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Abstract

If there is queueing for an underpriced good, the queueing can eat up the
entire surplus, eliminating the social value of the good. An implication is
that there is a discontinuity in social welfare between “enough” and “not
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1. Introduction

People come close to getting killed over parking. In 1998, a Cal State student
almost died over a parking space. In China, a 30 year- old man “was in critical
condition after being stabbed with a knife by a 64-year-old man in a row over a
parking space in Pei Street, Mongkok,” Another news story starts “There were
three elderly ladies — but only one handicapped parking space. Something had
to give....” and continues predictably.! Parking rage is widespread and there are
even services which help people cope with it.? Many drivers are forced to arrive
at a parking lot well in advance of their preferred time to secure a spot. It is
therefore surprising that planners claim that parking lots are operating “at peak
efficiency” when their capacity utilization is 85-90%.% Shopping malls display
an apparently useless excess of parking. One’s natural response to their acres of
parking lots is that although dying downtown retailing districts may have had too
little parking, the malls have gone to a ridiculous extreme. After all, mall parking
lots are almost never full.

It can nonetheless happen that more people want to park than there are
spaces available — in the malls, the week before Christmas; in some universities,
every day. the rent-seeking competition that ensues can dissipate most or all of

LCal State student: April 2, 1998, http://www.aloha.net/ dyc/parking.html. China: South
China Morning Post, 05/28/2000. Elderly ladies: Reuters News Service, 1998 xxx add cite.

2 According to an article “Parking Rage” from Parking Today, March 1999, parking rage is on
the rise. A writer for the Chicago Sun Times is cited saying that parking rage is “the result of
too many people (cars) in too small a space.” Tt is also attributed to drivers’ expectations to find
a garage full. Road rage is said to be one of the most popular contact sports in the United States
(Newsday, 12/06/1999). Donald Anchorman, the author of a best-selling book I Spit on Your
Windshield, is quoted as saying that road rage involves more people than baseball, basketball,
football and hockey combined and that the only thing worse than road rage is parking rage.
“People will fight to the death for their space. If they don’t fight, it is the only time you will see
grown men cry.” Dr. Driving at http://www.aloha.net/ dyc/ provides links to many acticles
on parking rage.

34It is important that the parking supply include a sufficient ‘cushion’ in excess of the
necessary spaces to allow for the dynamics of vehicles moving in and out of parking stalls and
to reduce the time to search for the last few available spaces. This cushion also allows for
vacancies created by restricting lots to certain users, misparked vehicles, snow cover, and minor
construction. Thus, a supply of parking operates at peak efficiency when occupancy is 85% to
90%. When occupancy exceeds this level, there may be delays and frustration in finding a space.
The parking supply may be perceived as inadequate even though there are spaces available in
the system.” 1987 Regional Center Parking Study at http://www.bts.gov/NTL/DOCS /rc.html



the rents from the parking lot, rendering it worse than useless. Thus, the planners
are right: to avoid wasteful competition for parking spaces, parking lots should be
surprisingly large. It can even be socially optimal to have parking lots less than
50% full on average. This can be done either by apparently wasteful expenditure
on extra spaces or by apparently wasteful restriction on the number of people who
are given permits to park in existing spaces.

Contrary to our conclusions, regulators insist on reducing standards for park-
ing. Based on the finding that the average parking supply count exceeds demand
count by 30%, it is recommended that “local jurisdictions consider reducing their
parking requirements” to new and expanding developments and to allow property
owners of existing work sites “to request reductions in parking supply.” According
to a Seattle study, the data indicate excess supply, which suggests that a reduc-
tion in parking supply is desirable. The authors propose alternative methods for
reducing the supply. They admit, however, that “A major policy-related issue is
how much allowance to provide over the design-level demand in setting the size of
a given parking facility.”*

Parking supply management is discussed in other studies, where it is proposed
that a parking supply reduction will induce employees to look for other commuting
options and this may promote travel effectiveness. The Cambridge City Council
in England recently replaced the minimum standard on the number of spaces per
new home that developers had to provide, 1.5, with the maximum standard of
1.5. The U.K. Government is changing planning guidelines to stop developers
from building more than 1.5 parking spaces per dwelling. The effect of the policy
is to have “ever more cars chasing ever fewer on-street parking spaces.”®

We believe that strategic behavior of drivers, overlooked in the studies on
parking, must be considered when deciding on the parking lot size. Having 10—
15% of the spaces empty may well indicate too small a parking lot size, given
uncertainty in the demand for parking. Our finding will arise from a strategic

41991 Parking Utilization Study undertaken by the Research and Market Strategy Division of
the Transit Department in the Municipality of Metropolitan Seattle. The supply counts include
all types of parking (visitor, disabled, pool, reserved, general) excluding spillover and demand
- all types of parking. The intricacies of optimal public regulation of parking—as opposed to
the private problem of choosing lot size— are beyond the scope of the present article, depending
as they do on the spillover from private lots onto public parking. We mention it here just to
indicate that the importance of excess capacity is underappreciated.

