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Abstract 
 

This paper investigates repeated games with perfect monitoring, where the number of 
repetition is finite, and the discount factor is far less than unity. Players can make a side 
payment contract, but their liability is severely limited. The history of play may not 
necessarily be verifiable. With positive interest rate of the contractible asset, we show 
that, in spite of limited liability and verifiability, efficiency is sustainable in that there 
exist a contract and an efficient perfect equilibrium in its associated game, and that 
efficiency is even uniquely sustainable if there exists the unique one-shot Nash 
equilibrium. In partnership games, efficiency is uniquely and approximately sustainable, 
even if the interest rate equals zero. In partnership games with two players and positive 
interest rate, efficient sustainability is robust to renegotiation-proofness on the terms of 
explicit contracting as well as implicit agreements. 
 
Key Words: Finitely Repeated Games, Discounting, Side Payment Contracts, Limited 
Liability, Limited verifiability, Efficiency, Uniqueness, Renegotiation-Proofness. 
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1. Introduction 
 

This paper investigates repeated games with perfect monitoring, where the number of 
repetition is finite but sufficiently large, and the discount factor may be far less than unity. 
At the beginning of the initial period, players can make a budget-balancing side payment 
contract. The contract requires each player to invest in a safe asset, and may require a 
deviant to give the whole return from this asset to the others. In the initial period, however, 
players’ limited liability is so severe that each player can invest only a small monetary 
amount. Moreover, the realized history of play may not necessarily be verifiable to the 
court, and therefore, the contract may not necessarily be enforceable. 

We show that, in spite of the limited liability and verifiability above, when the interest 
rate of the asset is positive, efficiency is sustainable in the sense that there exists a 
contract and an efficient perfect equilibrium in its associated game. Benoit and Krishna 
(1985) and Friedman (1985) showed that in standard models of finitely repeated game 
with no side payments, there might exist an approximately efficient perfect equilibrium 
when there exists multiple one-shot Nash equilibria. Radner (1980), Chu and 
Geanakoplos (1988), and Conlon (1996) showed that when players are irrational, there 
might exist an approximately efficient perfect equilibrium, even if there exists the unique 
one-shot Nash equilibrium.1 In contrast to these works, our result is on ‘exact’ efficiency 
as opposed to ‘approximate’, and does not assume no discounting. In fact, our efficiency 
result holds under the same condition on the discount factor as that under which 
efficiency is sustainable in infinitely repeated games by using trigger strategies. 

It is well known that if there exists the unique one-shot Nash equilibrium, then the 
repetition of the one-shot Nash equilibrium play is the unique perfect equilibrium in 
finitely repeated games. In sharp contrast to this, we show that if there exists the unique 
one-shot Nash equilibrium and the interest rate is positive, then efficiency is even 
uniquely sustainable in the sense that there exists a contract, in the game associated with 
which, there exists the unique perfect equilibrium, and it induces an efficient payoff 
vector. We also show that, in partnership games, even if the interest rate equals zero, 
efficiency is uniquely and approximately sustainable in the sense that there exists a 
contract, in the game associated with which, there exists a perfect equilibrium, and it 
induces an approximately efficient payoff vector. 

                                                 
1 There exists a huge volume of works on repeated games presenting theoretical foundations to the 
widely accepted view that long-term relationships facilitate collusion more than do in short-term 
relationships. For the survey on repeated games, see Pearce (1992). 
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The logic behind collusive behavior in this paper is different from that in standard 
models. In standard models, players are confronted with the same subgame in every 
period, and this subgame has multiple perfect equilibria. If a player deviates, her 
opponents will retaliate from the next period by playing an unfavorable equilibrium to her. 
Because of this move to the unfavorable equilibrium, each player hesitates to deviate. In 
contrast to this orthodoxy, the present paper adopts an alternative basis for collusion to 
occur. Subgames of a finitely repeated game with side payments differ across past 
histories because the history-contingent contract influences the payoff structures of these 
subgames. These subgames each have their own respective perfect equilibria. If a player 
deviates, all players will be confronted in the next period with the subgame whose perfect 
equilibrium is unfavorable to the deviant. Because of this move to the unfavorable 
subgame, each player hesitates to deviate. Since collusive behavior can be described as a 
unique perfect equilibrium, the predictive power in this paper is much stronger than that 
in standard models. The fact that not only the whole game but also every subgame 
satisfies the uniqueness implies that, in every period, players have no room to renegotiate 
the terms of implicit agreement and improve their welfare. This point contrasts with the 
fact that renegotiation-proofness on the terms of implicit agreement has long been a 
controversial issue in the repeated game literature.2 

