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Abstract

In contrast to the traditional model of uncertainty, where the uncertainty is
characterized by a single distribution function that a decision maker faces, the
Knightian-uncertainty approach characterizes it as a set of distributions rather than a single
one. Hence, learning in the context of Knightian uncertainty is characterized by an update
process of the set of distributions after each of random sampling.

This note presents two examples in which the Dempster-Shafer update rule, the one
which attracts much attention since it seems intuitive, does not at all reduce the Knightian
uncertainty (Example 1) and it actually increases the Knightian uncertainty (Example 2).
Thus, what is a sensible update process is still an open question under the Knightian

uncertainty.



A NOTE ON LEARNING
UNDER THE KNIGHTIAN UNCERTAINTY*

by
Kiyohiko G. Nishimura

Faculty of Economics
The University of Tokyo

and

Hiroyuki Ozaki

Faculty of Economics
Tohoku University

April 15, 2001

Abstract

In contrast to the traditional model of uncertainty, where the uncertainty is characterized
by a single distribution function that a decision maker faces, the Knightian-uncertainty ap-
proach characterizes it as a set of distributions rather than a single one. Hence, learning
in the context of Knightian uncertainty is characterized by an update process of the set of
distributions after each of random sampling. This note presents two examples in which the
Dempster-Shafer update rule, the one which attracts much attention since it seems intuitive,
does not at all reduce the Knightian uncertainty (Example 1) and it actually increases the
Knightian uncertainty (Example 2). Thus, what is a sensible update process is still an open
question under the Knightian uncertainty.
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1. Introduction

In a traditional framework, uncertainty is characterized by a single distribution function
that a decision maker faces. Many economic applications assume that the distribution function
is known to the decision maker. In a more general framework, the distribution function is not
known but the decision maker tries to learn from observations taken from the distribution. As
in Rothschild (1974) and others, uncertainty is typically characterized by a parametric family of
distributions with unknown parameters, say, a normal distribution with an unknown mean and a
known variance. Then, learning is characterized by an update process of a prior distribution over
the space of unknown parameters after each of random sampling. The conjugate distribution is
usually assumed for a prior to guarantee the updated distribution to be in the same parametric
family, which reduces mathematical complexity greatly.

In contrast to the traditional approach, the Knightian-uncertainty approach characterizes
uncertainty as a set of distributions, instead of a single distribution. The distributions are not
necessarily in the same parametric family. Not only the parameter value of the distribution is
unknown, but also the shape of distribution itself is unknown. Hence, learning is characterized
by an update process of the set of distributions after each of random sampling. Among update
rules under the Knightian uncertainty, the maximum-likelihood update rule, which is often called
the Dempster-Shafer rule, attracts much attention since it seems intuitive and sensible.  This
rule chooses, among all distributions in the set, those that put the highest probability on the
occurrence of an actual observation, and updates the chosen distributions by using the Bayes rule.
By using the Dempster-Shafer rule, learning is expected to reduce the Knightian uncertainty, in
the sense that the set of distributions that the decision maker faces shrinks after each observation.

This note presents two counter-examples of this popular conviction. In particular, we
show that the Dempster-Shafer update rule does not at all reduce the Knightian uncertainty
(Example 1) and it actually increases the Knightian uncertainty (Example 2). Thus, what is a

sensible update process is still an open question under the Knightian uncertainty.



2. Update Rules under Multi-Period Knightian Uncertainty
2.1. Preliminaries: Multi-Period Knightian Uncertainty

Let (W, Bw) be a measurable space, where W is a Borel subset of R, and By is the
Borel o-algebra on W. Denote the set of all probability measures on (W, By) by M(W).
Given Q, R C M(W), the product of Q and R, denoted Q x R, is defined as

OxR={pxv|ipeQand veR}

where p x v denotes the product probability measure constructed from p and wv.

We consider a two-period model. As is apparent in the following analysis, to extend
to a m-period model with n > 2 is straightforward (though notationally cumbersome). We
thus consider (W x W, Bwxw), which is the (self-)product measurable space constructed from
(W,Bw).  As in the one-period model, we denote the set of all probability measures on
(W x W, Bwxw) by M(W x W).  Obviously, for Q and R C M(WW), we have Q x R C
M(W x W).

In characterizing the Knightian uncertainty, we follow in this note the multiple prior
approach (see Gilboa and Schmeidler (1993) for this and an alternative non-additive probability
approach). In this framework, the decision maker’s state of the Knightian uncertainty is
represented by a subset of M(W) in the case of one period, and a subset of M(WW x W) in
the case of two periods.