®The Sunday Telegraph, United Kingdom, 05/16,/1999.



asymmetry in the effects of over- and under-estimation of demand on social wel-
fare. Extra parking spaces are costly, to be sure, in proportion to their number,
but a small shortage in parking can result in a discontinuous and huge social loss.

To determine the optimal size of a facility with an unrestricted access, we
construct a model of competition between drivers for parking spaces. The drivers
face a trade-off between the disutility of arriving earlier than their preferred time
and the increased probability of securing a space in the parking lot. Since the cost
of arriving early is incurred regardless of whether a driver is successful in finding
a parking space, the contest is a multi-unit all-pay auction. Due to the dynamic
nature of the players’ decisions on when to arrive at the lot, their strategies can be
quite complex. Nevertheless, we are able to show that full rent-dissipation occurs
in the equilibrium of the parking game whenever the size of the lot is too small.

The rest of the paper is organized as follows. Section 2 provides a brief
discussion of the literature on the subject. In Section 3, we describe parking as
competition between a known number of drivers under full observability of the
parking lot. We derive the dynamic equilibrium strategies and show that the
optimal size of the parking lot is equal to the number of drivers. Section 4 deals
with the case of uncertainty in demand. When the size of the parking lot is set
before the uncertainty about the number of drivers is resolved and the planners
only know its distribution, they should build a sufficiently large parking lot. On
average, a large proportion of the parking spots will be unoccupied for a parking
lot of an optimal size. Section 5 offers discussion of the results and Section 6
concludes.

2. The Existing Literature

The problem of managing a transportation system has been analyzed mostly by
urban economists and operations researchers. Queueing models with tolls, e.g.
Naor (1969), assume an exogenous stationary customer arrival process and random
service times. Customers benefit from the service, but have to incur a constant
cost per unit of time from queueing. In an equilibrium, a consumer joins the
queue if its length is below a threshold level. The last consumer in the queue
is just indifferent between joining and staying out. The equilibrium outcome is
not efficient due to the negative externality that a customer imposes on those



arriving later. Nevertheless, rent dissipation through queueing is not full due to
the randomness in the arrival and departure processes.

Arnott et al. (1993) compare alternative toll regimes in a model with a single
traffic bottleneck and identical commuters incurring linear time inconvenience cost
(the “schedule delay cost”). Richard Porter (1977), writes on the optimal size of
underpriced facilities, and points out that congestion is better than queuing, but
does not seem to note the discontinuity, or actually solve for the optimal size.

The strategic incentives of people to adjust their purchase schedules are an-
alyzed by Robert Deacon and Jon Sonstelie (1991). Consumers choose the size of
purchases to minimize the total cost of shopping for an underpriced good, which
includes shopping and storage costs. The waiting time in a queue increases until
the market clears. The authors note that consumers are no better off from a price
ceiling while suppliers are worse off - there is a deadweight loss in rationing by
waiting.6

Other economists have also looked at similar problems; notably, William
Vickrey, more famous for his work on auction theory. In a “pure bottleneck”,
congestion in transportation facilities, queues form at a single route segment of
fixed capacity. In Vickrey’s pure bottleneck model (Vickrey, 1969), commuters
have a preferred travel times through the bottleneck, distributed uniformly. For
a sufficiently large capacity, no queue develops and the commuters arrive at their
preferred times. For a smaller capacity, the latter is not possible, queue develops
and some commuters arrive early and/or some arrive late. Each commuter faces
a trade-off between the disutility of arriving at a less-preferred time and the cost
of waiting in line. Vickrey (1969) notes a “sharp discontinuity” in the amount of
delay at the level of capacity just sufficient to accommodate the traffic. Vickrey
points out that the optimal investments in the capacity extension differ in the
first-best and the second-best situations. In the first-best, with the presence of
the optimal price structure (a toll fee that leads to the efficient use of the facility),
the benefits of capacity extension are not as “capricious” as in the case when the
access to the facility cannot be restricted by means of fees. In the second-best,
“Expansion inadequate to take care of the entire traffic demand...may turn out to
be hardly worthwhile...” In Vickrey’s model, however, capacity extension reduces
delays and is beneficial to travellers. We show that it may not have any positive
effects to offset the costs of construction and be a pure waste.

