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Abstract 

 
This paper is written as a tribute to Professors Robert Merton and Myron Scholes, winners of the 1997 

Nobel Prize in economics, as well as to their collaborator, the late Professor Fischer Black. We first provide 

a brief and very selective review of their seminal work in contingent claims pricing. We then provide an 

overview of some of the recent research on stock price dynamics as it relates to contingent claim pricing. 

The continuing intensity of this research, some 25 years after the publication of the original Black-Scholes 

paper, must surely be regarded as the ultimate tribute to their work. We discuss jump-diffusion and 

stochastic volatility models, subordinated models, fractal models, and generalized binomial tree models, for 

stock price dynamics and option pricing. We also address questions as to whether derivatives trading poses 

a systemic risk in the context of models in which stock price movements are endogenized, and give our 

views on the "LTCM crisis" and liquidity risk. 
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1. Introduction 

In Marsh and Kobayashi (1998), we paid tribute to the work of Fischer Black, Robert Merton, and 

Myron Scholes following the 1997 Nobel Prize awards. In the following, we reproduce some sections of 

that work. Since it was written, however, the popular press has generally been quick to associate Professors 

Merton and Scholes and, directly or indirectly, their scientific work, with the blow-up of LTCM. Here, we 

have added our comments to those of the commentators. 

2. The Work of Fischer Black, Robert Merton, and Myron Scholes 

In October, 1997, Robert Merton and Myron Scholes were awarded the Nobel Prize in economics 

for their pioneering work, with the late Fischer Black, on contingent claims pricing and their now-famous 

option pricing formula. The Nobel prize, along with the fact that the original 1973 Black-Scholes paper is 

still one of the most heavily cited in finance1, presumably establishes the academic merit of their work as 

strongly as such merit can ever be established. But in addition, the Nobel committee noted,  “…thousands 

of traders and investors use the formula every day.” As the Economist panned: “Economists may 

sometimes seem about as useful as a chocolate tea-pot, but as this year’s Nobel prize for economics shows 

it isn’t always so.”  

This paper is intended as a tribute to the work of Professors Merton and Scholes, along with 

Professor Black. The preceding testimony speaks to the seminal nature and widespread influence of their 

work that will be especially well-known to the readers of this journal. So we only briefly review it here, and 

concentrate instead on the vigorous research that their work is stimulating to this day. The intensity of this 

research, more than twenty years after the publication of their original articles, is surely the ultimate tribute 

to Professors Black, Merton, and Scholes. 

 
2.1 The Original Ideas 

 

Options are not themselves novel securities. Joseph de la Vega, in his 1688 account of the 

operation of the Amsterdam Exchange, provides a description of the “opsies” traded there which bore a 

striking similarity to modern call and put options. Further back, the basic principles behind the use of 

                                                           
1 Alexander and Mabry (1994). The citation counts presumably don’t include a reference simply to “Black-
Scholes” which is itself testimony to the academic recognition of their work.  



 4 

options were apparently known to the ancient Greeks.2 In fact, given our general intuitive understanding of 

the value of “having options” in everyday life3, it is undoubtedly true that work on options could be traced 

back indefinitely. Here, we start with Bachelier’s quite amazing work that applied Brownian motion 

concepts to stock market fluctuations some five years before Einstein’s classic 1905 paper, and provided a 

rigorous theoretical modeling of options. Bachelier’s work lay dormant until it was discovered by Paul 

Samuelson and his young co-workers, Merton and Scholes prominent among them, when they became 

interested in the option pricing problem. Bachelier constructed a mathematical model of a Brownian 

motion, which he used to analyze the theoretical value of options on bond futures. Notwithstanding that 

Bachelier’s model was based on normal rather than lognormal diffusion processes, and that he used an 

equilibrium demand-supply analysis with risk-neutral investors (rather an arbitrage/relative-value analysis), 

he presented a fairly complete treatment of Brownian motion and an option pricing formula.   

The payoff on a (European) call option on a stock depends upon the extent and likelihood of the 

stock’s price exceeding the option’s exercise value when the option matures. It might thus seem that it is 

necessary to make an assumption about expected increases in the stock’s price in order to value a call 

option. The critical insight that Professors Black, Merton, and Scholes had back at MIT in the early 1970s 

was that such reasoning is incorrect. Rather, if the market’s projections about the stock’s future prospects 

are already reflected in the stock’s current price, the option can be valued relative to the observable current 

stock price. The valuation uses a transformed probability distribution for the stock price, and the 

expectation of this transformed distribution can conveniently be set equal to the riskless rate of interest. The 

option can be so valued relative to the stock price because its payoffs can be dynamically replicated by a 

levered position in the stock. Moreover, since the option’s payoffs can be replicated by the levered position 

in the stock, the formula valuing the option relative to the stock holds so long as arbitrage opportunities can 

be ruled out. Thus, at least in the “plain vanilla” case, the options valuation formula is more robust than 

would be an equilibrium valuation model in which investors’ net demand schedules have to be specified.  

The arbitrage-free pricing approach not only produced a pricing formula for options. Because it 

relied upon the replication of the options’ payoffs, it ipso facto demonstrated how the options being priced 

                                                           
2 See, for example, Bernstein’s (1992) reference to Aristotle’s story in Book I of Politics describing a 
philosopher who purchased call options on presses that would be in big demand if the harvest were large. 
3 “Option” is derived from the Latin word optio, which means choice. 
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could actually be created or “synthesized”. The payoff on the option at some future maturity date is 

replicated by a dynamic rule for trading in the underlying stock over the option’s life. A call option on a 

stock, for example, is replicated by buying more stocks when the price goes up, and reducing the stock 

position when the price goes down.  

This idea of dynamically replicating option payoffs extended the basic concept of static 

replication. Static replication is basic, e.g. a contract to exchange yen for dollars can be replicated by a 

portfolio containing a contract to exchange yen for DM and a second contract to exchange DM for dollars. 