One technical definition is useful in the following analysis. Given any = € M(W x W)

and X € By, a probability measure mx € M(W) is defined as
TF)((Y)ZW(XXY)

for all Y € By.
Let us now define the marginal Knightian uncertainty of two-period Knightian uncertainty.
Then, given two-period Knightian uncertainty ? C M(W x W), its second-period marginal

Knightian uncertainty, denoted by P|,, is defined as

Plo={veMW)|GFreP)v=may}.



If P=0Q xR for some Q and R, then P|, =R. Also we have that M(W x W)|, =
M(W). This relation is proved in the following way. First, the inclusion M(W x W), C
M(W) is obvious. Second, to see that the opposite inclusion also holds, let v € M(W) and
pw € M(W) and define m € M(W x W) by 7 = p xv. Then, (VX € Bw) v(X) = u(W)r(X) =
(W x X) = 7w (X), and hence, v € M(W x W)|,.

2.2. Update and Dempster-Shafer Rule

In general, an updating rule in the two-period framework is a function ¢ such that

¢ . 2M(W><W) (WXW)

X Bwxw — 2M

where 2M(W>W) denotes a set consisting of all subsets of M(W x W).  Given two-period
Knightian uncertainty ? C M(W x W) and an observation A € By xw, ¢(P, A) (C M(W x W))
represents the state of Knightian uncertainty which is updated from P upon the observation of
the event A according to the updating rule ¢.

A natural extension of Bayesian learning in the framework of unique prior to the multiple
prior case is so-called Dempster-Shafer rule or the maximum-likelihood update rule.!  Given

PCMW x W) and A € By «w, the Dempster-Shafer rule, ¢pq(P, A), is defined as

7' € pps(P, A)

& (A e?P) n* cargmax{n(A)|7r P} and (VB € Byxw) 7' (B) = %-

Here P and A are assumed to be such that max{m(A)|x € P} exists and is strictly positive.
When P = {x}, that is, when there is no Knightian uncertainty, we immediately have
épg(P, A) = {n'} where 7'(-) = n(AnN-)/m(A) for any A such that m(A) # 0, which is the
familiar Bayesian update rule. Hence, within the current setup of a two-period model where the
event E is observed in the first period, if there is no Knightian uncertainty, the Dempster-Shafer

rule corresponds to updating 7(W x -) € M(W) into n(E x -)/n(E x W) € M(W).

Originally, the Dempster-Shafer rule is proposed in the non-additive measure approach. Gilboa and Schmeidler
(1993) shows the equivalence of the Dempster-Shafer rule and the maximum-likelihood update rule for preferences
which can be simultaneously represented by a non-additive measure and by multiple priors. Taking this property in
mind, we use the term, the Dempster-Shafer rule, for the maximum-likelihood update rule in the text.



2.3. First-Period Observation and Ex-Post Knightian Uncertainty

We now embed the Dempster-Shafer update rule in our sequential two-period framework.
Let P € M(W x W) be the initial Knightian uncertainty over two periods. If there were no
observation of an event in the first period, the second-period marginal Knightian uncertainty, |,
would be the state of the Knightian uncertainty in the second period. However, we observed
E € By in the first period. The event of having only the first-period observation E can be
characterized as F x W in the two-period framework of the previous section.. We then update
our state of the Knightian uncertainty using the Dempster-Shafer update rule ¢,g. The updated

second-period Knightian uncertainty, denoted by CP|§DS (E), is defined as
PSP (B) = {v € M(W) | (3r € ¢ps(P, Ex W) v =7},

Our main focus is whether learning (updating) reduces the degree of the Knightian
uncertainty. If the updated Knightian uncertainty is “smaller” than the original Knightian
uncertainty, that is, CP|§D5 (E) C |, it is natural to say that the degree of the Knightian

uncertainty is reduced. Thus, we are interested in whether T|§DS (E) C |, holds or not.
3. Learning May Not Reduce Knightian Uncertainty: Two Examples

This section offers two examples where learning in the form of the Dempster-Shafer
updating does not reduce the Knightian uncertainty. In the first example, learning does not
change the degree of the Knightian uncertainty, while in the second example, learning actually

increases the degree of the Knightian uncertainty.

3.1. Knightian Uncertainty Represented by a Product of Probability-Measure Sets

The first example is taken from a special case of a general search model under the
Knightian uncertainty examined by Nishimura and Ozaki (2001).  Consider an unemployed
worker searching for a job. The worker has some idea about the distribution of job offers in
the current period and the next, so that she is certain that the true distribution is in a small

subset of all distributions. However, she neither have confidence about which distribution in the



set of candidate distributions is the true one, nor that the true distribution is the same for two
periods. This worker’s Knightian uncertainty in two periods can be characterized as a product
of a set of distribution functions in the current period and that in the next period. In this case,
the following theorem and corollary show that the Dempster-Shafer update rule does not change

the degree of the Knightian uncertainty.

