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Abstract

The asymmetrical movements between the downward and upward phases of
the sample paths of time series have been sometimes observed. By generalizing
the SSAR (simultaneous switching autoregressive) models, we introduce a class of
nonlinear time series models having the asymmetrical sample paths in the upward
and downward phases. We show that the class of generalized SSAR models is useful
for estimating the asymmetrical predictive distribution given the present and past
information. Applications to the prediction based on the predictive median and the
estimation of the VaR (value at risk) in financial risk management are discussed.
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1. Introduction

In the past decades several nonlinear time series models have been proposed by
statisticians and some of them have been used in practical applications. Among the
nonlinear phenomena observed in actual time series data we shall forcus on the asym-
metrical movements of time series in the upward phase and the downward phase, which
have been observed by a number of time series researchers and economists. In particular
it has been argued that major financial series including stock prices display some kind
of asymmetrical movements in the upward and downward phases. There have been
several attempts to deal with this type of phenomena in nonlinear time series analysis.
In this paper we shall propose a class of nonlinear time series models, which is a gen-

eralization of the SSAR (simultaneous switching autoregressive) models, and develop
a new approach to deal with the asymmetrical sample paths of time series. Earlier,
we have introduced the stationary and nonstationary SSAR time series models and
discussed their statistical properties in some detail (Kunitomo and Sato (1996, 1999,
2000a, 2000b), Sato and Kunitomo (1996)). The SSAR models have been developed for
applications in econometric analyses including the disequilibrium econometric models
and the time series models with adjustments in financial markets. Although the SSAR
models have been discussed in econometric applications, there are some interesting new
aspects for nonlinear time series modelling. Thus we are trying to extend the SSAR
models to a class of GSSAR models in time sereis analysis and discuss some possible
applications. Since the most important application of time series models is predic-
tion, we shall discuss some related applications based on the predictive distribution of
the GSSAR models. In particular we shall propose a new estimation method of the
percentile points of the predictive distribution such as the median when it is not nec-
essarily symmetrical and the resulting volatility function of the time series can be also
asymmetrical. It is essentially the same problem as the estimation of the Value-at-Risk
(VaR) in recent financial risk management.
There can be other approaches in the estimation problem of asymmetrical volatility

function and VaR. In particular some non-linear statistical time series models along the
line of Nelson (1991) and Harvey and Shephard (1993) in the econometric or financial
analysis of the asymmetrical volatility functions have been known and there have been
many related studies already appeared, which are closely related to the application we
shall investigate in this paper. However, our approach to the problem of estimating
asymmetrical volatility function and measuring VaR is a simple but different one from
the exisiting literatures in this respect.
In Section 2, we shall introduce a generalized univariate SSAR (GSSAR) model and

discuss some examples. Then in Section 3 we shall investigate some properties of the
GSSAR models including the geometric ergodicity and the estimation problems of the
GSSAR models. In Section 4, we shall discuss the predictive distribution in the GSSAR
models and the estimation problem of percentiles of the predictive distribution such as
the median. As an application we shall discuss the prediction based on the median and
the estimation of VaR in the financial risk management and give a real case study on
the interest rates futures market in Japan. Then some concluding remarks will be given
in Section 5. The proofs of some theoretical results in Section 3 are given in Appendix.
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2. A Generalized SSAR model

We consider a class of the generalized SSAR (simultaneous switching autoregressive)
models. Let {yt, t = 0,+1, · · ·} be the univariate time series satisfying

∆yt = Gσ(r0 +
p∑

j=1

rjyt−j + vt

√
ht) ,(2.1)

where ∆yt = yt − yt−1, Gσ(·) is a continuous function, rj (j = 0, 1, · · · , p) are unknown
parameters, vt are i.i.d random variables with E[vt] = 0, E[v2

t ] = 1, and ht (≥ 1) is the
volatility function.
We assume that
(i) {vt} are i.i.d random variables with a continuous symmetric density function f(v)
(and its distribution function F (v)), which is positive almost everywhere in R,
and
(ii) ht are the Ft−1−measurable functions 1 and Ft−1 is the σ−field generated by the
random variables {ys, s ≤ t− 1} .

In this paper we further assume that
(iii) Gσ(x) is a strictly increasing function satisfying

lim
x→∞

Gσ(x)
x
= σ1 > 0 ,(2.2)

and
lim

x→−∞
Gσ(x)
x
= σ2 > 0 ,(2.3)

where σ is the vector of unknown transformation parameters including σi (i = 1, 2)
appeared in (2.2) and (2.3).

In the above formulation (2.1) is slightly different from many nonlinear time series
models including the threshold autoregressive (TAR) models developed by Tong (1990).
We shall be mainly interested in the time series movements which can be quite different
in the upward phase (∆yt ≥ 0) and the downward phase (∆yt < 0). Then (2.1) can
give a simple but rich way to represent the time series modelling with these two phases.
Because the transformation function Gσ(·) has some unknown parameters and the
random noise vt at t has not been realized at time t− 1, the phase (the upward phase
or downward phase, for instance) at time t is not determined in advance at time t− 1.
Also we shall be mainly interested in the case when the transformation function Gσ(·)
in (2.1) is not necessarily differentiable.
In this section we illustrate the distinctive features of the class of the GSSARmodels

and give some examples whose reduced forms 2 are written as (2.1). When σ = σ1 = σ2

and Gσ(x) = σx , then (2.1) is the AR(p) model when we take the volatility function
ht = 1 (a.s.) . Except this special case, the sample paths of the GSSAR models are
asymmetrical in the upward and downward phases. The class of the GSSAR models is
a generalization of the SSAR (simultaneous switching autoregressive) models developed

1 It is possible to deal with the more general case on the volatility function such as the stochas-
tic volatility models. See Harvey and Shephard (1993), for instance. However, then the estimation
procedure becomes more complicated than the methods in Section 3.2.

