sup | — L 5™ Kua(25.0) = E(Y Koy} +o(0).
j=1

UL (0.0)€05x S MOn 4

Now fix (0, x;) € ©5 x Sy, and define ¢(0, z;,z;, z;) = g(l)(zj,19)1Cij/b,"”z for 1 <1 < q. Under Assump-
tions 3.2, 3.3, and 3.4, it is straightforward to verify that:

(@) 031006, 1,7, 29)] < esupnco I9(25.0) Efsupsco la(zy )1} < o0 amd m > 2

(b) bgﬂHWH < e{supgee [19(2j, 0)|| + bn supgeo | 2252 |11, and RHS has finite expectation;

Ty

(¢) B{B2 02(0,mi, 24, 2;)} < b/
Therefore, the sufficient conditions in Ai (1997, Lemma B.1, Page 955) are satisfied, and

B

n
sup Kijg(z;,0) — E Kijg(z,0)}| =o

(G,xi)€®5><sn nb%z; J J { bS Z J J }H p( bgs/z)

(LH

provided nl_ﬁb,{”’z)5 1 oo for some 3 € (0,1). But since , /bgsn/iiﬁf 1 0 under our conditions,
nby,

P
(A1a) = op( W) +0(1) = 0p(1).

Together with the result for (Ajp), this implies that (A1) = op(1). Hence (A) < (A1) + (A2) = 0p(1),
and the desired result follows from (B.19). O
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APPENDIX C. AUXILIARY RESULTS FOR HYPOTHESIS TESTING
Lemma C.1. Let Assumptions 3.2-3.7 hold. Then supycp, || — VgeSEL(0) — 1(0)|| = op(1).

Proof of Lemma C.1. Observe that

SEL(0) = Z Z T; nwij; log{ n]} — Z ZTi,nwij log{1 + N,(0)g(z;,0)},

i=1 j=1 i=1 j=1

where \;(0) solves (2.5). Since » 7, % =0 for all § € O,

Ti nwi;i[Vog(zj, 0)|Xi(6)
C.1 —VySEL(# ilVoo (2. :
(C.1) Ve 2]21 1+/\’ )9(2;,0)
Hence we can write —VgeSEL(0) = T1(0) + T2(6) + T5(0), where
Zn:Z i;nWij Ve{X( )9(2,0)}i(0) Vg’ (25, 0)
i=1 j 1 + )\1(9) (2]79)]2
z nWij VG)\ 9)]V99,<Z]7 Z Z Z nwl] Zq: (k)
Z Z y V@gg ZJ, /\ (9)
i=1 j=1 1+ Xi(0)9(z;,0) i=1 j= 11+X 9(2,0 k:l Z
The desired result follows by Lemma C.2, Lemma C.3, and Lemma C.4. O

Lemma C.2. Let Assumptions 3.2-3.7 hold. Then supgcp, ||T17§6) | = op(1).

Proof of Lemma C.2. Since Vg{\.(8)g(z;,0)} = [Vog(zj,0)]Ai(8) + [Vori(0)]g(z;,0), we can write
Ty (6) = Tl,a(e) + Ty b(&) where

Tl a Z Z 1+ )\/ o nwl] 9)]2 [Veg(zj, 9)])‘1'(9))‘;’ (G)Veg'(zj, 0)7
Ti,0(0 ZZ Y ”‘“”Z G Vo O)g(z, 0N (0) Vo (2,0).
i=1 j=1 I

By Assumptions 3.5(ii) and 3.6, supgep, [|T1,4(0)[| < o(1) 31, D70, w;jd?(z;), where the o(1) term
does not depend upon 4, j, or § € ©. Hence supyep, [|11,4(0)/n|| = 0,(1) follows by Lemma D.6. Simi-
larly, by supgeg, [|T1,6(0)[| < o(1) supgep, > i1 Tinl[Vori(0)[| 2271 wijd(2;) and the Cauchy-Schwarz
and Jensen inequalities,

Ty 6(0) RS
sup | (D{sup ~> T, 07y 2+ ZZw”dQ IH2 = 0,(1)
0By 0€By 1 i=1 i=1 j=1
from (C.2) and Lemma D.6. The desired result follows. O

Lemma C.3. Let Assumptions 3.2-3.7 hold. Then supgeg, ||T27(La) —I(0)]| = 0p(1).