The focus on dynamic replication of option payoffs led in turn to a more general economic insight. A 

strategy for trading securities that pay off in just a few states each period will enable an investor to 

replicate desired payoffs on many possible states (“scenarios”) far into the future. The ability to transact 

through time is a substitute for holding a large number of long-term securities each maturing in specific 

states and at specific points in the future. This tradeoff will be particularly attractive if it is cheaper to trade 

a small number of securities over time than it is to maintain markets in a large number of buy-and-hold 

long-term securities that are state-dependent, assuming such securities exist. In a competitive securities 

market, we would expect to find that customized derivative securities (“structured products”) created by 

specialist financial firms on an ad hoc basis will eventually be priced at those firms’ costs of hedging the 

securities, which are presumably below the purchasers’ costs. For example, a double lookback option 

whose state-dependent payoffs depend upon the maximum and/or minimum prices of one or two assets 

over a given period can be written by a financial firm and then hedged by dynamically trading the one or 

two assets up to the option’s maturity. An interesting question concerns which derivatives contracts 

eventually become  “commoditized” as standardized contracts listed on Exchanges, and which remain OTC 

contracts to be written and hedged by specialists trading in the standardized securities on which the 

contracts are written.  

The dynamic hedging and pricing of customized OTC claims is often explained using the “tree” 

diagram introduced by Cox, Rubinstein, and Ross (1979).4 Indeed, these tree diagrams have brought 

options understanding “to the masses” in the same way that Feynman diagrams made quantum 

                                                           
 
4 Another Nobel laureaute, William Sharpe, is credited with conceiving the tree diagrams during the mid-
day break at a conference near the Dead Sea in Israel! 
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electrodynamics (QED) accessible to a wide audience in physics. When the dynamics for the stock price (or 

other variable on which an option’s value depends) are represented in a tree, it is well known that the 

option can be valued by backward recursion through the tree. American options can be handled readily.  

The tree representation for a stock’s price dynamics, and hence for the payoffs on an option on the stock, is 

similar to the explicit finite difference method for numerically solving the differential equations originated 

by Black, Merton, and Scholes (see Geske and Shastri (1985) for a comparison of tree and finite difference 

methods).  

In the 1990s, a good deal of research has involved the calibration of tree models for the dynamics 

of the underlying variables using observed prices of options themselves. For example, given a set of 

identification assumptions, Rubinstein (1994) infers the binomial tree and associated terminal probability 

distribution of the stock market index from a cross-section of index options with the same maturity. 

Likewise, Ho and Lee (1986) proposed calibrating fixed income models with the observed prices of 

contingent claims and bonds, something which is now done widely in practice. Black and Scholes 

anticipated, and perhaps stimulated, this research when they pointed out that options prices implied a value 

for the volatility parameter in their model. At the same time, there is a interesting and still-open issue raised 

in these implied volatility calculations, inference of the parameters of binomial trees, etc. Typically, the tree 

(or more generally, the parameters of the conditional probability distribution for the underlying variable) is 

re-estimated daily. For example, in the straightforward case of the Black-Scholes model, an implied 

volatility is calculated today by plugging in today’s option price (for, say, the short-maturity at-the-money 

option) into the Black-Scholes model which is based on the assumption that the volatility is constant. But 

we are not taking this assumption seriously if we know that, tomorrow, we will repeat the exercise and 

calculate a new implied volatility, quite likely different from today’s. The type of inconsistency is 

essentially the same as “time inconsistency” in the more general economics literature.  

  

3. Generalizing the Stock Price Distribution in Contingent Claim Pricing 
 

The underlying assumption of the Black-Scholes-Merton arbitrage-free pricing of stock options is 

that an option’s payoff can be replicated by a levered position in the stock that is dynamically adjusted over 

time. As is now well known, this requires that stock prices have a continuous sample path, and that the 
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volatility of the stock price be non-stochastic. The Black-Scholes formula was derived for the special case 

where the volatility was not only non-stochastic, but also constant, i.e. stock prices follow a geometric 

Brownian motion.5  

Samuelson (1965) and other earlier writers suggested that speculative prices should have a 

martingale property in competitive securities markets. Geometric Brownian motion is just a special 

martingale where the conditional probability distribution of (relative) stock price increments is assumed 

constant, an assumption that makes it particularly attractive because of the tractability it confers. However, 

the martingale property of prices doesn’t rule out conditional probability distributions for price changes that 

vary over time, and it certainly doesn’t preclude serially dependent variation in stock price volatility. 

Discontinuities and other non-Gaussian behavior of stock prices can be consistent with competitive 

markets.  

In reality, it is widely agreed today that observed distributions of changes in log stock prices and 

log exchange rates almost always have “fat tails,” i.e. they have excess kurtosis relative to the Gaussian, 

particularly over short intervals such as a day or less.  Related to the fat tails is evidence that the volatility 

of exchange rates and stock prices changes stochastically over time; and that those changes are persistent, 

i.e. periods of high or low volatility tend to cluster together. The persistence of variation in stock prices and 

exchange rates seems to have a long memory, e.g. Taylor (1986) and Ding, Granger, and Engle (1993). The 

latter document positive autocorrelations in the absolute value of S&P 500index returns up to 2,700 days. 

Most of the long memory in S&P Index returns seems to be due to pre-World War II realizations, but 

similar results have been found for the Nikkei index and for individual stock returns.  

A more recent but burgeoning literature analyzing option price themselves also suggests that 

options don’t seem to be priced as if the underlying distribution of stock prices and exchange rates is 

geometric Brownian motion. There are smiles and skews in implied volatilities inferred from the observed 

pricing of stock and currency options when the implied volatilities are calculated using the Black-Scholes 

model, at least since late 1987. For currency options, the implied volatilities tend to be higher for in-the-

money and out-of-the-money options than for at-the-money options. For stock index options, the implied 

                                                           
5 Here, we use the terms lognormality and geometric Brownian motion interchangeably. In the geometric 
Brownian motion model for stock prices, the distribution of the stock price at time T>t conditional on the 
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volatility tends to be higher for out-of-the-money options, with out-of-the-money puts trading at higher 

implied volatilities than out-of-the-money calls. These “smiles” in implied volatilities could indicate that 

the market is pricing perceived kurtosis and possibly skewness in the prices of underlying stocks.  

Rather than use the cross-sections of option prices to simply calculate an implied volatility 

parameter for an assumed Gaussian distribution of underlying stock prices, Derman and Kani (1994), 

Dupire (1993)(1994), Rubinstein (1994), and Shimko (1993) proposed inferring the entire (risk-neutral) 

terminal probability distribution for a stock index implied by the prices of options with different strikes, 

along with a binomial tree for stock price dynamics that is consistent with that terminal distribution. 