2 We use the distinction between the structural forms and the reduced forms of the SSAR models.
This terminology has been standard in the traditional econometric literatures.
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by the present authors. (Kunitomo and Sato (1996, 1999, 2000a, 2000b) and Sato and
Kunitomo (1996).) They have discussed some multivariate versions of the SSAR time
series models, but we shall discuss univariate examples in this paper. In the following
Example 1 and Example 2 we take ht = 1 only for the resulting expository simplicities.
The first example is the simplest case, but it highlights the distinctive features of the
class of the SSAR models.

Example 1 : SSAR(1)

Kunitomo and Sato (1996) have introduced a simple stationary simultaneous switching
autoregressive (SSAR) time series model by considering a class of multivariate dise-
quilibrium econometric models. For the expository purpose let {yt} be a sequence of
scalar time series satisfying

yt =




a1yt−1 + σ1vt if yt ≥ yt−1

b1yt−1 + σ2vt if yt < yt−1

,(2.4)

where a1, b1, σi (σi > 0; i = 1, 2) are unknown parameters, and {vt} are a sequence of
i.i.d. random variables with E(vt) = 0 and E(v2

t ) = 1. This is in the structural form
of time series model with the econometric terminology. By imposing the coherency
condition given by

1− a1

σ1
=
1− b1
σ2

= −r1 ,

the time series model can be rewritten as

yt =




a1yt−1 + σ1vt if vt ≥ −r1yt−1

b1yt−1 + σ2vt if vt < −r1yt−1

.(2.5)

It is the reduced form of a structural time series model (2.4) in the econometric termi-
nology and its Markovian representation is given by

∆yt = [σ1I(vt + r1yt−1 ≥ 0) + σ2I(vt + r1yt−1 < 0)][r1yt−1 + vt] ,(2.6)

where I(·) is the indicator function. When σ1 = σ2 = σ, then the present SSAR(1)
model becomes the standard AR(1) model by re-parametrizing a1 = b1 = 1 + σr1 .

Example 2 : SSAR(p)

The univariate SSAR(p) model in the structural form, which includes the SSAR(1)
model as a special case, has been given by

yt =




a0 +
p∑

j=1

ajyt−j + σ1vt if yt ≥ yt−1

b0 +
p∑

j=1

bjyt−j + σ2vt if yt < yt−1 .

(2.7)

By defining the set of parameters a0 = r0σ1, a1 = 1+ r1σ1, aj = rjσ1 (j = 2, · · · , p) and
b0 = r0σ2, a2 = 1 + r1σ2, aj = rjσ2 (j = 2, · · · , p), the reduced form of the time series

4



model is given by

∆yt = σ(t)(r0+
p∑

j=1

rjyt−j + vt) ,(2.8)

where σ(t) = σ1I(∆yt ≥ 0) + σ2I(∆yt < 0) .

Example 3 : GSSAR(1)

A more general form of (univariate) SSAR(p) model with multiple state spaces can be
defined by the function

Gσ(x) =




σ1x if x ≥ c1
σ0x if c2 ≤ x < c1
σ2x if x < c2 ,

(2.9)

where σi and ci (i = 1, 2, 3) are real constants. In this case there are three phases on
the state space depending on the values of ∆yt . It is mathematically trivial to extend
the GSSAR(p) model with m+1 phases by dividing the state space into m+1 phases
as the threshold AR models already introduced by Tong (1990).
When the threshold parameters ci(i = 1, 2, 3) in Example 3 are unknown, however, the
statistical estimation problem of these parameters becomes non-standard.

We now give two examples which are related to the application we shall discuss
in the area of financial time series analysis. We need some non-linear as well as non-
stationary time series models because we can often observe these features in actual
financial time series.

Example 4 : Asymmetrical ARCH(r) model

Let yt = log Pt and Pt is the stock price at time t. Then without considering the
stock dividends the stock return process is given by Rt = ∆yt = log(Pt/Pt−1) and the
asymmetrical volatility model for the return process can be represented by the GSSAR
model

∆yt = Gσ(vt

√
ht) ,(2.10)

where

ht = 1 +
r∑

j=1

αjht−jv
2
t−j ,(2.11)

and αj (j = 1, · · · , r) are unknown parameters with αj ≥ 0 and ∑r
j=1 αj < 1 . When

Gσ(x) = σx , then the resulting GSSAR model is the same as the standatrd ARCH
model developed by Engle (1982).