6See also Deacon and Sonstelie (1985, 1989) and Deacon (1994).
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Landsburg, in The Armchair Economist, has a story about an aquarium,
showing how all gains from a facility with free access can be dissipated due to
congestion. This means that building a new aquarium does not benefit anyone
while it is costly to build. The argument of full rent dissipation holds when
there are many identical potential customers, who are ready to jump in whenever
there is a profitable opportunity. In a way, this result is similar to the zero-profit
outcome in a contestable market: the potential competition puts a pressure on
the competitors. At the margin, a person is indifferent between using a facility
with unrestricted access and not using it.” However, Landsburg’s focus is not on
capacity.

In the theory of waiting lists proposed by Lindsay and Feigenbaum (1984),
market clearing occurs due to depreciation of product value in time. Since delivery
of a service in future can be less valuable than an immediate delivery, the potential
consumers are discouraged to put their name on the list when the list is too long.
By this argument the authors explain the persistence of long waiting lists for non-
emergency in-patient care at Britain’s National Health Service and fruitlessness
of short-term measures aimed at a substantial reduction of the waiting list. See,
however, the critique by Cullis and Jones (1986).

In our model, there are no waiting lists, congestion, or waiting in line to be
served after the facility is full. The rent dissipation comes in the form of costly
schedule adjustment by the travellers. In an effort to secure a parking spot, they
come well in advance of their preferred time and dissipate all the rents whenever
the number of drivers exceeds the number of parking spaces.

“In 1999 a Ticket Master in Windsor, Ontario, used an interesting approach to distributing
tickets. To prevent the practice of overnight lineups and discourage scalping a random number
line-up procedure was adopted. This approach assigns a random number to each ticket buyer
present at the time the office is opening and the queue is formed accordingly. While the procedure
may appear unfair to many ticket buyers, it eliminates incentives to arrive early camping over
night or long hours of waiting in line by providing a “fair and equitable method that provides
each customer with an opportunity to be first in line.”



3. The Parking Game Under Full Observability and No Un-
certainty

The Model

A set of players— the drivers— is denoted I = {1,...,N}. Assume that all
drivers have a common preferred arrival time, ¢t = T. We can think of drivers
as workers who have to show up for work no later than time 7. Each demands
just one parking space. Let S > 0 be the size of the parking lot, S € Z,. The
parking game arises when S < N, so players compete for a limited number of
parking spaces by arriving earlier to secure a spot. The allocation mechanism
which distributes parking spaces to first S drivers to arrive at the parking lot can
be seen as a form of first-in first-out queuing discipline.®

We model the parking game in discrete time, with ¢t € {t¢,....,T}. In each
period t, a player decides whether to arrive at the parking lot instantly, given
the observed history of other players’ arrivals. Once a parking spot is taken by
the player, the spot remains occupied and uncontested till the end of the game.
Denote the time-t decision of player ¢ to arrive at the parking lot as di = 1 and
the decision to wait till the next period as df = 0. The decision set at time ¢ is
D = {0,1} for any player who has not parked by time t — 1: player i chooses
deDifd ™ =0.

The history at time ¢ can be summarized by the intensity of usage of the
facility at time ¢ — 1, called the capacity utilization, x;_;.

Definition 1. The capacity utilization is the number of parking spots occupied

at time ¢, x; = min {Zf\; d;, S}-

In the first best, all N players arrive at T, so dt =0 for t < T and df =1. S
of them will get to park in the parking lot, so x; =0 for t < T and z7 = S.

What matters to player ¢ when deciding whether to rush for a parking spot is
the current capacity utilization and the time of making the decision. Denote the

80n the first-in last-out queues, see a comment by Hassin (1985) and its discussion by
Nalebuff (1989). Surprisingly, this alternative queue discipline leads to the socially optimal
behavior of players. It is, however, rarely observed.



set of all possible time-¢ histories by H, H = {0, ..., S} The set is time invariant
and includes all levels of capacity utilization. The strategy of player ¢ € [ is

a sequence of maps {dﬁ}tT:tO from the set of histories H to the decision set D,
dt:H— D.