Generally, these authors find that options prices imply more left-skewness implied by stock index option 

prices after October 1987. Kuwahara and Marsh (1994) used similar procedures to infer the implied 

distribution of individual Japanese equities on which equity warrants are traded. These warrants are long-

maturity options, and under certain simplifying assumptions, Kuwahara and Marsh found that, if anything, 

the Japanese equity warrants tend to have implied distributions which are opposite that for stock market 

indexes, i.e. “frowns” instead of smiles. 6 Implied volatilities for shorter term options on individual stocks 

also seem to be roughly “flat” with respect to in-the-moneyness of the options. 

It is very interesting that stock indexes and individual stocks would have different implied 

distributions and volatility smiles since, after all, the index is just an aggregate of the stocks. One 

interpretation is that the two results together tell us something about the behavior of correlations among 

stock returns, e.g. that the correlations increase when there are big negative changes across the prices of all 

stocks in the index. In two other respects, the difference between index and individual stocks may simply 

not be real. First, the deep in-the-money and deep out-of-the-money options are often quite illiquid and 

hence the volatilities they imply are unreliable; at the same time, if one infers the slope of the smile for 

closer-to-the-money options, it tends to look closer to the index but misses the most informative points. A 

second interpretation for the Japanese equity warrant results is that a term structure of implied volatilities is 

being confounded with an equal-maturity cross-section of implied volatilities because it is hard to equalize 

maturities across the equity warrants  --- we know that, at least for indexes, implied volatilities often 

                                                                                                                                                                             
stock price at time t is a lognormal random variable.  Mandelbrot (1997, p. 255) criticizes the general use of 
“lognormal” model as a synonym for “geometric Brownian” model.  
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display a significant term structure with respect to option maturity; though the slope of this term structure 

seems to shift from positive to negative across time and across countries.  

In summary, there now seems to be general agreement among researchers, both those looking 

directly at the stock returns data and those looking at options prices, that stock price behavior deviates 

systematically from the geometric Brownian motion model underlying the famous Black-Scholes formula. 

Much of the research extending the Black-Scholes-Merton work is then focused on extending the geometric 

Brownian motion model7. In the remainder of this section, we review the extended statistical models of 

stock price behavior. In Section 5, we briefly discuss structural models in which stock price dynamics are 

affected by feedback  --- many practitioners and academics alike feel that these feedback affects are 

particularly important to understanding price behavior when markets are “under stress.”  

The statistical models are grouped into four related categories: First are the jump-diffusion and 

stochastic volatility models, in Section 3.1.  Second are the subordinated models for conditional stock 

prices in which the “clock time” scale on which prices are observed is a deformation of an operational or 

trading time scale on which prices evolve. Third, we discuss Benoit Mandelbrot’s multifractal model for 

stock prices in which stock price moments are restricted to satisfy certain scaling relationships as the time-

scale of observation changes. Fourth are generalizations of implied binomial tree procedures which involve 

calibrating stock price dynamics (under certain identification assumptions) with option prices, rather than 

estimating the stock price models from the stock price data.   

3.1: Jump-Diffusion and Stochastic Volatility Models 

One approach to incorporating kurtosis and skewness in option valuation is to characterize the 

stock price distributions or approximations which would do a good job of capturing the observed kurtosis 

and skewness, and then to value options for these stock price distributions. For example, Robert Merton 

examined some twenty years ago the impact of jumps in stock prices, and the resulting fat tails in their 

                                                                                                                                                                             
6 This in spite of the stylized fact that implied volatilities across all warrants tend to be higher for out-of-
the-money warrants. 
7 Other research, not reviewed here, looks at how transactions costs, which prevent the perfect replication 
of contingent claim payoffs, affect contingent claim valuation.  
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probability distribution, on option values..8 Moreover, in conversation, Merton would often point out how 

options traders would appear to make profits for many years by selling apparently overpriced options, only 

to see those profits (and perhaps more) wiped out in just one trading session when the overlooked jumps 

occurred. After these trading sessions, the traders would be carried out on stretchers! (having had heart 

attacks). 

It is well known that jump-diffusion models and stochastic volatility models9 can be represented as 

countable mixtures of normals, and that mixtures of normal distributions have fat tails relative to a normal 

density; see Merton (1976) and Clark (1973), Blattberg and Gonedes (1974) respectively). However, 

though jump-diffusion models can generate considerable kurtosis in probability distributions of short-run 

returns, the kurtosis tends to “die out” for returns computed over longer intervals. This decay is also a 

feature of early models in which stock returns are subordinated to an independent draw from a given 

distribution for volatility each period; for example, if variance is drawn independently from an inverted 

gamma distribution each period and returns conditional on the realized volality are normal, then the 

subordinated distribution is Student-t with “short run” fat tails). As discussed below, Mandelbrot (1997) is 

one of the sharpest critics of this lack of time-scaling of stock return distributions.  

But variation in stock return volatility does not appear to be independent from period to period. 

Rather, it clusters in time. One can easily convince oneself that there is likely to be at least first-order 

temporal dependence in volatilities by squaring daily returns and then running a simple first order 

autoregression. But as noted above, evidenc by Taylor (1986) and Ding, Granger, and Engle (1993) 

suggests positive autocorrelations in the absolute value of S&P 500index returns up to 2,700 lags. 

Probably the most well-known and easily implementable models encompassing temporal 

dependence are the ARCH (Autoregressive Conditional Heteroscedasticity) and GARCH (Generalized 

Autoregressive Conditional Heteroscedasticity) models, and their progeny such as EGARCH, FARCH, 

PARCH, IGARCH, FIGARCH. The GARCH(p,q) model for the period-t conditional variance of a stock 

return 2
tσ is 2
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8Published in Merton (1976).  
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t-i. Typically when low-order p and q GARCH models are fit to the data, the ARCH and GARCH 

parameters are close to an Integrated GARCH (IGARCH) model. For example, for a typical fit of the 

GARCH(1,1) model (i.e. p=1, q=1) to the daily returns on Daiwa House stock, Kuwahara and Marsh 

(1992) found =β 0.87 and =α 0.08, close to an Integrated GARCH (IGARCH) model in which 

1=+ βα . But even if 1=+ βα , the effect of a lagged squared return shock on forecasts of future 

volatility still dies out exponentially (e.g. Ding and Granger (1996)). In this sense, neither the GARCH nor 

IGARCH models parsimoniously produce long-run persistence in volatilities. 