Example 5 : SSIAR(p)

We should mention that Kunitomo and Sato (1999, 2000b) have introduced a univariate
nonstationary SSAR model. Let yt be an I(1) time series process and satisfy

∆yt = σ(t)

{
a0 +

p∑
i=1

ai(t− i)σ(t− i)−1∆yt−i +
√
htvt

}
,(2.12)

where σ(t) = σ1I(∆yt ≥ 0) + σ2I(∆yt < 0), a1(t − 1) = 1 + r1σ(t − 1), ai(t − i) =
riσ(t − i) (i = 2, · · · , p), and the volatility function ht is given by (2.11). If we write
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the transformation function as Gσ(x) = (σ1I(x ≥ 0) + σ2I(x < 0))x , we have

∆yt = Gσ

{
r0 +

p∑
i=1

ri∆yt−i +G−1
σ (∆yt−1) +

√
htvt

}
,(2.13)

where G−1
σ (x) = (σ

−1
1 I(x ≥ 0)+σ−1

2 I(x < 0))x . This representation for {yt} is similar
to (2.1), but it is slightly more complicated. This non-linear nonstationary time series
model was originally derived by considering adjustments in financial markets and it can
be written as a Markovian representation form by using the state space representation
for {yt}.
Let (p+ r)× 1 state vector xt be given by

xt =




∆yt
...

∆yt−p+1

u2
t
...

u2
t−r+1




,(2.14)

where we denote u2
t = v2

t ht and the volatility function ht is given by (2.11). Then the
state space for xt is Rp ×Rr

+ and we can form a Markovian representation for {xt} as

xt =Hσ(xt−1, vt) ,(2.15)

where

Hσ(xt−1, vt) =




Gσ(r0 +
p∑

i=1

ri∆yt−i +G−1
σ (∆yt−1) + vt

√
ht)

∆yt−1
...

∆yt−p+1

v2
t ht

u2
t−1
...

u2
t−r+1




.

We notice that the last example is just one non-stationary SSAR model having a
Markovian representation and there can be other extensions. The important point is
the fact that if we relax the differentiability of the transformation function Gσ(·), then
there can be many non-linear time series models which may be useful for practical
applications.

3. Some Statistical Properties

3.1 Geometric Ergodicity
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The first important property of a statistical time series model is whether it is er-
godic or not. For the Markovian time series models, the geometric ergodicity and the
related concepts have been developed in the nonlinear time series analysis. For the
precise definitions of related concepts including irreducibility, aperiodicity, small set,
and ergodicity of the Markov chains with the general state space, see Nummelin (1984)
or Tong (1990).
We consider the structural form of the GSSAR model given by (2.1) with (2.11).

Then we have the next result on the geometric ergodicity for the class of GSSAR model.
The proof is given in Appendix.

Theorem 3.1 In the structural form of the GSSAR model given by (2.1) with (2.11)
we also assume E[v2

t ] < ∞ . Then a set of sufficient conditions for the geometric
ergodicity are given by

ρ1 = max{
p∑

i=1

|ai|,
p∑

i=1

|bi|} < 1(3.1)

and

ρ2 = max{σ1, σ2, 1}
r∑

i=1

αi < 1 ,(3.2)

where a1 = 1 + r1σ1, b1 = 1+ r1σ2, ai = riσ1, bi = riσ2 (i = 1, · · · , p), and αi(≥ 0) (i =
1, · · · , r).

We notice that the conditions given by (3.1) and (3.2) are quite strong and they are
not the necessary conditions. It has been known that when p = 1 with a constant term
and ht = 1 (a.s.),

a1 < 1, b1 < 1, a1b1 < 1(3.3)

are the necessary and sufficient conditions for the geometric ergodicity with the as-
sumption of E[|vt|] < ∞ . Furthermore, Kunitomo (1999) has investigated the ergodic
regions for the 2nd order threshold (TAR(2)) models and the SSAR(2) models and
found that they are quite complex even in some special cases. Thus the necessary and
sufficient conditions are still open problems in the GSSAR models when p ≥ 1 and
r ≥ 1. For the SSIAR(p) models we discussed in Example 5, Kunitomo and Sato
(2000b) have given a set of sufficient conditions on the geometric ergodicity.

We next consider the conditions for the existence of moments of the process {yt}
when it is geometrically ergodic. For this purpose we have the following sufficient
conditions which are quite strong. The proof is similar to the previous one and it is
omitted.

Theorem 3.2 In the structural form of the GSSAR model given by (2.1) with (2.11)
we also assume the condition (3.2) and E[v2

t ] < ∞ . Then a set of sufficient conditions
for the existence of 2nd order moments of {yt} are given by

ρ3 = max{
p∑

i=1

|ai|+ σ1,
p∑

i=1

|bi|+ σ2} < 1 .(3.4)
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Again we notice that the condition given by (3.2) and (3.4) are quite strong. It has
been known that when p = 1 with a constant term and ht = 1 (a.s.),

a1 < 1, b1 < 1, a1b1 < 1(3.5)

and E[|vt|k] < ∞ (k ≥ 1) are the sufficient conditions for the existence of the k-th order
moments of {yt} .