Proof of Lemma C.3. By (C.5)

1
ZTMVGA D(x;,0 EZ W [Vohi(O)E{d(2)|x:} Ra.s(0 ZT”LVQA ) R3.i(6),
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where maxij<i<p SUPges, | R2,i(0)]| = 0p(1) and maxi<i<n Supgeg, [|[R3,:(0)|| = 0p(1). Under our as-
sumptions, maxi<i<n Tin = Op(1) and sup(,, g)crs x5, |V~=(z;,0)|| < oo. So by Lemma C.5,

(C.2) sup — ZTM||V9>\()|| = 0,(1) and sup — ZTWHV@)\()H:OP(I).
0eBy T i—1 0eBy i=1

Use (C.2) and Cauchy-Schwarz to obtain supgep, HTQTW) -l Ti.n[Vori(0)]D(zi,0)|| = o0,(1).

Applying the Cauchy-Schwarz and Jensen inequalities to Lemma C.5 once again,

SupH—ZTHLVQ)\(@ (2,0 Z’]I‘ "(x4,0)V (x4, 0) D(z4,0)|| = 0,(1).

0By nz 1

Therefore, as maxj<i<p |Tz2n — 1| = 0p(1) by Lemma D.5,

n

TQ(H) 1 / -1
p - — D' (x;, )V~ (x;,0)D(x;,0)| = 0,(1).
o 17 = 3P 00V s 00D 0] = o1
Since supgeg, £ S0, D (i, 0)V = (z;,0)D(x;,0) — 1(0)| = 0p(1) by a uniform WLLN, the desired
result follows. ]
Lemma C.4. Let Assumptions 8.3, 3.5, and 3.6 hold. Then supgepg, HT3 || = op(1).

Proof of Lemma C.4. By Assumptions 3.5(iii) and 3.6, supgeg, [|73(0)[] < o(1) 321, D275, wijl(z5),
where the o(1) term does not depend upon 4, j, or § € ©. The desired result follows by Lemma D.6. O

Lemma C.5. Let Assumptions 8.2-3.7 hold. Then for each i and 6 € By we can write
T; n Vori(0) = Ti, V™ (24, 0)D(wi, 0) + Ty n Mi1;(0) D(:,0) + Ty nE{d () |} Mo,;(0)

n
+ Mgﬂ'(@) Z d(Zj)’LUZ'j + M47i(€9),
j=1
where My ; is a q X q matriz such that maxi<i<n SupPgeg, || M1,i(0)|| = 0p(1), and Ma;, M3;, My; are
q X p matrices such that maxi<;<n Supgeg, || Mr,i(0)]] = op(1) for k =2,3,4.

Proof of Lemma C.5. From (2.5), we know that \;() solves >°%_ % =0 for all § € O©.
_77

Differentiating this identity with respect to 8 and rearranging,

"~ wij9(25,0)9 (2,0) o oo x~ Wi Vog'(z5,0) =~ wijg(z, 0)N(0) Vg (2;,0)
©3) L X9 0 MO = L T N @0 2 (s NG OF

Let us simplify (C.3). First, by Assumption 3.6

HZ ﬁ’”j’jﬂ’ Zfégl V(ai,0)ll < OV (1, 6) = V(wi, )| + o)V (s, O)]

7See, for example, Newey and McFadden (1994, Lemma 2.4, Page 2129).
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where the O(1) and o(1) terms do not depend upon i, j, or 6 € ©. Since sup,, g)crs x5, ||V (73, 0)|| < 0o
by Assumption 3.5(i7), Lemma B.6 shows that

wijg( z], q'(z,0)
T § —V(x;,0)| = 1).
lIEzag(ngsélg) Zn” 1 + )\, Zj,e)]2 (J;“ )H Op( )

Therefore, by Assumption 3.5(i7), we can write

(0 g Zj 7 2 ) —
(C4) zn{z [ j_ /\,J . ] )];} V=T,V (2, 0) + Rii(6),

where Ry ; is a ¢ X ¢ matrix such that maxi<;<, supgeg, [ 121,i(0)| = 0p(1). Next, by Assumption 3.6

wi;Vog'(z,0) h i) h(z;)
- D < D —
H}jHX = D)) < 00 H;ljwuveg (5:6) = Dl )33

#o(DIDG OIS,

where the O(1) and o(1) terms do not depend upon i, j, or § € ©. As ||D(z;,0)| < E{d(z;)|z;} by
Assumption 3.5(i4i), we have

vaOg z]79) h(xZ) - / h('rl)
Tin —D(x;,0)~ = 0O(1) max sup T;, w;;iVog (z;,0)—D(x;, 0) —=
||§ g 57D | O s sup Tl 3 Vo (5,00~ Dla )7