A model which does, and thus is probably considered the “state of the art” ARCH/GARCH model 

for volatility, is the Fractionally Integrated Exponential GARCH (FIEGARCH) model:  

)()](1[)1()()log( 1
12

−
−− −−+= t

d
t gLLL ξλφϖσ  where 

|]||[|)( tttt Eg ξξγθξξ −+= , the unexpected return in period t is defined as ttt σξε = , and all the 

roots of )(Lφ and )(Lλ lie outside the unit circle (see Bollerslev and Mikkelsen (1996)). Beside long 

memory, this model accounts for the asymmetric response of volatility to positive and negative shocks to 

stock prices; return volatility tends to decrease when stock prices go up, and vice versa . When d=0, the 

FIEGARCH model reduces to Nelson’s EGARCH, and when d=1, it becomes IEGARCH.  

Some researchers have examined the properties of a probability model in which both stock price 

jumps and autoregressive stochastic volatlity shocks are combined  --the jumps add to kurtosis, but the 

kurtosis dies out, while the stochastic volatility shocks, e.g. in a GARCH-like model, will persist. Das and 

Sundaram (1997) examine various combinations of jump and stochastic volatility models, where the 

kurtosis due to jumps dies out in longer-run return distributions, but where the decrease can be more than 

offset in the medium-term by kurtosis due to persistence in diffusion-volatility shocks. (In the long-run, of 

course, kurtosis due to both jumps and stochastic volatilities becomes small as the law of large numbers 

starts to bind).    

One problem with the FIEGARCH and jump-diffusion models is that although these models can 

be made to fit the data well, they don’t offer much intutition about the process generating shifts in 

volatility. Granger and Ding (1996) also point out that a number of other processes can have long memory, 

                                                                                                                                                                             
9A good survey of stochastic volatility models can be found in Ghysels, Harvey, and Renault (1996).   



 12 

including generalized fractionally integrated models arising from aggregation, time-varying coefficient 

models, and nonlinear models. Granger and Ding also propose a multi-components-of-volatility model 

where it is possible to give some economic interpretation to the components, e.g. heterogeneous investors 

or information arrivals, as in Andersen and Bollerslev (1997).  

If the kurtosis and skewness are due to stochastic variation in stock price volatility which cannot 

be hedged away, then valuation formulas for the options will have to make some strong assumptions, e.g. 

Merton’s (1976) formula assumed that jump risk was entirely diversifiable. Moreover, if the option 

valuation continues to use a certainty-equivalent approach (i.e. just insert point estimates of parameters in 

the valuation formula), then we need to be careful, both because of the “high” standard errors in estimating 

the higher order moments and the nonlinearity of the option value in those moments (or the parameters of 

the jump-diffusion-stochastic volatity models that generate the moments). 
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3.2 Subordinated Stochastic Process Models 

Stock returns are measured in calendar time, e.g. the return over a day or a week. The idea behind 

representing these returns as a subordinated stochastic process is that the “effective” or “operational” time 

scale on which stock prices evolve is not the same as calendar time. For example, one could think of stock 

prices evolving “more quickly” when a lot of information about the stock arrives10. Clark (1973) suggested 

that trading volume could serve as a proxy for this speed of evolution of stock prices with respect to 

calendar time; Mandelbrot and Taylor (1967) had suggested “transaction time.”  

Defining the time scale for evolution of stock prices in operational time units as τ , and calendar 

time as t , the time change from calendar to operational time can be represented by the function 

0|)( ≥= ttθτ .  The stochastic function 0|)( ≥ttθ  is known as the subordinating or directing process, and 

the observed return for a given stock (or exchange rate or whatever) becomes 0|))(( ≥ttR θ . If the stochastic 

time rescaling 0|)( ≥ttθ is modeled judiciously, for example in terms of the number of trades or trading 

volume 11 for the stock, then the stock’s price may be assumed to follow a geometric Brownian motion with 

respect to trading time but have fat tails in calendar time returns. In this event, the probability distribution 

function for the subordinated process 0|))(( ≥ttR θ will be a mixture of normals with unknown parameters 

for the subordinating process, and with a form that is unknown except in special cases.  

The idea of differentiating between operational time and calendar time in economics goes back at 

least to Burns and Mitchell’s famous work in which they developed a National Bureau of Economic 

Research (NBER) time scale for business cycles. A business cycle was treated as a distinct unit of 

“economic time” which was broken into four roughly equal lengths in months. The phase averaged data 

                                                           
10 When we say that someone is “getting much older” in times of hard work or “hard living,” we are 
positing that aging follows a subordinated stochastic process.  
 
11 Marsh and Rock (1986) analyzed tick-by-tick stock price changes and found that imbalances between the 
number of trades on the ask and bid sides seemed to explain those changes better than the imbalance 
between the imbalance in volume.  
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corresponding to their time transformation was calculated as the average of the observations over the 

months that fall into the relevant stage of the cycle. Stock (1987) tested for the NBER and two other 

general forms of time deformation in income, money stock, population, the inflation rate, and short-term 

commercial paper rates. His results were mixed --- they suggested that there wasn’t a common time scale 

transformation for these business cycle variables. The results were more encouraging for stock returns and 

exchange rates, possibly because time transformation variables like number of trades are in fact the 

“correct” ones to use if stock price and exchange rate movements are partly endogenous to the process of 

trading itself.  

If we think of 0|)( ≥ttθ  as the number of operational time “steps” in period t, then  

2]|))(~(~var[ RvvtR σθθ ==  where 2
Rσ is the variance of return in operational time, and v is the 

number of operational time “steps” (e.g. number of trades) in clock period t. If it is assumed for illustration  

that the directing process 0|)(~
≥ttθ  and the return )(~ θR are independent, then the unconditional 

(subordinated) return variance is 222)( θσµσθ RRE +  where 2
θσ  is the variance of the directing process 

0|)(~
≥ttθ  (e.g. the number of trades per period) and Rµ  is the expected return in trade time. If 0≈Rµ  

then the subordinated return volatility depends primarily upon the expected number of operational time 

steps in each period and not the variance of 0|)(~
≥ttθ . But the kurtosis of the subordinated distribution 

does increase with the variance of 0|)(~
≥ttθ ; in fact, Mandelbrot and Taylor (1967) showed that if the 

stock return process is subordinate to a symmetric stable distribution and the directing process is also 

generated by a stable process, it will have an infinite variance.   