3.2 Estimation

In the nonlinear time series analysis the least squares method has been often used to
estimate the unknown parameters of the time series models in the form of (2.1). Even if
the function Gσ(·) is known except σ, there is a serious bias problem in the least squares
estimation of the structural forms due to the nonlinear transformation involved. We
shall discuss two estimation methods of the unknown parameters in (2.1).
Instead of the least squares estimation method, Sato and Kunitomo (1996) have

proposed to use the maximum likelihood (ML) estimation for the SSAR models. By
generalizing their arguments to the GSSAR models, the maximum likelihood (ML) esti-
mator for the GSSARmodels under the Gaussian disturbances is defined by maximizing
the conditional log-likelihood function for yt (t = 1, · · · , T ) :

logLT (θ) = −1
2

T∑
t=1

log(2πht(α)) +
1
2

T∑
t=1

log |dG
−1
σ

d∆yt
|+(3.6)

− 1
2ht(α)

T∑
t=1

[G−1
σ (∆yt)− r0 −

p∑
j=1

rjyt−j]2 ,

where the initial conditions yt (−max{p, r}+1 ≤ t ≤ 0) are given. In the above notation
α = (αi) (i = 1, · · · , r) and we denote the vector of whole structural parameters as

θ = (r0, r1, · · · , rp, α1, · · · , αr, σ)

when we use (2.11) as the volatility function.
As for the asymptotic properties of the ML estimation method when the underlying

process is (geometrically) ergodic, under a set of regularity conditions and the Gaus-
sian disturbances the ML estimator θ̂ML of unknown parameter θ is consistent and
asymptotically normally distributed as

√
T
(
θ̂ML − θ0

) d−→ N
[
0, I(θ0)−1

]
,(3.7)

where

I(θ0) = lim
T→∞

1
T
E

[
−∂2 logLT (θ)

∂θ∂θ′ |θ=θ0

]
,(3.8)

which is assumed to be a non-singular matrix and θ0 is the vector of true parameters.
Because the estimation problem for the GSSAR models is quite similar to the esti-

mation problem of the structural equations in the nonlinear simultaneous equations, an
alternative estimation method under the non-Gaussian disturbance terms would be the
nonlinear instrumental variables (IV) estimation. Actually it is a special case of the
Generalized Method of Moments (GMM) proposed by Hansen (1982) (see Hamilton
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(1994), for instance). Given the initial conditions and the observations for yt, one type
of the instrumental variables (IV) estimators is defined by minimizing the criterion
function

QT (θ) = F T (θ)
′
H−1

T F T (θ) ,(3.9)

where

F T (θ) =
1
T

T∑
t=1

(
vt(θ)

v2
t (θ)− 1

)
⊗



1

yt−1
...

yt−q


 ,(3.10)

HT = W ⊗ 1
T

T∑
t=2



1

yt−1
...

yt−q






1

yt−1
...

yt−q




′

,

W is a 2× 2 nonsingular matrix and vt(θ) = [G−1
σ (∆yt)− r0 −∑p

j=1 rjyt−j]/ht(α) .
In the above notation the number of instrumental variables is denoted by q which
satisfies the condition q ≥ max{p, r}+ 1 .
As for the asymptotic properties of the ML estimation method when the underlying
process is (geometrically) ergodic, under a set of regularity conditions and fairly general
distributions for the disturbances the nonlinear instrumental variables estimator θ̂IV

of unknown parameter θ is consistent and asymptotically normally distributed. The
asymptotic variance-covariance matrix of the instrumental variables method has been
given in Kunitomo and Sato (2000a).

4. Applications

4.1 Predictive Distribution and VaR

One important application of the GSSAR models is the problem of estimating the
percentile points of the predictive distribution, which is defined by the conditional
distribution function given the past information. It is the same as the marginal distri-
bution if the observations are realizations of i.i.d. random variables. We notice that
the predictive distribution under the GSSAR models can be asymmetrical even if we
have the Gaussian disturbances.
From (2.1), the conditional probability distribution at t+ 1 given Ft is given by

Ht+1|t(y) = P (yt+1 ≤ y|Ft)

= P (vt+1

√
ht+1 ≤ G−1

σ (y − yt)− r0 −
p∑

j=1

rjyt+1−j|Ft)

= F (
G−1

σ (y − yt)− r0 −∑p
j=1 rjyt+1−j√

ht+1
) ,(4.1)

where F (·) is the distribution function of {vt}. Then by using a recursive argument for
any h ≥ 1 the k−period ahead predictive distribution given the information Ft is given
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by

Ht+k|t(y) = E[F (
G−1

σ (y − yt+k−1)− r0 −
∑p

j=1 rjyt+k−j√
ht+k

)|Ft] ,(4.2)

where E[ · |Ft] is the conditional expectation operator with respect to the random
variables vt+k−1, · · · , vt+1.

There are some applications based on the predictive distribution of the GSSAR
models. First for the 100(1− γ)% prediction interval we consider

1− γ = P (yL ≤ yt+1 ≤ yU |Ft)

= P{G
−1
σ (yL − yt)− r0 −∑p

j=1 rjyt+1−j√
ht+1

≤ vt+1(4.3)

≤ G−1
σ (yU − yt)− r0 −∑p

j=1 rjyt+1−j√
ht+1

|Ft} .