+ o(l)TzﬂnE{d(zl)]xZ}
Hence using Lemma B.5, we can write

.. / . ~ A
wij Vg (2,0) _ Ty D (2, 0) + TinE{d(2:) |z} Ras(6) + Rs4(6),

C.5 Tin
(€ " 24 N (B)g(25.6)
where Ry; and R3; are ¢ x p matrices such that we have maxj<;<, Supgep, | R2,:(0)|| = 0p(1) and
maxi<i<n SUPgep, || 13:(0)]| = 0p(1). Finally, by Assumption 3.5(i7i) and 3.6

n

wz]g Z]v 9)v99 (ZJ7 ) Nagy -
H Z +)\/ )g( ’(9)] ” < O( )Zd(zj)wlﬁ

j=1

where the o(1) term does not depend upon i, j, or § € ©. Hence we can write

= wigg(25, ONOVog (2,0) _ 5 00 NS g v
(C.6) ; TN )90, O] —R4,z(0)j§::1d( Pwij,

where Ry ; is a ¢ X p matrix such that maxi<;<n supgeg, [ R4,:(0)|| = 0p(1). By (C.4), (C.5), and (C.6),
(C.3) can be written as

Ti7nvg)\;(9) = {T@nvfl(:ﬂi, 9) + Rl,i(e)}{Ti,nD(CUu 9) + Ti7nE[d(zi)‘$i]R27i(9) + R37Z‘(9)

+ Rai(0) ) d(z)wis}.

Jj=1
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The desired result follows by sup ., g\crsxs, ||V (i, 0)|| < oo and the properties of Ry;,..., Ry O
. VoSEL(0) || _
Lemma C.6. Let Assumptions 3.3, 3.5, and 3.6 hold. Then supyep, ||~ =] = o0p(1).

Proof of Lemma C.6. Using (C.1), Assumption 3.6, and Assumption 3.5(7i7), it is easily seen that
SUPges, | VoSEL(O)|| < o(1) 377, D775 wijd(z;), where the o(1) term does not depend upon i, j, or
f € ©. Hence the desired result follows by Lemma D.6. O

APPENDIX D. OTHER USEFUL RESULTS

Lemma D.1. Let a, and b, be sequences of positive numbers such that ay,b, | 0. r, is a sequence of
functions such that sup,, |rn(z) — r(z)| = Op(an) and sup, |r(z)| < co. s, is a sequence of functions

such that sup,, |s,(x) —s(x)| = Op(by) and inf, |s(x)| > 0. Then sup, |Z:Eg - Zgg\ = Op(max{ay,by}).

Proof of Lemma D.1. See Tripathi and Kitamura (2000, Lemma C.1). O

Lemma D.2. If E{supyce ||l9(z,0)||™} < oo, then Pr{max;< <, supgeo l9(2j,0)|| = o(n'/™)} =1 as
n T oco.

Proof of Lemma D.2. Our proof is based on the idea described in Owen (1990, Lemma 3). Let
e > 0. Since Y 7 Pr{[supgcg ||9(z1,0)||]"/€™ > n} < Elsupyee |lg(21,0)]|]™ /™, it follows that
> o2 Pr{[supgece llg(z1,0)||]™/€™ > n} < co. But since the random vectors z, ..., z, are identically
distributed, we have Y 7 Pr{[supsee ||9(zn,0)[]]™ /€™ > n} < oo. Therefore, by Borel-Cantelli
the event {[supyce ||g(2n,0)]|]™ /€™ > n} happens infinitely often w.p.0. Equivalently, the event

1/m " eventually

{suppeo 9(2n,0)||/¢ < n'/™} happens for all but finitely many n w.p.1. Since n
exceeds the largest element in the finite collection of supgeg ||g(z1, 0)|/€’s that exceed k'™, we get

that Pr{maxi<j<,supgeg [|9(2;,0)|| < n'/™e} = 1 for large enough n. The desired result follows

because € can be chosen arbitrarily small. O
Lemma D.3. Let 21,...,x, be identically distributed random vectors such that E|z1|'*° < oo for
some § > 0 and define I, = I{||z;|| > n}. Then maxi<i<, I5,, = op(%).

Proof of Lemma D.3. Since E|jz;||'*? < co implies that E{||z;||' T I(||2:]| > n)} = o(1) as n T oo,
we have n'™0 Pr{||z;|| > n} < E{||z||"tO1(||z]| > n)} = o(1). Thus Pr{|z;|| > n} = o(n=0+%)) for

each ¢ because z1,...,z, are identically distributed. Therefore, using the fact that maxj<;<y I, <

i I8, E{maxicicy, 15, 3 < D70 Priljay]| > n} = o(n~?). The desired result follows. O

Lemma D.4. Let Assumptions 3.3 and 3.4 hold. If b, | 0 and nb}, T oo, then maxi<i<y |Tin — 1| =
bi<5+7')

Op(nexp{—”gK%ax b.