 The subordinated model is appealing because it seems economically sensible to associate the 

directing process with trading intensity. It is tempting to model the distribution of returns in trade time as 

Gaussian and then specify a model of trading intensity, i.e. the directing process, to make the subordinated 

model fit the data, because the Gaussian process leads to analytically tractable solutions. Yet this seems 

counter-productive if it is necessary to distort the subordinating process just to accommodate the Gaussian 

return assumption. Fortunately, it seems that trading time models do seem to fit reasonably well with the 
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Gaussian model to explain observed stock returns; it will be interesting to test whether such subordinated 

models explain apparent departures of option prices from Black-Scholes.   

3.3 Scaling--Fractal Models  

 Mandelbrot (1997) argues that geometric Brownian motion is a poor model for stock prices and 

other financial time series and, by extension, for pricing options. He characterizes the Brownian model as a 

model of “mild randomness” which is not capable of describing the “wild randomness” in actual data. The 

features of this wild randomness in stock returns include “…the irregular alternation of quiet periods and 

bursts of volatility”; sharp discontinuities in the time series of returns, which in practice are often referred 

to as “crashes,” “corrections,” “prices gaps” etc.; the concentration or bunching of these discontinuities; 

long-term dependence12, and the fat tails in observed return distributions. Indeed, Mandelbrot (1997, p. 26) 

writes that “soon after 1900, Bachelier himself saw that the data are nonGaussian and statistically 

dependent.” Mandelbrot proposes a fractal / multifractal model to account for the “wild random” features 

of stock returns. The multifractal model is closely related to the subordinated model just discussed in 

Section 3.2.  

To briefly explain the multifractal model, let ntR + be the logarthmic change in stock price over the 

n periods from time t to time nt + , tntnt SSR lnln −= ++ . In continuous time, define this return over 

an instant as )(tR . The stochastic process for the return )(tR  is called multifractal if it is stationary and 

satisfies 1)()()|)((| += qq tqctRE τ  for all Qqt ∈Τ∈ , , where Τ and Q are intervals on the real line, 

and )(qc and )(qτ are functions with domain Q  (Mandelbrot, Fisher, and Calvert (1997a)). The function 

)(qτ is the scaling function of the multifractal process. The scaling function in the multifractal process is 

restricted so that returns in the model display statistical self-similarity. To understand self-similarity, 

imagine that time is re-scaled so that an interval of time t∆ becomes tc∆ . Then if the return in the newly 

scaled time )(ctR  is “self-affine,” which is roughly the same as self-similar: 

                                                           
12 Mandelbrot and Wallis (1968) dubbed the long-term dependence “Noah and Joseph Effects,” alluding to 
Biblical references to the bunching of periods of “lean-times” and “good-times” (or cows). 
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)()( )( tRcctR cHd= where )(cH is a random function of c , and the scaling function can be written as 

1)( −= Hqqτ . 

The self-similarity of returns over different time scales is in the spirit of fractal geometry. 

Mandelbrot (1977) proposes that these restrictions are critical in overcoming a deficiency in models like 

those in Clark (1973) and Blattberg and Gonedes (1974). Both these papers, like the more recent jump-

diffusion – stochastic volatility models discussed above, give solutions for the subordinated distribution of 

stock returns, e.g. it is student-T in Blattberg and Gonedes. Mandelbrot points out that the student-T form 

of the subordinated distribution does not scale, i.e. if the subordinated distribution is student-T for daily 

data, it won’t be student-T for monthly data. This failure of scaling presumably assumes that it is a 

prominent feature of the data, i.e. that while “mild randomness” is not a good description for daily data, it 

might be reasonable for monthly data.  

The scaling function )(qτ  can be interpreted within the subordinated model where clock time is 

scaled into trading time: To see this, represent the stock return )(tR as a compound / subordinated 

stochastic process )]([)( tBtR H θ≡ where )(tBH  is a fractional Brownian motion and )(tθ is the 

stochastic directing process. As in Section 3.2 above, t  denotes clock time and )(tθ  is operational or 

trading time. Assuming that )(tθ is independent of )(tBH
13, then )(tR can be represented as multifractal 

with ]|)1([|])([)|)((| q
H

Hqq BEtEtRE θ= , where ]|)1([|)()( q
HBEHqcqc ≡θ and 

1)()( −≡ Hqq θττ  (see Mandelbrot, Fisher, and Calvert (1997a). 

  The moments of a stock return series that follows a multifractal model can be easily cast 

in terms of a subordinated model. They depend upon the directing process that transforms clock time to 

operational or trading time (where the directing process is restricted to satisfy self-similarity in the returns). 

The q th moment of returns will exist if and only if the directing process )(tθ has a moment of order Hq . 

Notice the convenient feature that the multifractal model accounts for long-term memory in the absolute 

                                                           
13 A big assumption: it is easy to imagine that when there is more “action” in a stock, the price change 
process also has different characteristics.  
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value of stock returns by construction14; hence it can satisfy the martingale property for stock returns but 

still fit long memory and fat tails. The GARCH class of models only produce long-term memory15 for the 

fractionally-integrated GARCH (FIGARCH) models unless a lot of GARCH parameters are introduced. 

Mandelbrot argues for the multifractal model over FIGARCH because the latter doesn’t possess scale 

consistency.   

An alternative approach to modeling the stochastic process for stock prices is to view them as 

being produced by complex systems or chaos, where the complexity is modeled as, say, feedback in stock 

prices when some investors are using dynamic trading strategies, or other heterogeneity is present. Platen 

and Schweizer (1994) have already proposed that feedback effects in prices can, when portfolio insurance –

type strategies are being used, induce a smile pattern of implied volatilities consistent with that observed in 

practice. We include in this category the models of the stock market as a cooperative self-organizing 

system with critical threshold points at which large shifts in stock prices occur. Perhaps the investor biases, 

informational asymmetry, and the like which cause feedback in these complex systems are most plausible 

when the market is under stress. Thus, we discuss elements of this approach in Section 5 when we turn to 

the issue of systemic risk in the use of derivatives.  