Then the 100(1− γ)% prediction interval can be estimated by

[yt+Gσ̂{−z(
γ

2
)
√
ht+1(α̂)+r̂0+

p∑
j=1

r̂jyt+1−j)}, yt+Gσ̂{z(γ2 )
√
ht+1(α̂)+r̂0+

p∑
j=1

r̂jyt+1−j)}],

where z(γ2 ) is the upper
γ
2 percentile point of the distribution function F (v) , r̂j (j =

0, 1, · · · , p) are the estimates of the parameters rj (j = 0, 1, · · · , p) , σ̂ is the vector for
the estimates of σi (i = 1, 2), and α̂ is the vector for the estimates of αi (i = 1, · · · , r).
In particular we can use the above relation for estimating the median of the predictive
distribution. By solving

1
2
= P (vt+1 ≤ G−1

σ (yM − yt)− r0 −∑p
j=1 rjyt+1−j√

ht+1
|Ft) ,(4.4)

and using the assumption of the symmetry for the density function f(v), we have an
estimate of the median of the predictive distribution as

ŷmed
t+1|t = yt +Gσ̂(r̂0 +

p∑
j=1

r̂jyt+1−j) .(4.5)

We note that the median of the predictive distribution, which is called the predictive
median, is independent of the distribution function F (·) of disturbances under the
assumption of symmetrical density. On the other hand, the mean of the predictive
distribution is generally a complicated function of both the transformation function
Gσ(·) and the distribution function F (·) of disturbances. Hence we expect that (4.5)
gives a robust prediction method when the marginal distribution of time series is not
necessarily symmetric.

Since the predictive distribution can be asymmetrical, there is a direct application
in estimating the Value-at-risk (VaR) in the financial management problem. The VaR
value has been usually defined by (−1)× (the lower γ percentile point) when the return
process is a sequence of i.i.d random variables. However, it is has been often observed
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that the return processes have autocorrelations as well as asymmetrical volatilities in
actual financial data analyses. When there are some autocorrelations it may be natural
to define the VaR value by

1− γ = P (yt +Gσ̂ [−z(γ)
√
ht+1(α̂) + r̂0 +

p∑
j=1

r̂jyt+1−j ], +∞) ,(4.6)

where z(γ) is the upper γ percentile point of the distribution function F (v). In this
way it is quite easy to calculate the VaR value even if there are autocorrelations and
the return process has the asymetrical volatility function at the same time.

4.2 Simulation Results

In this subsection we report the results of our simulations on the prediction based
on the predictive median and the VaR value in the financial risk management. For
the prediction based on the median, we simulate a set of random numbers from the
SSAR(1)-ARCH(1) model. Then we estimate the median of the 1-period ahead predic-
tive distribution by fitting both the AR(1)-ARCH(1) model and the SSAR(1)-ARCH(1)
model. We have calculated the absolute sums of prediction errors

Mn =
1
n

n∑
i=1

|yt+1(i)− ŷmed
t+1|t(i)| ,(4.7)

where yt+1(i) and ŷmed
t+1|t(i) are the i-th simulated values of yt+1 and ŷmed

t+1|t . We denote
Mn(AR) and Mn(SSAR) as the average sum of absolute errors by the AR fitting and
the SSAR fitting, respectively. In Table 4.1 we report the ratio

Rn =
Mn(SSAR)
Mn(AR)

.(4.8)

In our procedure of the SSAR fitting we first estimate the unknown parameters of (2.1)
by using the maximum likelihood methods and use them to estimate the percentile
points of the one period ahead predictive distributions as we have explained in Section
4.1. The number of data in each simulation is 500, which may be reasonable in actual
applications because the VaR values are usually calculated from the daily time series
data.
From Table 4.1 we find that we have achieved a substantial improvement in one-step

ahead predition when the time series exhibits some asymmetry in the upward-phase
and the downward-phase. Also we should note that the conditional expectation of the
one-step ahead value E[yt+1|Ft] gives a more complicated predictor.
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Table 4.1 (Ratio of Prediction Errors)

a1 = 0.8 a1 = 0.2 a1 = 0.0 a1 = 0.8 a1 = 0.8 a1 = 0.2
b1 = 0.8 b1 = 0.2 b1 = 0.0 b1 = 0.2 b1 = −0.8 b1 = −0.2

α1 = 0.0 1.00074 1.00019 1.00055 0.92106 0.83358 0.98891
α1 = 0.4 0.99998 1.00039 1.00005 0.89849 0.74736 0.98629

For the application of VaR, the GSSAR model we have used in our simulations
is the stationary SSAR(1)-ARCH(1) model and we also have used the nonstationary
SSARI(1)-ARCH(1) model because the stochastic processes for financial applications
should have the nonstationarity as well as the asymmetrical sample paths. In both
cases as the volatility function we take

ht = 1+ α1ht−1v
2
t−1 ,(4.9)

where 0 ≤ α1 < 1 . In our simulations we specify a set of the parameter values, but
from the simulated data sets we try to estimate the one percentile point as if it were
not known.