The payoff structure is that of an all-pay auction:

where L(t;) = (T —t;))w if t; <T is the utility loss incurred by a driver who
arrives at t; and
S—Yud; ™!
p= 7 7
Sjild; —dj ) +1

is the probability that player ¢ wins one out of (S — 3, dz- ~1) parking spots left
at t, when competing with Z#i(d;, — d} ~1) drivers arriving at t .
When a player observes at time ¢ that the parking lot is full, the player waits

till the preferred time and parks in a less convenient parking lot, obtaining payoff
zero since —L(T) = 0. Let us define the indifferent arrival time as

=T —v/w. (2)

A player arriving at this time will have a payoff of zero, since his payoff will be
v—w(T — (T —v/w)). To avoid pesky but purely technical integer problems,
assume t* is an integer number.

Claim 1. The following is a pure-strategy subgame- perfect Nash Equilibrium to
the parking game (N =2,5 =1).

(i) Player 1 arrives at ¢* if the rival has not arrived before t*: d! = 0 for ¢ < ¢*; if
2" 71 =0, then d}" = 1 while if /"~ =1, then d! = 0 for t € [t*,T) and df = 1.



(ii) Player 2 arrives at t* + 1 if the rival has not arrived before t* + 1: d = 0 for
t <t*if 2t = 0, then di ™' = 1 while if 2" = 1, then d = 0 for ¢ € (t*,T) and
dl =1.

Proof. To prove that the listed strategies constitute a Nash Equilibrium we must
show that there are no profitable deviations for any player, given the strategy of
the opponent. Time t* is such that player 1 is indifferent between arriving at ¢*
and not parking in the lot at all, uy(¢*) = v — L(t*) = 0. Arriving earlier than t*
(at t < t* ) yields the player a negative payoff, v — L(t) < 0. Arriving at t* + 1,
player 1 obtains v/2 — L(t*) < 0. After t* 4 1 the parking lot is full and so player
1 would not arrive after ¢* 4+ 1. Similarly, for player 2 arriving earlier that t* or
at t* yields negative payoffs. At t* the parking lot is full and later arrival is not
beneficial until 7" H

The path of the strategy profile is (dt,d5) = (0,0) for t < ¢t* and (d},d}) =
(1,0) for ¢t > t*.

Claim 2. The following is a pure-strategy subgame- perfect Nash Equilibrium to
the parking game (N > 2).

No player arrives before the indifference arrival time: dt = 0 for ¢t < ¢* and i € I.

(i) Players 1 through ny: if =1 = 0, then d!" = 1 while if 2" ! = 0, then d! =0
fort € [t*,T) and d =1;i € {1,....,n1};ny =8 — 2"}

(ii) Players n; + 1 through S 4+ ny + 1: di = 0; if 2" < S, then d! ™ = 1 while
if 2" = S, then d*' =0 for t € [t*,T) and d = 1;i € {S+1,...,5 +ny + 1};
nyg =9 —at"

(iii) Other players: dt =0 for ¢t € [t*,T) and df =1,

where t* =T — .

Proof. The proof is similar to that of Claim 1. Any time player i, i € {1,...,n1},
deviates from the equilibrium strategy by not arriving at t*, player j € {S +
1,...,S 4+ ng + 1} arrives at t* + 1 and player i receives a payoff of zero at best.
Arriving earlier than t* never benefits a player. Given that the parking lot is full
at t*, player j, 7 € {S+1,...,5 4+ ny + 1} does not arrive until 7. H
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The path of the equilibrium strategy combination is (d, ..., d%) = (0, ..., 0) for
t <t*and (dl,.. d§ ds,,....dy) =(1,...,1,0,...,0) for t > ¢*. In the equilibrium,
ny =S and ny = N — S. In words: one group of S players arrive at time t* and
park in the lot, while a second group arrive at 1" and park elsewhere. Both groups
receive the same payoff of zero.

Welfare and Parking Lot Size

The rent-seeking game between drivers is described and solved in the previous
subsection for fixed parking lot size. We next characterize social welfare and study
its dependence on the size of the lot.