 

3.4 Nonparametric Binomial Tree Representations 

 A fourth approach is to express the conditional distribution for a stock’s price directly in terms of 

the tree diagram that is consistent with the implied probability distributions fitted to the prices of options on 

the stock. This approach is an extension of Rubinstein’s (1994) approach, see Jackwerth and Rubinstein 

(1996) and Jackwerth (1996) for references. It is useful where the objective is to value one set of options, 

e.g. OTC options, so that they are consistent with the observed pricing of a set of traded options on the 

same instrument.  

                                                           
14 Mandelbrot, Fisher, and Calvet (1997a, fn 8) reference a paper by Taqqu (1975) establishing long 
memory in the absolute values of the increments of a fractional Brownian motion process. 
15 It was noted earlier that the long-memory property seems to be much weaker in post World War II 
returns than prior to that. 
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In the implied probability / binomial tree approach, the conditional volatility of stock prices is 

expressed as a function of the stock price at every node on the tree. The advantage or disadvantage, 

depending on one’s view, is that the implied binomial tree for stock prices depends on critical identification 

assumptions. The implied tree must contain all paths for future possible stock prices, including those 

reflecting both permanent and transitory movements in volatility, whereas the autoregressive time-series 

models for volatility, such as GARCH, retain only the forecasted “permanent” component of volatility at 

option maturity (at least for European options). On the other hand, the shifts in conditional volatility are 

driven by the stock price and thus can be assumed hedgeable.  

 

4. Generalizing the Option Valuation Formulas for Higher Order Moments 

There is still the issue of valuing the options for a generalized stock price distributions, though 

obviously it is straightforward for the implied tree approach. Backus, Foresi, and Wu (1997) propose using 

a Gram-Charlier expansion as a more parsimonious representation than the mixture of normal densities that 

can be used to incorporate jumps and stochastic volatilities. The Gram-Charlier expansion generates an 

approximate density function for stock returns in which terms incorporating kurtosis and skewness are 

added to the standard normal density.  

Let tS be the price of a stock at time t , and ntR + be the logarthmic change in the stock price over 

the n periods extending from time t to time nt + , tntnt SSR lnln −= ++ . Denote the expected 

n period return as nµ , the variance as nσ , the skewness as n1γ , and the kurtosis as n2γ . Defining the 

standardized return 
n

nntR
w

σ
µ−

≡ + , its approximate density given by the Gram-Charlier expansion is:   

)(
!4

1)(
!3

1)()( 4
2

3
1 wDwDwwf nn φγφγφ +−=                      (1)  

where )2/exp()2()( 22/1 ww −= −πφ is the standard normal density and φjD  is the j’th derivative of 

φ . Denote the price of a call option on the stock at time t  when the stock price is tS , expiring n periods 

later, as ntC . Backus, Foresi, and Wu (1997) show that ntC is approximately:  
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In (2), the call price is expressed as the Black-Scholes value plus terms involving the skewness n1γ , and 

the kurtosis n2γ of the stock’s return. The kurtosis lowers the value of at-the-money options (d=0) relative 

to Black-Scholes and increases the values of deep in-the-money and deep out-of-the-money options. The 

intuition is straightforward: if an option is deep out-of-the-money, kurtosis in stock prices means there is a 

higher chance that a big stock price increase can occur which will put the option in-the-money at maturity. 

And vice versa for deep-in-the-money options. Backus, Foresi, and Wu show that the approximation (2) 

seems to be a reasonable approximation to the call option values computed for the mixture-of-normals 

probability density for the jump-diffusion model,16 particularly when jumps are frequent and skewness is 

small.  

Note that since the focus is on the third and fourth moments of stock price distributions, a method-

of-moments procedure could be useful here --- indeed, it is one instance in which choice of the appropriate 

moments to use in the method of moments is implicit in the desired analysis itself! 

 

5 Endogenous Stock Price Dynamics and the Possibility of Systemic Risk Posed by Derivatives 

Whether the widespread use of derivatives increases systemic risk is controversial. The concerns 

are usually along the lines expressed in the recent Barron’s article “So You’re Insuring Against Market 

Risk With Options,” November 24, 1997. The thesis there can be summarized as follows: Dealers who 

write put options typically delta hedge, but they will be exposed to gamma risk if it is not feasible for them 

to adjust their hedge positions sufficiently as stock prices move. Particularly if liquidity “dries up,” i.e. 

there are discontinuities in prices and/or trading costs become very high if stock prices move sharply, this 

gamma risk is potentially large relative to dealer capital.  

                                                           
 
16[Check:] Note that Merton assumes that jump risk is diversifiable when he derives the call option pricing 
formula for the jump-diffusion model. This assumption is harder to justify for market index options and 
currency options.  
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The possibility that dealers will go bankrupt because they improperly manage the gamma risk of 

their OTC and traded derivatives positions poses a credit risk for their counter-parties17, but that credit risk 

does not per se cause a systemic risk. In principle it is still not a systemic risk even if the defaults would be 

correlated across dealers because asset prices are correlated and dealers tend to be short gamma, or the like. 

The underlying concern rather seems to be that “if the market plunges, dealers will be obliged to rebalance 

their portfolios by selling stocks, just to reduce their exposure to further declines. This requirement to sell 

into a decline will tend to increase the volatility of the market and render it more liable to self-reinforcing 

spirals” (Barron’s Online, page 9).18  

The empirical evidence so far doesn’t give much credence to these concerns. In the last decade, as 

derivatives use has expanded, average stock market and interest rate volatility has arguably been lower than 

historically, at least in the U.S. since the 1920s19. Moreover, even in October and November 1997, as prices 

moved sharply on many of the world’s stock markets, derivatives seem, if anything, to have helped markets 

function smoothly. The Brady Commission report generally exonerated portfolio insurance as a “cause” if 

not a contributor to the 1987 stock market crash, and discussed the importance of the Federal Reserve’s 

role in injecting liquidity when settlement mismatches led to bankruptcy rumors. And, of course, 

derivatives use and gamma risk were unknown when the stock market crashed in 1929-1930.  

Still, the “worriers” tend to argue that rare events like market meltdowns won’t, by definition, be 

witnessed very often, and in any case October 1987 came close. In this case, we can only turn to theory. 