Table 4.2 (SSAR: Symmetric Case)

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
a1 0.8 0.8 0.2 0.2 0 0
b1 0.8 0.8 0.2 0.2 0 0
α1 0 0.4 0 0.4 0 0.4

AR(1%) 1.010% 1.05% 1.01% 1.03% 0.96% 1.19%
SS(1%) 0.997% 1.09% 1.05% 1.04% 0.97% 1.20%
BIAS(AR) 1.20E-03 1.18E-03 6.87E-03 6.27E-03 7.02E-03 6.59E-03
BIAS(SS) 1.20E-03 1.41E-03 7.47E-03 7.07E-03 7.90E-03 7.65E-03
MSE(AR) 3.50E-04 9.58E-04 5.42E-03 1.56E-02 8.44E-03 2.50E-02
MSE(SS) 4.57E-04 1.14E-03 6.73E-03 1.84E-02 1.03E-02 3.07E-02
TRUE 9.72E-03 9.63E-03 9.70E-03 9.73E-03 9.13E-03 1.12E-02
STD 3.35E-01 4.29E-01 8.18E-01 1.05E+00 9.96E-01 1.30E+00

In Tables 4.2-4.5 AR(1%) and SS(1%) are the average percentages of the data below the (true) lower

one percentile point. BIAS and MSE of the estimated VaR values are calculated as the averages of the

simulation results.
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Table 4.3 (SSAR: Asymmetrical Case)

Case 7 Case 8 Case 9 Case 10 Case 11 Case 12
a1 0.8 0.8 0.8 0.8 0.2 0.2
b1 0.2 0.2 -0.8 -0.8 -0.2 -0.2
α1 0 0.4 0 0.4 0 0.4

AR(1%) 4.09% 3.48% 4.66% 3.91% 1.95% 1.71%
SS(1%) 1.09% 1.04% 1.17% 1.09% 1.08% 1.09%
BIAS(AR) 3.94E-01 4.09E-01 7.22E-01 6.49E-01 2.22E-01 2.27E-01
BIAS(SS) 6.22E-03 8.86E-03 1.70E-02 1.63E-02 1.02E-02 7.33E-03
MSE(AR) 2.16E-01 4.87E-01 1.50E-00 4.85E+00 1.13E-01 3.14E-01
MSE(SS) 7.64E-03 2.06E-02 3.75E-02 9.97E-02 1.50E-02 4.52E-02
TRUE 1.00E-02 1.01E-02 1.08E-02 1.00E-02 1.04E-02 1.02E-02
STD 8.30E-01 1.07E+00 1.39E-00 1.78E+00 1.02E+00 1.31E+00

Table 4.2 and Table 4.3 summarize the simulation results when the underlying
processes are the AR(1)-ARCH(1) model and the SSAR(1)-ARCH(1) model. When
the transformation function Gσ(·) is linear, the VaR values in both models are quite
similar. Hence we can estimate the one percentile point consistently both by the AR
fitting and the GSSAR fitting. However, when the transformation function is not linear,
the situation can be rather drastically different. Although the estimation of the GSSAR
modelling is reasonable, the estimation results based on the standard AR model with
or without ARCH fitting are badly biased.
Table 4.4 and Table 4.5 summarize the simulation results when the underlying

processes are the IAR(1)-ARCH(1) model and the SSIAR(1)-ARCH(1) model. The
results of simulations in the non-stationary time series models are quite similar to the
results from the AR(1)-ARCH(1) model and the SSAR-ARCH model in Tables 4.2 and
4.3. Hence our simulation results suggest that our method using the non-stationary
SSAR models gives a reasonable way to calculate the VaR values even if the predictive
distribution of the return process is asymmetrical. The standard practive in estimating
VaR values in financial risk management can be biased considerably if the underlying
process has some asymmetry.

Table 4.4 (SSIAR: Symmetric Case)

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
a1 0.8 0.8 0.2 0.2 0 0
b1 0.8 0.8 0.2 0.2 0 0
α1 0 0.4 0 0.4 0 0.4

AR(1%) 1.05% 0.94% 1.08% 1.05% 0.98% 1.16%
SS(1%) 1.08% 1.00% 1.11% 1.05% 0.98% 1.12%
BIAS(AR) 2.07E-03 2.19E-03 8.26E-03 0.97E-03 9.99E-03 1.11E-02
BIAS(SS) 2.29E-03 2.54E-03 8.71E-03 0.92E-03 1.05E-02 1.12E-02
MSE(AR) 5.13E-04 1.39E-03 8.03E-03 2.34E-02 1.24E-02 3.65E-02
MSE(SS) 6.71E-04 1.66E-03 1.00E-03 2.67E-02 1.57E-02 4.10E-02
TRUE 9.53E-03 0.91E-03 1.00E-02 1.00E-02 0.92E-03 1.03E-02
STD 3.36E-01 4.40E-01 8.15E-01 1.05E+00 1.00E+00 1.30E+00
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Table 4.5 (SSIAR: Asymmetrical Case)

Case 7 Case 8 Case 9 Case 10 Case 11 Case 12
a1 0.8 0.8 0.8 0.8 0.2 0.2
b1 0.2 0.2 -0.8 -0.8 -0.2 -0.2
α1 0 0.4 0 0.4 0 0.4

AR(1%) 4.19% 4.12% 4.98% 4.65% 1.95% 2.18%
SS(1%) 1.11% 1.09% 1.09% 1.15% 0.96% 1.25%
BIAS(AR) 2.70E-01 3.61E-01 6.04E-01 7.92E-01 3.03E-01 3.55E-01
BIAS(SS) 1.04E-02 7.91E-03 2.04E-02 2.59E-02 1.13E-02 1.65E-02
MSE(AR) 3.18E-01 4.71E-01 1.99E+00 3.21E+00 1.33E-01 2.03E-01
MSE(SS) 1.08E-02 2.72E-02 5.97E-02 1.50E-02 2.31E-02 6.11E-02
TRUE 9.67E-03 9.70E-03 9.97E-03 9.87E-03 9.07E-03 1.18E-02
STD 5.16E-01 6.74E-01 7.61E-01 9.61E-01 9.78E-01 1.28E+00