Proof of Lemma D.4. Pick € > 0 and let M, denote a positive number which may depend upon e.
We will see later how to choose M,. Because maxi<i<p |Tipn — 1| < i [Ty — 1],

1 -
) L < ) T
(D.1) Pr{lrgag)% |T;n — 1| > M} < 7 E 1 Pr{h(z;) < b}
1=
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follows by Chebychev’s inequality. Since h > 0,

Pr{f(z:) < by} < Pr{h(z;) — Ell(z:)|zi]] > by} + Pr{|Elh(z:)|ei]| < 207}

< Pr{|h(z;) = Elh(xi)|ai]| > b7} + Pr{xslellgs [ElR(zi)|xi]| < 207}

nbs ), which implies

Under Assumption 3.4 we can show sup, cgs |[E Elh(zs)|2i] — hzi)| < (b2 +14
i)|w;]. Since sup,, cgs h(xz) > 0, bn, | 0, and nbs T oo,

Sup,, cps M(w;) < c(bi—i-f—i- b ) +Sup,, cgrs [ (x

1
Pr{ sup E[h(z;)|zi] < 207} < Pr{sup h(z;) < c(b? ) +2b)} =
z; ERS z;ERS bn

for large enough n. Hence when n is large enough, (D.1) reduces to

1 < ; . .
(D.2) Pr{lxg% Tim — 1] > M.} < 3 Z;Prﬂh(xi) — E[h(z;)|z])| > bT}.
Now let y;; = KC;; — E{K;j|x;} and note that: (i) conditional on z; the random variables y;1, ..., ¥in

are mutually independent, (i7) E{y;j|z;} = 0, and (i44) |yi;j| < 2Kmax for 1 <4, 5 < n. Therefore,
nba 2(s+7)
8’C2 }7

max

Pr{|h(z;) = Elh(x;)|ai]] > b} = Pr{] Zyml > nby, T} < 2exp{———
7=1

where the last inequality follows from an application of Hoeffding’s inequality®. Using this result,
2(s+7)

for large enough n, (D.2) becomes Pr{maxj<;<, |Tin — 1| > M.} < 2nexp{—" cir— M. Thus
(S+T) max
for large enough n, Pr{maxi<i<p |Tin — 1| > nexp{— ”é’,@ }2} < € follows on replacing M, by
2(s+7)
nexp{—"=% SKQ }2 Since € was arbitrary, the desired result follows O

Lemma D.5. Let Assumptions 3.3 and 3.4 hold. Assume that b, | 0 and nl_ﬁbfl T oo for some
B € (0,1). Then for ']Tm = ']I‘mh(xl)/il(a:z),

y W L, byt
112?2( | iwn 1| = Op( W) + (ﬁ) + O(RQb;rl) + (nexp{ 8’C2 })

max
np b2 1 nby, 2s+7)
max 112, = 11 = 0p(y | =) + 0y (2) + 0yl ) + Oyl exm{="glr— ).
Proof of Lemma D.5. Since
A T; n{h(x; —iL i 1 .
Ty — 1) = | L) =A@} o ) L © R+ [T — 11,

h(w;) ’ on
the first result follows by Lemma B.4 and Lemma D.4. Similarly,

3 1 1 - .
T3, — 1] < bTT\hQ(fEi) = h2(@i)| + |Tip = 1] = par (i) = Az |h(@:) + h(zi)| + [Tim — 1],

8The usual statement of Hoeffding’s inequality (see, for instance, Pollard (1984, Appendix B)) requires that the
summands be mutually independent with zero mean. However, it is easy to verify that Hoeffding’s inequality also holds
when the summands are conditionally independent with zero conditional mean. See, for example, Devroye, Gyorfi, and
Lugosi (1996, Section 9.1).
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and the second result also follows by Lemma B.4 and Lemma D.4. O

Lemma D.6. Let f(z) be a real valued function such that E|f(z)| < oo, and let Assumption 3.3 hold.
Then B> 7_; | f(2j)lwi;} < cE|f(z1)|, where the constant ¢ only depends upon the kernel.

Proof of Lemma D.6. Follows directly from Devroye and Wagner (1980, Lemma 2, Page 233). O

Lemma D.7. Let f(z) be a real valued function such that E|f(2)|* < oo for a > 0, and let Assump-
tion 3.3 hold. Then Pr{sup,,cps | > 7y f(2)wi;| = o(n'/*)} =1 asn 1 co.