Does theory shed any light on potential systemic risk arising from derivatives, then? The focus has been on 

use of portfolio insurance strategies, either through put options on the market or dynamic trading of market 

baskets of stocks. Hedgers who use dynamic trading strategies to put a floor under their portfolio returns, or 

                                                           
 
17 Just as a disastrous wheat crop might increase the price of wheat, i.e. a change in relative prices in the 
economy, but doesn’t per se cause inflation. Moreover, the counter-parties should include any gamma risk 
in their assessments of default risk.  
 
18 Of course, rebalancing is also necessary as stock prices go up, and thus could cause something of an 
upward spiralling in stock prices; but this is usually neglected because present-day authors usually 
implicitly or explicitly think the market is overvalued --- explicitly, in the case of the Barron’s article: 
“…such a spiral could set off the crash to which the market’s extreme overvaluation makes it vulnerable.”  
 
19 It is often observed that the historical volatility of the U.S. market (or the risk premium) is not 
necessarily a good predictor of the future because there is a survival bias, i.e. countries such as Russia and 
China should be included in the ex ante predictions.  
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the dealers who are delta hedging the puts sold to the hedgers, will sell stocks as the price goes down, and 

buy as prices go up.  Brennan and Schwartz (1989) examined what happened when increasing numbers of 

“representative” investors switch to portfolio insurance strategies. They assumed that stock prices 

exogenously follow a continuous sample path process and both the portfolio insurers and remaining 

investors who sell them insurance are perfectly informed about the strategies of the other. In their model, 

investors care only about their consumption at a future point in time. With no confusion engendered by the 

hedgers’ short-term strategies, and no other source of illiquidity, portfolio insurance has very little effect on 

steady-state stock market volatility. For example, even if 20% of the representative investors are insuring 

their portfolios and their coefficient of relative risk aversion is 4, market volatility is only 7% higher than it 

would be if there was no portfolio insurance. Brennan and Schwartz did note, however, that even in the 

environment they assumed, trading volume could be substantial, e.g. with 10% portfolio insurance and a 

coefficient of relative risk aversion of 2, each 1% drop in stock prices would cause a turnover of 

approximately 0.2% of market value (this turnover is comparable with a recent average daily turnover of 

approximately 0.28% on the NYSE and 0.13% on the Tokyo Stock Exchange, 1st Section).   

Grossman (1988) suggested that when investors cannot accurately estimate the extent of portfolio 

insurance, there is the potential for illiquidity problems. Gennotte and Leland (1990) showed that selling by 

porfolio insurers as prices go down can be magnified if uninformed investors, who can’t observe the extent 

of portfolio insurance, rationally infer that part of the selling is instead done by informed investors. In both 

these papers, if the extent of portfolio insurance were made explicit by the use of put options, investors 

would be able to infer the amount of selling by option writers who were adjusting their delta hedges (and 

thus reducing gamma risk). In this case, portfolio insurance wouldn’t cause stock prices to “gap down.” It 

may be, as Andrew Smithers reports in the Barron’s article, that “…the problems involved in obtaining 

accurate data on the options markets…are staggering” (p. 4).  

Or it may be that derivatives strategies will eventually be found to cause self-reinforcing spirals in 

stock price for reasons other than informational incompleteness ---- even if the dog hasn’t yet barked, 

except possibly when it was kept in the dark in October 1987, there will always be reasons why it might 

bark in the future! Frey and Stremme (1997) simply assumed a positive feedback from current prices to 

agent’s expectations about future prices, and in so doing they found that the impact of dynamic hedging 
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strategies was considerably higher than in the Brennan and Schwartz base case (particularly if the hedging 

were concentrated on a small number of contracts). Basak and Cuoco (1997) show that restricted 

participation by individuals in the stock market can substantially affect asset pricing, and it would probably 

substantially affect the impact of dynamic hedging if that were included in their model. Hansen and 

Stremme (1997) introduce OTC options trading by a large, informed trader, and find that this informed 

trader’s desire to manipulate prices can cause market equilibrium to collapse. A smile that is consistent 

with those observed in practice also emerges in their analysis. This research endogenizing price behavior is 

interesting, and it takes our understanding a long way beyond the Black-Scholes model, but at the same 

time it sometimes underscores the debt owed to the Black, Scholes, and Merton work. For example, in the 

richer structural environment, Hansen and Stremme still report that “…the informed trader’s valuation of 

the option can be identified as the Black-Scholes price of a different derivative security, written on the 

(expected) true value of the underlying asset!” (1997, p. 23).  

 

6 LTCM 

When the preceding paragraphs were written in 1998, we stated in Section 5 that  “the empirical 

evidence so far doesn’t give much credence to …concerns…that underestimated gamma risk will render 

the market more liable to self-reinforcing spirals.” We’ve now accumulated two more years of empirical 

evidence, and though it still doesn’t contain much evidence of spirals, the LTCM “crisis” might in the least 

be a signal that liquidity risk needs to be looked at more carefully. The basic details of LTCM’s rise and 

fall are reasonably well known.20 LTCM began in 1994 with an investment strategy of profiting from long-

term “convergence trades” and “relative-value trades” which were dynamically and cross-sectionally 

hedged against the risk of the trades moving against them in the short-term.  Later, it appears that LTCM 

might have increasingly taken more directional trades. The attention to hedging at a portfolio level meant 

that LTCM could take much larger positions than they would otherwise have been able to with a $5 billion-

odd net capital and a given value-at-risk. An economic rationale for the strategy is that asset prices could be 

pushed out of line by transitory mismatches in supply and demand for capital due to institutional rigidity, 

                                                           
20 For example, Andre Perold’s Harvard Business School cases (Numbers 9-200-007/008/009/010), David 
Modest’s seminar presentations, or Lowenstein (2000).  
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demand by investors to offset non-tradeable risk in their endowments, irrationality, and the like. The static, 

security-by-security risk was that these transitory departures of asset prices from “long-run equilibrium” 

would widen or at least take longer than expected to correct --- as Keynes allegedly once put it, “the market 

can remain irrational longer than you can remain solvent.”  In running the strategy at a dynamically hedged 

portfolio level, the risk was, however, really that the negative returns on the trades would cluster more than 

expected, and in this event that liquidity would be insufficient to permit LTCM to dynamically adjust its 

positions to maintain target risk.  On the assumption that its positions were hedged as designed,21 LTCM’s 

leverage, going into summer of 1998, was not out of line for a financial institution (around 20:1) --- press 

statements to the effect that LTCM failed “because it had too much leverage” seem to have been either 

uninformed or truisms (in the latter case, as LTCM suffered losses and was unable to liquidate its positions 

quickly enough, its realized leverage of course escalated).  