4.3 A Continuous Diffusion Process

In (2.1) we have introduced the GSSAR model in the framework of the time series
analysis with discrete time. One problem in the SSAR models can be in the fact that it
is not straightforward to derive the corresponding continuous time stochastic processes.
Since there could be some points where the differentiability Gσ(·) could breaks down in
the SSAR models, we need to take their smoothed versions. For an illustration, we take
the time interval ∆t in the GSSAR(1) model (replace t−∆t for t−1) and consider the
situation ∆t ↓ 0 . If we can approximate the transformation function by its smoothed
version Gσ,ε,∆t(·), then as the limit we could have the diffusion equation

yt = y0 +
∫ t

0
g1,ε(ys, s)ds+

∫ t

0
g2,ε(ys, s)dBs ,(4.10)

where Bt stands for the standard Brownian motion and ε is a parameter. One possibility
for the drift function and the diffusion function in the stochastic differential equation
may be given by

g1(yt, t) = Gσ,ε,0(r∗0 + r∗1yt) +
1
2
G

′′
σ,ε,0(r

∗
0 + r∗1yt)h∗t ,(4.11)

g2(yt, t) = G
′
σ,ε,0(r

∗
0 + r∗1yt)

√
h∗t(4.12)

where r∗0 and r∗1 are coefficients, h∗t is the continuous analogue of the volatility function
in the discrete time. If there are several points where the transformation function Gσ(·)
is not differentiable, we need further approximation arguments.

4.4 A Case Study of Interest Rates Futures

In this subsection we shall report an empirical application using a set of financial
time series data on interest rates futures at Tokyo. In our empirical data analysis we
have used the time series data on the interest rates futures whose underlying assets
are the Government Bonds (Kokusai) with 10 years maturity. They have been the
most popular interest rates futures traded in Japan. The data sets are the closing
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daily data from January 1997 to April 2001 and all price data were transformed into
their logarithms. Because the data exhibit the non-stationarity in their levels as well
as some asymmetrical movements, we have used the non-stationary SSAR model with
the ARCH effect given by

∆yt = Gσ

{
r0 + r1∆yt−1 +G−1

σ (∆yt−1) +
√
htvt

}
,(4.13)

where the volatility function ht is given by (2.11) with r = 1 . ( It is the SSIAR(1)-
ARCH(1) model.) We have shown the data set in Figure (b) and the estimation results
on coefficients in Figures (a), respectively. From our data sets we have estimated the
SSIAR(1)-ARCH(1) models sequentially and examined the corresponding VaR values
calculated from their one period ahead predictive distributions.
In the Japanese Government Bond market there was a significant price decline at

the end of 1998 because of the Bond market crisis occurred. As a result the estimated
coefficients a = 1+r1σ1(= a1) and b = 1+r1σ2(= b1) were not stable during that period
and we have observed a significant increase in the volatility coefficients σi (i = 1, 2).
After this specific period, the volatility function becomes stable since the begining of
1999. The estimated coefficent of the volatility functions are shown in Figure (e).
Then as we have explained in Section 4.1, we can estimate the VaR values from

the one period ahead predictive distributions sequentially. In Figures (c) and (d) we
have presented the estimated VaR values (one percentile and ten percentiles) by using
the SSARI modelling and the standard AR modelling without ARCH disturbances.
In Figures (g) and (h) we have presented the estimated VaR values (one percentile
and ten percentiles) by using the SSARI modelling and the AR modelling with ARCH
disturbances. (For the comparative purpose the estimated percentile values by using
the standard VaR method was presented in Figure (f) 3 .)
There are some interesting observations from Figures. When we use the ARCH

models, the estimated VaR values often tend to fluctuate over time while we have
stable VaR values when we do not use the ARCH models. It may be partly because
we have used only one period ahead predictive distributions. It is possible to use
the multiperiod predictive distributions, but then we need to specify the prediction
horizon. As we can see from our Figures we have some evidence that the results from
our approach is slightly better than the results from the standard time series modelling.

5. Conclusions

In this paper we have introduced a class of the GSSAR models in the nonlinear
time sereis analysis. This class is an extension of the SSAR models developed by the
authors and it is suitable for the estimation of asymmetric predictive distributions. In
particular it is quite useful for estimating the VaR value in financial risk management
when there are autocorrelations and the sample paths in the upward and downward
phases can be asymmetrical. On the other hand, the traditional methods of estimating
the VaR values are badly biased when we use the linear time series models including
the standard ARCH modelling.
It should be also noted that the GSSAR modelling is a simple way to handle the

nonlinear phenomena we have discussed. The model selection procedure can be de-
veloped straightforwardly within the GSSAR modelling along the line developed by

3 The standard method of estimatining the VaR values has been explained in JP Morgan (1996), for
instance.
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Akaike (1973). It seems that other time series models known for financial applications,
for instance, become often very complicated and it is quite difficult to judge whether a
particular model is appropriate for practical applications under different data sets.
Finally there can be several problems remain to be considered. We have some multi-

variate extensions of the SSAR models, but the multivariate models with the volatility
functions are obvious extensions in the GSSAR modelling. More importantly, the non-
parametric or semi-parametric estimation problem of the transformation functions in
the non-linear time series analysis should be investigated.