There exists a sizeable literature dealing with the agency problem with moral hazard, 
seeking to clarify whether a single-period relationship attains the first-best allocation 
through the writing of explicit contracts. 3  This literature commonly makes the 
assumption that it is difficult for the court to verify players’ action choices, but that there 
exists a public signal that is randomly determined according to a probability distribution 
conditional on player’s action choices, and this signal is verifiable. Hence, players can 
agree to write an explicit contract that depends not on their action choices but on the 
realization of this signal. A large proportion of this literature was devoted to investigating 
the single-agent problem, while several works such as Holmstrom (1982), Williams and 
Radner (1989), and Legros and Matsushima (1991) investigated multi-agent relationships. 
Legros and Matsushima showed a necessary and sufficient condition under which there 
exists a budget-balancing side payment contract that induces players to choose a 

                                                 
2 See, for example, Bernheim and Rey (1989), Farrell and Maskin (1989) and Pearce (1987) on 
infinitely repeated games, and Benoit and Krishna (1988) on finitely repeated games. 
3 For the references, see the surveys by Hart and Holmstrom (1987), Dutta and Radner (1994), and 
Salanie (1997). 
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collusive action profile as a Nash equilibrium.4 This contract, however, requires that 
players pay a large fine as the penalty for deviation. In contrast, the present paper assumes 
that players establish a long-term relationship, but that only small fines, which may be 
close to zero, exist in totality. The paper shows that the establishment of a long-term 
relationship dramatically economizes on monetary fines without harming players’ 
incentive to collude. 

As such, this paper may offer an important economic implication within the field of 
law and economics. In real situations of labor contracting with moral hazard, it is 
practically difficult to establish measures of performance that are always verifiable to the 
court. It is also unrealistic to expect that a limitedly liable worker will be able to pay a 
large fine when the fact that she has neglected her duty could be disclosed to the public. 
From this, it is widely believed that in real situations the legal enforcement of explicit 
contracts plays only a limited role in resolving issues of moral hazard. Many economists, 
such as MacLeod and Malcomson (1989), have emphasized that the self-enforcement of 
implicit contracts instead plays a more crucial role than legal enforcement, which are 
thought of formally as a perfect equilibrium in an infinitely repeated game. In contrast, 
the present paper shows that even if workers’ liability is severely limited and their 
performances are hardly verifiable, the role of legal enforcement is still very crucial and 
even indispensable for workers’ incentives. 

This paper is also in contrast with the literature of the reputational theory of finitely 
repeated games, which assumes incomplete information on players’ types.5 Several works 
such as Kreps and Wilson (1982) and Milgrom and Roberts (1982) provided their 
respective examples of a chain-store game in which there exists a unique perfect 
Bayesian equilibrium and it induces an approximately efficient allocation. However, 
these results depend crucially on their own specifications of the incomplete information 
structure, while it is hard to tell about how players can determine the well-behaved 
incomplete information structure in advance of their repeated play. The present paper, 
however, assumes complete information and is based on a more plausible scenario of a 
contracting process, in which players will collectively agree to write a side payment 
contract that guarantees both uniqueness and, exact or approximate, efficiency.6 

                                                 
4 These works did not consider the uniqueness of equilibrium. Ma (1988), and Ma, Moore and 
Turnbull (1988) investigated unique implementation in multi-agent relationships. 
5 For the survey of this literature, see Fudenberg (1992). 
6 For example, one of the partners, called the principal, decides a side payment contract, which 
maximizes her own payoff given the constraint that there exists a unique perfect equilibrium and 
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Finally, we investigate partnership games with two players, where we assume that the 
interest rate is positive. We show that there may exist a combination of a contract and an 
efficient perfect equilibrium in its associated game that is renegotiation-proof in the sense 
that in any period, the induced payoff vector in the subgame is always efficient 
irrespective of the past history, and therefore, players never agree to breach and 
renegotiate the contract. Hence, we may not need to assume that the contract has full 
commitment power in the sense that players cannot breach and renegotiate it once the 
repeated game starts, and therefore, our efficiency results may be robust to renegotiation 
on the terms of explicit contracting as well as the terms of implicit agreement. Rey and 
Salanie (1990), and Fudenberg, Holmstrom, and Milgrom (1990) showed that in a 
long-term principal-agent relationship, renegotiable short-term contracts would 
implement efficiency. In contrast to the present paper, however, these works depend 
crucially on the assumption that large side payments are possible. 