While these basic events are clear, the interpretation of why they occurred is not. One line of 

reasoning is that LTCM’s early gains were essentially premiums for supplying liquidity and thus bearing 

illiquidity risk,  and that “the chickens came home to roost” in the Summer of 1998. This view is at best 

incomplete, nor is it very insightful. The supply of liquidity is wound up with the supply of capital, and one 

thing that we would expect of well-functioning capital markets is that funds are directed to markets where 

asset prices indicate there is a comparative shortage of funds, or as liquidity provision to investors who, by 

reason of their own wealth or portfolio positions, need to “get out” of investments. Illiquidity is not simply 

some exceptional circumstance, but rather just one dimension of functioning capital markets.  

A second line of reasoning begins with the basic industrial organization proposition that new entrants 

can be expected in profitable industries, i.e. again that investment follows price signals, this time in the 

form of the trading and fund management business itself. LTCM’s early years were profitable, and new 

“entrants”  (particularly the trading desks of large sell-side firms) increasingly took similar positions to 

LTCM, which itself grew considerably in size. One indication of competition is Salomon Smith Barney’s 

announcement that U.S. spreads had decreased to the point where it was getting out of the business. The 

story would then go that, as  LTCM’s swap spreads and risk-arbitrage positions moved against them and 

they  went to reduce positions, LTCM unexpectedly found these other new entrants, possibly together with 

                                                           
21 Some reports held that when LTCM returned capital to investors, it otherwise held its positions constant, 
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the SSBs  now exiting the business,  to be virtually all short volatility and trying to unwind virtually 

identical positions. Of course, this itself implies some breakdown of rational expectations. Grossman 

(1988) suggested one reason that expectations could “fail” is simply that market players had insufficient 

information on others’ positions and dynamic strategies that would demand liquidity.  The logical question 

then is that even if the liquidity demands were unexpected, were the frictions and hence spreads bigger than 

they needed to be to “equilbriate” the market, sans the need for Fed hand-holding? Was it that liquidity 

couldn’t be found “at virtually any price”; and if the latter, was the Fed’s visible hand helpful? One answer 

to the second  question  could go as follows: LTCM often  executed opposite legs of their trades with 

different market-makers (for good reason such as helping prevent potential front-running of their trades, 

which raises yet another set of issues re market-making. In the presence of  the extreme events of summer 

1998, unwinding the positions by offsetting swaps, for example, simply required more legwork and time 

than anticipated. An inability to immediately net opposite sides and large order flows could quickly lead to 

market breakdown as inventory risk and uncertainty about credit-worthiness of counter-parties escalated. 

Or, perhaps more importantly, in default-free debt markets where order-flow information is arguably very 

important, the large order flows could conceivably have been unexpectedly important as signals about 

default-risk. The  Fed’s role in crafting a solution to the “LTCM crisis” (which involved no direct bailout 

with government funds), appeared not to reflect the same concern with a meltdown in the financial system 

plumbing (as it was in the days after October 19, 1987 when mismatches in bank settlements were an 

issue), but rather the agency-moral hazard problems involved in obtaining a pact among creditors (amongst 

the plumbers, as it were) and the effect of uncertainty about potential wrangling hanging over the markets  -

-- if the uncertainty and circumstances were known, could the markets have adjusted unaided?  

It is difficult to answer the question concerning the magnitude of spreads without a structural 

equilibrium model. Kyle and Xiong (2000) present a model in which the wealth effect of a negative shock 

to diversified convergence traders in one market causes them to simultaneously reduce their positions in 

other otherwise-uncorrelated markets --- a contagion-like outcome. Calibrations of their model appear 

broadly consistent with the behavior of markets during the Summer and Fall of 1998.  

                                                                                                                                                                             
which would have per se increased leverage. We’ve not seen evidence that this was the case.   
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So what are the implications, if any, for the scientific work of Black, Merton, and Scholes? To state 

the obvious, it appears that a more thorough treatment of liquidity and market completeness needs to be 

incorporated into hedging approaches. In essence, it is the draw-down risk of  “near-arbitrage” strategies 

that is important to risk management and contingent claims pricing, along with shifts in correlation that are 

important when, as we must, we look at portfolio hedging. We might, in fact, interpret the volatility smiles 

in option pricing as yet another manifestation of illiquidity or discontinuity in stock price behavior, telling 

us that the options market does not behave as if options are perfect substitutes for each other, which they 

are not if they can’t all be dynamically hedged. Finally, there is almost surely an implication for 

institutional structure --- it is hard not to ponder LTCM’s fate had it been a group within Salomon, with 

SSB’s deep pockets behind it. Myron Scholes has suggested that, in fact, we might expect to see hedge 

funds remain as specialized firms in the future, but increasingly backed --- “outsourced” --- by large 

financial services firms or large investors/sources of capital (in essence connecting convergence traders and 

long-term value investors).  

Another line of reasoning is that the LTCM story had little to do with unexpected new entrants 

mimicking LTCM’s strategies  or market making frictions. In this interpretation, the high returns that 

LTCM made in its early years were no more than a premium for an unforeseen “distress risk” or “peso 

event risk” implicitly in its positions. The collective wisdom of the market was good enough to measure 

this distress risk and price it, even though LTCM may not have! This interpretation strikes one as rather 

convenient --- one’s casual observation is that, prior to summer 1998 and without hindsight, most observers 

would have agreed it was more likely that LTCM could measure and hedge risks than the general market. 

The interpretation is also rather vacuous unless “distress risk” is defined in a testable manner. Modelers see 

this as a surmountable challenge: if the distress is caused by a shock which is economy-wide or systemic, 

… 

Others might say that although we don’t know how to define or price distress risk, we find the same 

type of behavior in equity markets, where some have argued that apparently predictable premiums on 

stocks of small market capitalization firms, firms with low P/E ratios or low P/B ratios, etc. reflect the risk 

exposure of those stocks to “distress risk.”  
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