The drivers value each of the parking spaces in use at v > 0. Suppose the
marginal cost of providing a parking space is constant, ¢ > 0. The social welfare
from a parking lot of size S is then

[ uN=cS=2Y L(t;(N,S)) if S>N
Wi(s) = { (w—0)S— SN LE(N.S)) if S<N (3)

We may decompose welfare into two parts: the provision cost ¢S and the flow
value, which is either vN — SN | L(t:(N, S)) or vS — =N, L(t: (N, S)), depending
on whether S > N or not.

Unfortunately, in the competition for the limited number of parking spaces,
drivers dissipate all the rents. In the equilibrium of Claim 2, they are just indiffer-
ent between arriving early enough to secure a spot and not parking in the parking
lot at all. The full rent dissipation occurs each time the number of players exceeds
the size of the lot. Therefore, to avoid wasteful rent-seeking activity, the parking
lots have to be designed to accommodate all the people who need the parking.
When the number of such people, NV, is known with certainty, the parking lot
should have N parking spaces. This result is summarized in Proposition 1 and
illustrated by Figure 1.

11



Figure 1. The Welfare from a Parking Lot of size S when N = 50, ¢ = 2, and
V=25
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Proposition 1. The optimal size of the parking lot under certainty equals the
number of users, S* = N. All smaller sizes have flow values of zero and negative
welfare, with the minimum welfare being at S = N — 1. All greater sizes have flow
values equal that for S* = N, but increasingly high provision costs.

Proof. If S < N, then in the SPNE all rents are dissipated and W(S | § <
N) = —¢S. If S > N, each player is guaranteed a parking space and arrives at
the preferred time ¢; = T. Therefore, W(S | S > N) = vN — ¢S. It follows
that welfare is maximized at S = N as long as it is socially beneficial to build a
parking lot at all, i.e. when v —c>0. R

4. The Parking Game Under Full Observability and Uncer-
tainty

To model the situation under uncertainty, we assume that the number of players
is random. The planner has to decide on the size of the lot before the uncertainty
about the demand is resolved. Maximization of expected welfare requires a much
bigger parking lot than the expected value of potential demand, because the loss
function in Figure 1 is asymmetric. In a stochastic model, there are usually many

12



empty spaces in the lot. Planners nonetheless should not increase the number of
parking permits.

Suppose the number of players is uncertain and is drawn from a known prob-
ability distribution f(N). What is the optimal size of the parking lot? When
there is competition for parking spots, S < N, the benefit from the parking lot is
negative, W = —cS. When the size of the lot is large enough, S > N, the benefit
to N players is W = vN — ¢S. Expected welfare, given risk neutrality, is

EW(S) = 23 _of(N)(vN — ¢S) + EN_g.1 f(N)(~cS)

or

EW(S):viNf(N)—cS:vE(N|NSS)—CS (4)

The size of the parking lot should be increased as long as the marginal net benefit
is non-negative

MB=EW(S) — EW(S — 1) = vSf(S) — ¢ > 0 (5)

Since the drivers benefit from the Sth parking space only if N = S, the
welfare increase equals the probability that there are exactly S drivers multiplied
by the extra benefit from eliminating rent-seeking behavior, vS, net of the cost.
The intuition is that it is more and more important to have a big parking lot as .S
gets bigger, because there are more people who could get benefit from it. At the
same time, it could be less likely that larger parking lots are filled out. Whether
the marginal benefit of a parking space is decreasing or increasing depends on the
relative strengths of the two effects.

Inequality (5) can be rewritten as
Sf(S) = c/v (6)

Expansion of the parking lot is welfare-improving if the probability that exactly
S drivers compete for S parking spaces times the size of the parking lot exceeds
the relative cost of building a parking space, v = ¢/v.

Example 1: Discrete Uniform Distribution

13



Consider a discrete uniform distribution on the support {0, ..., N} with p.d.f.
f(N)=1/(N+1). Notice that for larger capacity levels, the benefit from building
an additional space in equation (5) increases. It is equally likely at any capacity
that the parking demand will be just met, and at a larger capacity benefits accrue
to more people. Hence, there is no interior solution. With a uniform distribution,
the parking lot should be big enough to include all the people who might possibly
want to park— if it should be built at all.

EW(S|S<N):%S—CS

and EW(S | S > N) = vN/2 — ¢S. Comparing EW(0) = 0 and EW(N) =
(v/2 — ¢)N reveals that the parking lot of size large enough to accommodate all
potential demanders should be constructed as long as v/2 — ¢ > 0. On average,

50% of the parking spaces will be unclaimed since E(N) = N/2.° Hence, a
parking lot is desirable if the expected value of a spot, v/2, exceeds its cost, c.