Theorem 1. Let Q, R € M(W) and the observation E € By, be such that max{u(E)|p € Q}

exists and is strictly positive. Then, if P = Q x R, we have 1P|§D5 (E) =R

Proof. First note that

TI'I € ¢DS(Q X fR,E X W)

(1 x V)" (ExW)N-)

S 3pxv) cargmax{ux v(ExW)|uxrveQxR}) 7 ()= Gix o) (B W)

Since pux v(Ex W) =p(E)w(W) and v(W) =1 for all v, we have (u x v)* = u* x v where

p* €argmax{u(F)|peQ}) and v € R, and

(MXV)*((EXW)H-)_,u*xu((ExW)ﬂ-):M*Xy((EXW)ﬂ-)_,u*XV((EXW)ﬂ-)
)

(uxv) (ExW) —  p*xv(ExW w(EYW) pw*(E)

because max{u(FE)|un € Q} exists and is strictly positive by the assumption. Consequently, we

obtain

i € QSDS(Q X :R,E X W)
& (O e agmax{u(B) |u € 9@ eR) () = L2 ”(ff( ;)V” SRR

To show P|2S (E) C R, let v € P|2PS (E). Then, there exists 7/ € ¢pg(Qx R, E x W)

such that v = n;. Hence, v € R because (1) implies that (VF) n5(F) = «'(E x F) =
p* x V' (E x F)/u*(E) =V'(F) for some v/ € R.

To show CP|§D5 (E) DR, let v € R. Also, let p* € argmax{u(E)|u € Q}. Such a u*
certainly exists and p*(E) > 0 by the assumption. Then, if we construct ' such that =’ () =
p*xv((ExW)N-)/u*(E), then we have 7’ € ¢pg(QAxR, ExW) by (1). Hence, v € T|§’D5 (E)
since (YF) v(F) = " (B)u(F)/u* (E) = u* x v(E x F)/u*(E) = 7'(E x F) = 7y (F). 1

Since P|, = R holds, the theorem implies the following corollary.



Corollary 1. |, = 1P|§DS (E).

In this example, the observation in the first period does not reduce the Knightian uncer-
tainty at all.  This property is explained heuristically in the following way. One implication
of the fact that the unemployed worker’s Knightian uncertainty is represented by a product of
probability measures is that she does not rule out the possibility that the wage distribution may
be very different between the present and future periods. The future wage distribution may be
very different from the current distribution from which a particular observation is drawn. Then,

today’s observation may not convey useful information about the future wage distribution.

3.2. The e-contamination

In the next example, a decision maker is nearly certain that uncertainty she faces over
two periods is characterized by a product of a particular probability measure (that is, i.i.d.
random variables.) However, she does not have perfect confidence about this characterization.
She thinks that there might be a possibility, though small, that she is wrong and that true
probability measure is different from the one she assumes. She does not know what probability
measure she faces if her conviction turns to be wrong.

To characterize the decision maker’s situation, we use the idea of ¢-contamination. For-
mally, let £ > 0, let Py be a probability measure on (W, By ), and let Py x P, be the product
probability measure on (W x W, Byw«w). Here, we assume that Py x P, is the distribution that
the decision maker thinks is the “true” distribution. However, she is not perfectly certain about

her conviction. We define the e-contamination of Py x Py on (W x W, By «xw) as
{P() X ]D()}6 = {(1—6)(P0 XPO)+8Q|Q GM(W X W)}

The e-contamination of Py x Py formulates the state of the Knightian uncertainty the decision
maker faces. She is (1 —¢) * 100% certain that the true distribution is Py x Fy. However,
with ¢ x 100% probability the true distribution is different from Py x P. She is perfectly
ignorant about the true distribution when her conviction is wrong, and thus she thinks that any

distribution on (W x W, By «w) can be the true distribution.



In the following analysis, the one-period counterpart of the two-period e-contamination
turns out to be important.  Applying the same idea to the one-period case, we define the

e-contamination of Py on (W, By) as

{Po} ={(1-e)P+eQ|Q e M(W) }.

The following lemma shows that the second-period marginal Knightian uncertainty of the

e-contamination of Py x P, is equal to the e-contamination of Py.?