Proof of Lemma D.7. Observe that | Y0, f(zj)wi;| < maxi<j<n|f(2;)|. The desired result now
follows by Lemma D.2. ]

Lemma D.8. Let f(z) be a real valued function such that E|f(2)|* < oo for a > 0, and let Assump-
tions 3.3-3.4 hold. If b, | 0 and logn 1 0, then Pr{sup,, cgs |- doie1 [ (z)Kij| = o(n**)} =1 as
n T oco.

Proof of Lemma D.8. By the triangle inequality,

: D 1)K < max [F(z5)I{ sup (i) = h(zi)| + sup h(z;)}.
J=1

T, ERS nb% - 1<j<n x; ER x; ERS

But under Assumptions 3.3 and 3.4, we can use the strong uniform consistency of h(z;) (see, for
instance, Prakasa Rao (1983, Page 185)) to show sup, cgs \h(zi) — h(zs)] =2 0 if 82 | 0. Fur-

S
nbs,

thermore, h(z;) is uniformly bounded on R® by assumption, and from Lemma D.2 we know that

maxi<j<y | f(2;)| = o(n/?) w.p.1 as n T co. Therefore, sup,, cps % D1 1 f(z) K = o(n!/%) holds
w.p.1 provided = log” 1 0. The desired result follows. O

Lemma D.9. Let f(z) be a real valued function such that E|f(z)|?> < oo, and let Assumptions 3.3
and 3.4 hold. Then E{nbs Y1 1f(2) K} < oo

Proof of Lemma D.9. Since —i doie1 1 f ()K= 3750 [f (25) lwij h(z;),

nbg

Jensen 1

Z|f LTS {Z’f zj)|wi] +h2(93z)} < {Z|f zj)| w,]—f—hQ(xZ)}

nbs

It is easily shown that Eh2(z;) < oo. Hence the desired result follows by Lemma D.6. O
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APPENDIX E. SIMULATION RESULTS

TABLE 1. n =50

Estimator Bandwidth Std. Dev. Bias RMSE Ratio RMSE MAE Ratio MAE

OLS 0.4183 0.0154 0.4186 3.1837 0.2551 2.7950
0.3208 -0.0070 0.3209 2.1750 0.1991 2.0429

FGLS 0.1668 0.0054 0.1669 1.2696 0.1033 1.1316
0.2078 0.0033 0.2078 1.4085 0.1284 1.3177

GLS 0.1314 0.0054 0.1315 1.0000 0.0913 1.0000
0.1475 0.0022 0.1475 1.0000 0.0975 1.0000

k-NN automatic 0.2217 0.0112 0.2220 1.6884 0.1337 1.4648
0.2347 -0.0008 0.2347 1.5910 0.1494 1.5329

kp =3 0.2545 0.0137 0.2549 1.9389 0.1566 1.7159

0.2311 -0.0049 0.2312 1.5669 0.1444 1.4816

kn, =06 0.2172 0.0121 0.2175 1.65643 0.1345 1.4738

0.2190 -0.0012 0.2190 1.4842 0.1360 1.3957

kn=9 0.2097 0.0100 0.2100 1.5970 0.1253 1.3733

0.2212 0.0007 0.2212 1.4994 0.1331 1.3653

kyp =12 0.2111 0.0103 0.2114 1.6077 0.1231 1.3487

0.2248  0.0003 0.2248 1.5236 0.1335 1.3701

kp =15 0.2147 0.0119 0.2151 1.6358 0.1262 1.3829

0.2306 -0.0012 0.2307 1.5633 0.1400 1.4370

kp =18 0.2196 0.0132 0.2200 1.6736  0.1297 1.4211

0.2354 -0.0025 0.2354 1.5957 0.1463 1.5008

kn =21 0.2231 0.0132 0.2235 1.6998 0.1296 1.4200

0.2394 -0.0029 0.2394 1.6228 0.1506 1.5457

ky =24 0.2281 0.0117 0.2284 1.7373 0.1329 1.4567

0.2440 -0.0028 0.2440 1.6537 0.1562 1.6025




TABLE 2. n = 50 (continued)