A numerical example for ¢ = 1,v = 5, N = 100 shows welfare at different capacity
levels. When 50 drivers (E(N) = 50) are arriving to the parking lot with certainty,
the welfare is W(S | S < 50) = —cS and W(S | S > 50) = 50v — ¢S.

Table 1. Welfare and Parking Lot Size: Uniform Distribution

Number of Spaces, S 0 10 20 30 40 50 60 70O 8 90 100

Expected Welfare, uncertainty | 0 -7 -10 -7 1 13 31 53 80 113 150

Welfare, no uncertainty, N=50 [ 0 -10 -20 -30 -40 200 190 180 170 160 150

Notes: Welfare is rounded to the nearest integer.

9For any probability distribution, f(-), such that the optimal capacity size is equal to the
upper bound of the support of the distribution, capacity utilization is equal to the ratio of the
expected number of drivers to the maximum number of drivers, E(zr) = E(N)/N.
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Figure 2. Welfare and Parking Lot Size: Uniform Distribution
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Even if S = 40, welfare is positive under certainty. This is a big difference
from the case without uncertainty, where it would be near its minimum and very
negative. The reason is that under uncertainty, even with very few parking spaces,
it may happen that very few people need to park, and so there is no queuing and
the parking spaces are valuable.

Example 2: Binomial Distribution

Consider a binomial distribution, which arises when drivers’ needs for parking
are independent random trials and suppose there is a fifty-fifty chance that each
of 100 drivers will need parking. A numerical example for ¢ = 1,v = 5, N = 100,
p = 0.5 shows welfare at different capacity levels.

Table 2. Welfare and Parking Lot Size: Binomial Distribution

Number of Spaces, S 0 10 20 30 40 50 60 70 80 90 100

Expected Welfare, uncertainty | 0 39 78 117 153 182 189 180 170 160 150

Welfare, no uncertainty, N=50 [ 0 -10 -20 -30 -40 200 190 180 170 160 150

15



Notes: Welfare is rounded to the nearest integer.
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Figure 3. Welfare and Parking Lot Size: Binomial Distribution
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In this example, the size of the parking lot should be S = 58. In contrast
to the case of normal distribution, only about 8 out of 58 spaces are empty,
on average. This corresponds to 86% utilization level. See Appendix A for an
analysis of the parking problem when the number of drivers is large and uncertain.
Appendix B provides further examples for discrete probability distributions.

5. Discussion

The model can be specified in two different ways, generating two different kinds
of equilibrium, but full rent dissipation arises in either of them.

Observable Parking Lot

(a) All drivers observe all arrival times, and can alter their arrival times instantly
depending on what they observe.

In equilibrium, S people show up at t* and take the S parking spaces, where
t* is such that w(T —t*) = v, and N — S people show up at T'. Each driver has a
payoff of 0. The S early arrivers will not delay, because if one of them does, one
of the N — S late arrivers will alter his time of arrival to jump in ahead of him.
Nobody has an incentive to unilaterally deviate by arriving earlier than the time

17



assigned him by the equilibrium, because the earlier arrivers get a parking space
anyway and the late arrivers would not get a parking space unless they deviated
to a time earlier than t*, in which case they would get negative payoffs.

18



Unobservable Parking Lot

(b) Each driver chooses his time of arrival without observing what other drivers
have chosen.

In any mixed strategy equilibrium, drivers choose to arrive no earlier that
time ¢* and no later than time 7.'° Each driver has an expected payoff of zero
and the total sum of all the losses incurred by drivers is equal to the total value
of parking. The parking lot must still be built, however, so the social payoff is
—cS. No driver can have a strategy with a positive payoff, or someone else would
imitate that strategy by showing up slightly earlier.

If binding contracts could be made, the problem would be avoided. Everyone
would arrive at T, S people would take the parking spaces, and the other N — §
would get side payments from the ones who park in the desirable lot. This,
however, requires (a) communication to coordinate who parks, (b) low enough
transaction costs for coordinating and making the payments, and (c) enforceability
at low cost, so that people do not break their contract and arrive early or refuse
to make the side payments later.