Lemma 1. {Py x Py}°|, = {P}°

Proof. To show {Py x Py}°|, C {Py}°, let v € {Py x Py}°|,. Then, there exists = € {Py x Py}°
such that v = 7. That @ € {Py x Py}° in turn implies that there exists ©' € M(W x W) such
that 7 = (1—¢)(Pyx Py)+en’. Hence, (VF) v(F) = 7w (F) = 7(WxF) = (1—¢)Py(F)+en’ (W x
F) = (1—¢)Py(F)+emyy (F). This shows that v € {Py}° because 7, € M(W x W)|, = M(W).

To show {Py x Py}°|, 2 {Ry}", let v € {Py}°. Then, there exists v/ € M(W) such
that v = (1 —e)Py +ev/. Let p € M(W) and let 7 = (1 —&)(Py x Py) + e(u x v'). Then,

me{Pyx P}° and mw = (1 —e)Py + e/ =v, and hence, v € {Py x Py}7|,. I

Theorem 2. Let F be an observation, which is a nonempty measurable subset of W. Then,
{Po x P} [37% (B) = (P} = {(1 - YRy +£'Q|Q e M(W) },

where

U omm e

Proof. Let Q* € M(W x W) be any probability measure such that Q*(E x W) = 1. Such a
Q™" certainly exists since E is nonempty. Then, it follows that = € ¢pg({Po X Po}*, E x W) if
and only if

() = (- (R x P)(ExW)N:) +eQT((ExW)N-)
(1—e)P(E) +¢
The lemma shows that {Py x Py}°|, = {Po}". And we also have ({Py}° x {P,}°)|, = {Po}". However,
{Po x Py} # {Po}° x {Po}® in general. To see this, consider the following simple example: Let P, be the
Bernoulli distribution with the probability of success being a half, and let e = 1/2. Then, (1/16,3/16,3/16/,9/16) €

({Po}° x {Po})\ {Po x Po}°. In contrast to the risk, the marginals do not characterize the uncertainty. For more
on this, see Ghirardato (1997).




for such a Q*, where 7 is well-defined even when Py(E) = 0 since ¢ > 0. Therefore,

v € {Py x Py}¥|%7s (E) if and only if

v() = 7r()
(1—e)Py(E)Py (-) +£QF ()
(1-e)P(E) +¢

£ £
= 1— P (- 1.
(1~ =ammes) PO RO
= (1-NP()+£Qk ()
for such a Q*. Clearly, Qf € M(W), and hence, {P, ><P0}5|§D5 (E) C {P,}*. For the
opposite inclusion, it suffices to show that any @ € M(W) is represented as Qg for some

Q" such that QT(E x W) = 1. This can be done by setting Q* equal to u* x @ for some

pt e M(W) such that u™(E) =1. 1

It follows that {Py}° is a proper superset of {Py}° if &’ > ¢, which holds whenever

Py(E) < 1. Hence, Lemma 1 and Theorem 2 immediately prove the next corollary.

Corollary 2. Suppose that an observation E be a nonempty subset of W such that Py(E) < 1.

Then,
{Py x P}, C {Po x Po}°|325 (E)

where the inclusion is strict.

This corollary shows a striking result. In the example of e-contamination, the Dempster-
Shafer update rule, which is considered to be sensible in the multiple prior framework, actually
increases, rather than decreases, the degree of the Knightian uncertainty. In a sense, learning
(in the form of the Dempster-Shafer update rule) increases the decision maker’s confused state
of confidence, rather than resolve it.

Heuristically, this fact is explained in the following way. The Dempster-Shafer rule,
or in other words, the maximum-likelihood update rule, chooses probability measures among

possible priors that put the highest probability on the occurrence of the first-period observation



E, and updates the chosen probability measures using the Bayes rule.  This procedure is
supposed to eliminate implausible probability measures from the original set of priors and to
slant remaining priors to put more probability on the occurrence of the event E. The basic
idea is that plausible probability measures should have the highest probability on the actual
occurrence.  However, in the e-contamination case {P; x Py}°, the set of original priors is a
weighted average of a known distribution Py x Py and a distribution ) taken from complete
ignorance (that is, all possible distributions).  Thus, the presumption that plausible probability
measures should put the highest probability on the actual occurrence is not very much sensible
in the case of e-contamination. Moreover, since we allow all possible distributions for @, the
maximum-likelihood procedure chooses probability measure QT putting the highest probability
(= 1) on the first-period observation F, and dictates chosen probability measures to put more
weight on Q. This produces the counter-intuitive result of Corollary 2, in which learning

increases the Knightian uncertainty.
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