Estimator Bandwidth Std. Dev. Bias RMSE Ratio RMSE MAE Ratio MAE
Kernel automatic 0.2093 0.0117 0.2096 1.5944 0.1354 1.4836
0.2314 -0.0033 0.2314 1.5685 0.1501 1.5402

b, = 0.1524 0.2296 0.0087 0.2298 1.7476 0.1463 1.6030
0.2329 0.0012 0.2329 1.5785 0.1465 1.5033

b, = 0.3049 0.1994 0.0099 0.1997 1.5189 0.1271 1.3927
0.2176 -0.0006 0.2176 1.4749 0.1392 1.4286

b, = 0.4573 0.1890 0.0101 0.1893 1.4395 0.1181 1.2936
0.2120 -0.0019 0.2121 1.4372 0.1385 1.4212

b, = 0.6097 0.1869 0.0102 0.1872 1.4237 0.1205 1.3202
0.2118 -0.0027 0.2118 1.4357 0.1384 1.4200

by, = 0.7622 0.1915 0.0105 0.1918 1.4588 0.1239 1.3573
0.2165 -0.0031 0.2165 1.4676 0.1408 1.4443

b, = 0.9146 0.2016 0.0108 0.2019 1.5358 0.1295 1.4188
0.2249 -0.0035 0.2250 1.5247 0.1467 1.5055

b, = 1.0670 0.2157 0.0113 0.2160 1.6425 0.1369 1.5003
0.2351 -0.0039 0.2351 1.5936 0.1524 1.5637

b, = 1.2195 0.2319 0.0117 0.2322 1.7664 0.1405 1.5399
0.2454 -0.0043 0.2454 1.6635 0.1620 1.6620

SEL automatic 0.1777 0.0078 0.1778 1.3525 0.1100 1.2047
0.1803 0.0001 0.1803 1.2218 0.1090 1.1186

b, = 0.1524 0.1957 0.0073 0.1959 1.4898 0.1285 1.4083
0.1996 0.0004 0.1996 1.3526 0.1297 1.3311

b, = 0.3049 0.1874 0.0073 0.1876 1.4266 0.1209 1.3241
0.1909 0.0006 0.1909 1.2938 0.1197 1.2279

b, = 0.4573 0.1803 0.0061 0.1804 1.3724 0.1121 1.2287
0.1834 0.0016 0.1834 1.2428 0.1136 1.1657

b, = 0.6097 0.1769 0.0049 0.1770 1.3463 0.1114 1.2200
0.1809 0.0028 0.1809 1.2260 0.1107 1.1363

b, = 0.7622 0.1710 0.0065 0.1711 1.3015 0.1100 1.2056
0.1754 0.0014 0.1754 1.1886 0.1123 1.1522

b, = 0.9146 0.1715 0.0076 0.1717 1.3058 0.1095 1.2000
0.1750 0.0004 0.1750 1.1863 0.1109 1.1384

b, = 1.0670 0.1747 0.0082 0.1749 1.3302 0.1099 1.2046
0.1766 -0.0002 0.1766 1.1969 0.1100 1.1285

b, = 1.2195 0.1797 0.0088 0.1799 1.3681 0.1110 1.2166
0.1796 -0.0007 0.1796 1.2170 0.1128 1.1574

35
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TABLE 3. n =100

Estimator Bandwidth Std. Dev. Bias RMSE Ratio RMSE MAE Ratio MAE

OLS 0.3735 0.0075 0.3735 4.0987 0.2084 3.4215
0.2693 -0.0039 0.2693 2.5979 0.1587 2.2635

FGLS 0.1192 0.0099 0.1196 1.3121 0.0751 1.2328
0.1471 -0.0057 0.1472 1.4201 0.0955 1.3627

GLS 0.0909 0.0064 0.0911 1.0000 0.0609 1.0000
0.1036 -0.0020 0.1037 1.0000 0.0701 1.0000

k-NN automatic 0.1568 0.0084 0.1571 1.7235 0.0814 1.3360
0.1690 -0.0028 0.1690 1.6307 0.1026 1.4628

kp =3 0.2131 0.0110 0.2134 2.3416 0.1252 2.0549

0.1785 -0.0089 0.1787 1.7243 0.1238 1.7663

k, =6 0.1577 0.0082 0.1579 1.7326 0.0960 1.5766

0.1529 -0.0053 0.1530 1.4763 0.1043 1.4884

kn =10 0.1480 0.0077 0.1482 1.6266 0.0867 1.4229

0.1527 -0.0032 0.1527 1.4734 0.1004 1.4325

k, =13 0.1475 0.0079 0.1477 1.6211 0.0802 1.3170

0.1557 -0.0024 0.1557 1.5022 0.0997 1.4221

kn =16 0.1489 0.0067 0.1490 1.6353 0.0770 1.2641

0.1605 -0.0015 0.1605 1.5486 0.1026 1.4630

kn, =20 0.1538 0.0068 0.1540 1.6893 0.0813 1.3341

0.1662 -0.0017 0.1662 1.6031 0.1032 1.4715

kn =23 0.1563 0.0066 0.1564 1.7160 0.0811 1.3321

0.1700 -0.0018 0.1700 1.6399 0.1023 1.4596

kn, =26 0.1596 0.0070 0.1597 1.7529 0.0823 1.3513

0.1733 -0.0024 0.1733 1.6719 0.1025 1.4623




TABLE 4. n =100 (continued)