The rent-seeking behavior of drivers can be avoided by increasing the capacity
level or by restricting the entry to the facility. Suppose there are S parking spaces
and N > S people willing to park. The access should be restricted to S people. If
more people were given parking permits, the competition would not allow them
to obtain benefit from parking. The effect of extra parking permits would be to
reduce the benefit for the original permit holders to zero.

Note that it is assumed here that the drivers know in advance that N is small
on a given day. If they believe that N is large, then they show up early, although
there are plenty of spaces, and there is much more of a social loss.

10Holt and Sherman (1982) analyze the symmetric pure strategy equilibrium in a multi-prize
waiting-line auction with heterogeneous players.
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6. Conclusion

Our findings from the parking lot problem can be applied to any unregulated
facility. If prices cannot serve as an allocation mechanism, the intertemporal
variations in demand are reduced through the players’ strategic behavior.

Consider the current electricity crisis in California. Since regulation is politi-
cal, the good is underpriced. A peak in demand can cause a blackout of the whole
system. Electricity, like parking, cannot be stored as other consumer products.
The electricity facilities are able to supply much more than it takes on average to
satisfy the demand.!? A relatively low capacity utilization in this setting is similar
to our finding for parking lots. The reasoning is similar as well: a slight excess
demand can cause serious problems while an excess supply of the same size is less
troublesome. Since there are millions of users, each user neglects his ability to
cause an overload. The situation is somewhat more complex than in the parking
lot problem because demand is not unitary— people choose the number of units to
consume. Thus, when users are urged to and attempt to move their consumption
from peak hours to off-peak, even if some users are persuaded, other less civic-
minded users may increase their usage in response and leave the probability of
overload unchanged.

Similarly, each year on New Year’s Eve, it is nearly impossible to place an
international call. Everybody is trying to reach a country at midnight (local
time). Hence, some choose to call earlier to avoid the connection problems. This
avoidance behavior is akin to queueing for a space in a parking lot before the lot
is open.

To summarize, we believe that the strategic incentives of consumers are an
essential element in planning capacity for an unpriced product— as important, or
perhaps more important, than the obvious decision-theory problem of predicting
uncertain demand and the obvious engineering problem of predicting capacity

" Currently, the reserve capacity in California is at the lowest level in three decades. The
lagging supply and continuously increasing demand made it difficult for California to maintain
the sufficient level of reserve to avoid emergency situations that it is currently suffering. For
instance, operating at a “30 percent capacity reserve margin was the norm” in the past, but,
the reserves have dipped to 15 to 20 percent capacity. The declaration of the stage-1 emergency
when reserves drop below 7 pecent is designed to prevent the system failure. (Plants Sites &
Parks 10/01/2000)”.
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cost. It can be very costly for society if the civil engineer knows no game theory.
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Appendix A: Calculus for Large N

For larger N we can abstract from the integer problem and use of the calculus
and re-write the expected welfare from the parking lot as

EW(S) = /O "N — cS) f(N)AN + /S (2 eS) F(NYN

EW(S) = /O " NF(N)AN — ¢S (4%)

The optimal size of the parking lot is the solution to the first-order condition
OEW (S)/0S = vSf(S) — ¢ =0, which can be re-written as

Sf(S8) =c/v (6%)

We can use (6*) to find the optimal level of S if the maximand is concave.
Surprisingly, that seems unlikely. The second-order condition, 92 EW (S)/95?% <
0, requires Sf'(S) + f(S) < 0. The probability distribution function has to be
declining sufficiently fast: f'(S) < —f(5)/S.

Given that the second-order condition for welfare maximization is satisfied,
the optimal size of the parking lot is negatively related to the relative cost of
its construction (the result follows from the total differentiation of the first-order
condition (6*) and the fact that Sf’(S) < 0 is necessary for the second-order
condition to hold).

Example: Continuous p.d.f. f(N)= N g€ (1,2)
The support for distribution f(N) = NP, [a,b] = [1,(2 — B)ﬁ] is chosen to

guarantee that f;’ N=PdN = 1. The mean number of drivers in need of parking is
E(N) = [’ Nf(N)dN = [ N'-PdN. Hence,

2- )T 1
2= 3

B(N) =
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The first-order condition implies

(the second-order condition is satisfied.)

Let E(zr) be the mean number of parking spots taken. There are N drivers.
If N < S, then all N drivers find parking; if N > S, then S out of N drivers find
parking.