Mathematical Appendix

In this appendix, we give the proof of Theorem 3.1 in Section 3. In order to give
the proof we need one important result on the ergodicity of the Markov chain with
the general state space. (See Appendix of Tong (1990), for instance.) Let xt be the
m-dimensional Markov chain with the general state space Rm .

Lemma A.1 : Let {xt} be φ-irreducible and aperiodic Markov chain. Suppose that
there exists a compact set C, a non-negative measurable function g(·), which is contin-
uous, and constants r > 1, γ > 0, and K > 0 such that for x ∈ Rm

E[rg(xt)|xt−1 = x] < g(x)− γ (x /∈ C) ,(A.1)

and
E[g(xt)|xt−1 = x] < K (x ∈ C) .(A.2)

Then {xt} is geometrically ergodic.
When a Markov chain {xt} is ergodic, we can define the stationary distribution of

the process {xt} . We consider the ergodic (Markovian) situation when a probability
measure π(·) satisfies

π(A) =
∫
x
P (x,A)π(dx)(A.3)

for any A ∈ B(Rm), where P (x,A) is the transition probability given x . Then if we
take the initial distribution as the same as π(·), the process {xt} is strictly stationary.
Proof of Theorem 3.1 : When p > 0 and r > 0, we define a (p+ r)× 1 state vector
xt by

xt =




yt

yt−1
...

yt−p+1

u2
t

· · ·
u2

t−r+1




,(A.4)

where ut = vt

√
ht . We then consider the Markovian representation for {xt} when the

state space for xt is Rp × Rr
+ . By using (2.1) and (2.11), we have the Markovian

representation
xt =Hσ(xt−1, vt) ,(A.5)
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where

Hσ(xt−1, vt) =




yt−1 +Gσ(r0 +
p∑

i=1

riyt−i + vt

√
ht)

yt−1
...

yt−p+1

v2
t ht

u2
t−1

· · ·
u2

t−r+1




.

We use the criterion function

g(x) = 1 + max
j=1,···,p+r

|x(j)|ρj ,(A.6)

for x = (x(i)) and some ρ1 > · · · > ρp > 0 and ρp+1 > · · ·> ρp+r > 0.
First, we take a sufficiently large M and we consider the first p components of the

vector xt such that ‖xt−1‖ > M . Then we have

E[ max
1≤j≤p

ρj|yt+1−j ||xt−1 = x](A.7)

≤ c1 + σρ1

r∑
j=1

αju
2
t−j(A.8)

+max{(ρ1

p∑
j=1

|aj||yt−j|, ρ1

p∑
j=1

|bj||yt−j|, max
2≤j≤p

ρj|yt+1−j|} ,

where c1 is a positive constant, σ = max{σ1, σ2} and we have the last inequality because
ht ≥ 1 and

√
ht ≤ ht . Under the conditions in our assumptions there exist 0 ≤ θ1 < 1

and ρ1 > ρ2 > · · ·> ρp > 0 such that θ1 > ρj+1/ρj (j = 1, · · · , p− 1) and

max{|a1|+
p∑

j=2

|aj|ρ1

ρj
, |b1|+

p∑
j=2

|bj|ρ1

ρj
} < θ1 < 1 .(A.9)

Hence we have an equality

E[ max
1≤j≤p

ρj|yt+1−j ||xt−1 = x](A.10)

≤ c1 + σρ1

r∑
j=1

αju
2
t−j + θ1 max

1≤j≤p
{ρj|yt−j|} .

Next, we consider the last r components of xt on the volatility function. Because
of our conditions on the ARCH terms, there exist 0 ≤ θ2 < 1 and ρp+1 > ρp+2 > · · · >
ρp+r > 0, θ2 > ρj+1/ρj (j = p, · · · , p+ r − 1) such that

max{
r∑

j=1

αj
ρp+1

ρp+j
, σ

r∑
j=p

αj
ρp+1

ρp+j
} < θ2 < 1 .(A.11)
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Then we can take

E[ρp+1u
2
t |xt−1 = x] ≤ c2 + ρp+1

r∑
j=1

αju
2
t−j

< c2 +
r∑

j=1

(αj
ρp+1

ρp+j
)ρp+iu

2
t−j(A.12)

≤ c2 + θ2 max
1≤i≤r

{ρp+ix(p+i)} .

Then by using (A.9) and (A.11), we have

E[g(xt)|xt−1 = x] < c3 + θ3g(x) ,(A.13)

where θ3 = max{θ1, θ2} < 1 and c3 is a positive constant. Hence we can take a
sufficiently large M such that for ‖x‖ > M the conditions in (A.1) and (A.2) are
satisfied.
The rest of our proof is similar to the one for Theorem 2.3 of Kunitomo and Sato

(2000b). Since the Markov chain for xt is aperiodic and φ−irreducible due to our
assumptions, we can apply Lemma A.1 and establish that {xt} is geometrically ergodic.
Finally, we need to consider the case when r = 0 separately, but the result is obvious
from our derivations in this case and the details are omitted. Q.E.D.
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