Estimator Bandwidth Std. Dev. Bias RMSE Ratio RMSE MAE Ratio MAE
Kernel automatic 0.1413 0.0099 0.1417 1.5543 0.0831 1.3638
0.1607 -0.0057 0.1608 1.5508 0.0993 1.4160

b, = 0.1327 0.1640 0.0122 0.1645 1.8047 0.1002 1.6458
0.1673 -0.0061 0.1674 1.6151 0.1139 1.6246

b, = 0.2654 0.1373 0.0096 0.1376 1.5102 0.0825 1.3549
0.1499 -0.0041 0.1500 1.4470 0.1005 1.4332

b, = 0.3981 0.1239 0.0091 0.1243 1.3636 0.0755 1.2403
0.1413 -0.0044 0.1413 1.3634 0.0912 1.3013

b, = 0.5308 0.1209 0.0089 0.1212 1.3298 0.0727 1.1941
0.1392 -0.0046 0.1393 1.3434 0.0900 1.2833

b, = 0.6635 0.1225 0.0089 0.1228 1.3477 0.0741 1.2163
0.1416 -0.0048 0.1417 1.3668 0.0915 1.3058

by, = 0.7962 0.1281 0.0090 0.1284 1.4090 0.0763 1.2520
0.1479 -0.0049 0.1480 1.4277 0.0932 1.3289

b, = 0.9289 0.1371 0.0091 0.1374 1.5072 0.0799 1.3117
0.1568 -0.0049 0.1568 1.5131 0.0965 1.3759

b, = 1.0616 0.1487 0.0091 0.1489 1.6342 0.0851 1.3972
0.1668 -0.0048 0.1669 1.6099 0.1050 1.4979

SEL automatic 0.1145 0.0086 0.1148 1.2596 0.0743 1.2202
0.1206 -0.0035 0.1207 1.1643 0.0769 1.0962

b, = 0.1327 0.1343 0.0106 0.1347 1.4777 0.0875 1.4358
0.1384 -0.0017 0.1384 1.3355 0.0909 1.2962

b, = 0.2654 0.1232 0.0094 0.1235 1.3554 0.0757 1.2433
0.1289 -0.0007 0.1289 1.2431 0.0831 1.1859

b, = 0.3981 0.1172 0.0083 0.1175 1.2893 0.0726 1.1912
0.1242 -0.0006 0.1242 1.1981 0.0771 1.1004

b, = 0.5308 0.1142 0.0084 0.1145 1.2561 0.0709 1.1643
0.1217 -0.0016 0.1217 1.1739 0.0768 1.0956

b, = 0.6635 0.1122 0.0083 0.1125 1.2343 0.0698 1.1461
0.1197 -0.0025 0.1198 1.1553 0.0753 1.0746

b, = 0.7962 0.1119 0.0084 0.1122 1.2316 0.0703 1.1534
0.1192 -0.0031 0.1192 1.1504 0.0743 1.0601

b, = 0.9289 0.1131 0.0086 0.1135 1.2450 0.0730 1.1991
0.1197 -0.0036 0.1198 1.1554 0.0740 1.0559

b, = 1.0616 0.1156 0.0088 0.1159 1.2718 0.0754 1.2376
0.1212 -0.0038 0.1213 1.1697 0.0776 1.1074
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TABLE 5. n = 200

Estimator Bandwidth Std. Dev. Bias RMSE Ratio RMSE MAE Ratio MAE

OLS 0.3124 -0.0019 0.3124 4.6385 0.1676 3.4328
0.2216 0.0003 0.2216 2.9158 0.1325 2.5419

FGLS 0.0977 0.0053 0.0979 1.4529 0.0563 1.1544
0.1019 -0.0028 0.1019 1.3413 0.0661 1.2678

GLS 0.0673 0.0030 0.0674 1.0000 0.0488 1.0000
0.0760 -0.0011 0.0760 1.0000 0.0521 1.0000

k-NN automatic 0.1006  0.0037 0.1006 1.4941 0.0594 1.2163
0.1125 -0.0016 0.1125 1.4805 0.0708 1.3579