E(zr) = [7" Nf(N)AN + [5. S*f(N)AN = [$" N'“PdN + S* [&. N-PdN

The mean period-T" capacity utilization as a percentage of the lot size is, therefore,

1

—7 (-1 —(2-p)
2-p)(B-1)

where v = ¢/v. For example, when v = 0.5 and g = 1.5, S* = Vﬁ = 4 and

E(zy) = f1(275)p NYrdk = 2. On average, 50% of the parking spots will remain

unoccupied. The 50%-utilized parking lot is socially optimal. The expected wel-
fare for a parking lot of size S, relative to the value v of parking, is

E(ar)/S* =1

9)

s S2F -1
EW(S)/v = / N'PAN 45 = e =1 (10)
1 _
The normalized expected welfare for a parking lot of the optimal size is then
B-1)-1
1— — i
EW(S*) /v =1 (25_ 5> (11)

To compare the results to those under no uncertainty, suppose that the dis-
tribution for N is degenerate, taking value N = E(N) for sure, where E(N) is
specified in equation (7). Under no uncertainty, the optimal lot size is E(N). The
welfare from the parking lot is W(S = E(N)) = (v — ¢)E(N).
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Numerical examples can help us assess the likelihood and the extent of op-
timal capacity under-utilization and the welfare losses from sub-optimal capacity

levels.

Table 3. Capacity Utilization and Normalized Expected Welfare

Parameter Values v=04 v=0.5 v=10.6
6=16 1.7 1.8 | =16 1.7 1.8 | =16 1.7 1.8

E(N) 2.11 2.25 248 2.11 2.25 248 2.11 2.25 248
S*, uncertainty 4.61 3.70 3.14 3.17 2.69 2.38 2.34 2.07 1.89
% Full, E(xr)/S* 45.71  57.59 65.95 | 62.92 71.41 7728 | 76.63 82.18 85.97
“Welfare, W(E(N))/v 1.26 1.35 1.49 1.05 113 1.24 0.84 0.90  0.99
bWelfare EW (S") /v 0.25 0.10  0.03 -0.12 -0.23 -0.26 | -040 -043 -0.60
“Welfare EW (S") /v 026 012 003 | -0.12 -0.19 -0.24 | -0.39 -0.43 -0.46
dWelfare, EW (S*) /v 2.11 1.60  1.29 1.47 1.15  0.95 1.01 0.82  0.68

Notes: a) No uncertainty case, S = E(N); b) Uncertainty case with §' =
trunc(S*): the optimal size of the parking lot is truncated to an integer; ¢) Un-
certainty case with S” = 0.995* - the optimal size of the parking lot is reduced
by 1%; d) Uncertainty case with S = S*.

Table 1 illustrates our assertion that a little bit too small parking lot may be
worse than no parking lot at all. In case b), we truncate the optimal lot size to
the nearest integer and in case c), the optimal size of the lot is reduced by 1%.
These small changes greatly affects the normalized expected welfare.
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Appendix B

Example: Uniform Distribution

A numerical example for ¢ = 2,v = 5, N = 100 shows welfare at different capacity
levels.

Table 4. Welfare and Parking Lot Size: Uniform Distribution

Number of Spaces, S 0 10 20 30 40 50 60 70 8 90 100

Expected Welfare, uncertainty | 0 -17 -30 -37 -39 -37 -29 -17 0 23 50

Welfare, no uncertainty, N=50 | 0 -20 -40 -60 -80 150 130 110 90 70 50

Notes: The welfare is rounded to nearest integer.

Figure 4. Welfare and Parking Lot Size: Uniform Distribution
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Notice that building a parking lot for 80 people out of 100 and not restricting an
access to the facility is no better than building no parking lot at all. The welfare
from a lot that can satisfy 80% of the demand is zero.
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Example: Discrete p.d.f. f(N)=py=6/(7N)? N=1{1,2,...}

Assume that the probability that N drivers seek parking is py = 6/(7N)2.
It is easy to verify that > %_; py = 1. Notice that with probability Pr(N = 1) =
6/m2 ~ 61% only one driver needs parking. If v = ¢/v = 0.5, then from equation
(5), the optimal capacity size is S = 2 since Sf(S) = SPr(N = S§) = 0.5 for
S = 2. The probability that there will be an empty space in a parking lot is
Pr(N =1) = 6/7% ~ 61%: more than 60% of the time only one driver arrives and
the second parking space remains empty.
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