kn=14 0.1414 0.0035 0.1415 2.1006 0.0931 1.9077

0.1238 -0.0012 0.1238 1.6285 0.0827 1.5867

kn, =38 0.1026  0.0033 0.1027 1.5245 0.0632 1.2948

0.1045 -0.0013 0.1045 1.3752 0.0695 1.3334

kp =12 0.0959 0.0042 0.0960 1.4252 0.0583 1.1934

0.1026 -0.0025 0.1026 1.3501 0.0664 1.2734

k, =16 0.0963 0.0047 0.0964 1.4313 0.0584 1.1957

0.1046 -0.0022 0.1046 1.3763 0.0655 1.2567

kn =20 0.0969 0.0039 0.0970 1.4404 0.0565 1.1568

0.1071 -0.0020 0.1072 1.4101 0.0677 1.2981

ky, =24 0.0980 0.0040 0.0981 1.4566 0.0582 1.1928

0.1096 -0.0020 0.1097 1.4428 0.0703 1.3477

kn =28 0.1001  0.0037 0.1001 1.4869 0.0598 1.2256

0.1126 -0.0016 0.1126 1.4822 0.0715 1.3712

kn =32 0.1017 0.0033 0.1017 1.5100 0.0603 1.2363

0.1153 -0.0015 0.1153 1.5177 0.0731 1.4014




TABLE 6. n = 200 (continued)

Estimator Bandwidth Std. Dev. Bias RMSE Ratio RMSE MAE Ratio MAE
Kernel automatic 0.0899 0.0048 0.0900 1.3363 0.0627 1.2841
0.1043 -0.0033 0.1043 1.3729 0.0682 1.3082

b, = 0.1155 0.1122 0.0053 0.1123 1.6672 0.0639 1.3084
0.1169 -0.0020 0.1169 1.5381 0.0771 1.4781

b, = 0.2310 0.0918 0.0042 0.0919 1.3641 0.0544 1.1144
0.1009 -0.0021 0.1009 1.3279 0.0663 1.2719

b, = 0.3466 0.0834 0.0042 0.0836 1.2404 0.0530 1.0856
0.0941 -0.0027 0.0942 1.2389 0.0632 1.2122

b, = 0.4621 0.0808 0.0048 0.0810 1.2019 0.0520 1.0657
0.0920 -0.0033 0.0920 1.2111 0.0623 1.1944

b, = 0.5776 0.0803 0.0048 0.0805 1.1945 0.0534 1.0930
0.0922 -0.0035 0.0923 1.2144 0.0629 1.2072

b, = 0.6931 0.0818 0.0048 0.0819 1.2163 0.0564 1.1561
0.0947 -0.0034 0.0947 1.2464 0.0627 1.2027

b, = 0.8087 0.0854 0.0048 0.0855 1.2699 0.0592 1.2133
0.0992 -0.0034 0.0992 1.3057 0.0648 1.2426

by, = 0.9242 0.0910 0.0048 0.0911 1.3525 0.0626 1.2818
0.1053 -0.0034 0.1054 1.3862 0.0687 1.3169

SEL automatic 0.0777 0.0041 0.0778 1.1546 0.0528 1.0824
0.0831 -0.0022 0.0831 1.0941 0.0571 1.0947

b, = 0.1155 0.0910 0.0039 0.0910 1.3516 0.0600 1.2291
0.0944 -0.0009 0.0944 1.2426 0.0634 1.2165

b, = 0.2310 0.0868 0.0034 0.0868 1.2894 0.0566 1.1589
0.0897 -0.0010 0.0897 1.1797 0.0578 1.1077

b, = 0.3466 0.0827 0.0034 0.0827 1.2283 0.0554 1.1349
0.0869 -0.0012 0.0869 1.1435 0.0560 1.0742

b, = 0.4621 0.0800 0.0038 0.0801 1.1898 0.0518 1.0621
0.0847 -0.0016 0.0847 1.1147 0.0573 1.0984

b, = 0.5776 0.0781 0.0040 0.0782 1.1608 0.0506 1.0359
0.0834 -0.0018 0.0835 1.0982 0.0569 1.0917

b, = 0.6931 0.0772 0.0040 0.0773 1.1472 0.0498 1.0205
0.0829 -0.0020 0.0829 1.0906 0.0571 1.0942

b, = 0.8087 0.0771 0.0041 0.0772 1.1458 0.0512 1.0488
0.0828 -0.0021 0.0828 1.0893 0.0581 1.1137

by, = 0.9242 0.0778 0.0041 0.0779 1.1561 0.0539 1.1047
0.0831 -0.0022 0.0831 1.0940 0.0575 1.1035
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