The organization of the paper is as follows. Section 2 defines the model. Section 3 
shows that efficiency is sustainable, or uniquely sustainable, when the interest rate is 
positive. Section 4 shows sufficient conditions under which efficiency is approximately 
sustainable, or uniquely and approximately sustainable, even if the interest rate equals 
zero. Section 5 defines partnership games with zero interest rates, and shows that 
efficiency is uniquely and approximately sustainable. Section 6 shows that in partnership 
games with two players and zero interest rates, there exists a renegotiation-proof 
combination of a contract and an efficient perfect equilibrium. Finally, Section 7 
concludes. 

                                                                                                                                               
that this perfect equilibrium induces a payoff vector that is no worse than the payoff vector that 
partners can receive outside if they fail to establish their partnership. Another scenario is that all 
players agree to a side payment contract according to the Nash bargaining solution at the 
beginning of period 1 given the constraint that there exists a unique perfect equilibrium and that 
the payoff vector that partners can receive outside is regarded as the threat point. 
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2. The Model 
 

Let  denote the finite set of players. The component game is given by 
, where  is the set of actions for player , , and  

is the instantaneous payoff function for player i . We assume that there exists a Nash 
equilibrium action profile a  in . Let a  denote a payoff vector that 
Pareto-dominates a  and efficient in that u , and there exists no a  such 
that u  and . 
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A finitely repeated game with side payments is given by Γ . Players 

times repeatedly play the component game G , where T  is a positive integer. Let 
 denote the common discount factor. We assume that monitoring is perfect in 

that at the end of every period t , players can observe all players’ action choices 
. We assume that public randomization devices are possible in 

that at the end of every period , every player observes a public signal  that is drawn 
according to the uniform distribution function on the interval [ .
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period  is denoted by h . Let h  denote the 

null history. A history up to the final period T  is called a complete history. The set of 
histories up to period  is denoted by .  
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Fix a positive real number M  and a nonnegative real number r  arbitrarily, 
where we assume that  is less than or equals the discount rate associated with δ , i.e., 

0> 0≥
r

(1)  
δ
δ−

≤
1r . 

At the beginning of the initial period 1, players agree to write a side payment contract 
denoted by ( , where m m , , and τ .),τm

m

mn= ( ,...,1 )

                                                

RTHmi →)(: },...,1{)(: TTH → 8 

We assume that  is budget balancing, i.e., 
m h Ti
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( ( )) =

∈
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We assume that each player’s liability is limited in ways that for every i , and every 
, 

N∈
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7 We use public randomization devices only in the study of unique sustainability or unique and 
approximate sustainability. 
8 We assume from Section 3 to Section 5 that a side payment contract has full commitment power 
in the sense that in every period players cannot breach and renegotiate it. In Section 6, we will 
drop this assumption and take the possibility of renegotiation on the terms of explicit contracting 
into account. 
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and for every h , if a  for all , 

then 
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))(())(( ThmThm ii =′  and τ = . ))(())(( ThTh τ′

Given the complete history , players will make transfer payments at the end 
of period τ  and each player i  receives the monetary amount  at this 
time. Hence, the long-run payoff for player  when h  occurs is given by 
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Let . The upper bound of fines, up to which each 

player is able to pay when the transfer payments are made in period , is given by 

v h T v h T v h Tn( ( )) ( ( ( )), ..., ( ( )))≡ 1
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An interpretation is put as follows. At the beginning of every period t , 
each player is required to invest ( dollars in a safe asset, which provides her 
with a return of (  dollars at the end of this period with certain. After period 

, i.e., after the transfers are made, no player is required to invest in any such 
assets. Another interpretation is put as follows. Fix a positive real number ε  
arbitrarily. At the beginning of every period t , she can invest 
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 dollars in the asset. The realized history up to period τ , however, is 

not necessarily verifiable to the court, i.e., can be verified only with probability ε .
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10 
Hence, the expected value of the fine that each player will pay at the end of period 

 is at most ( . Mr h()1+ τ T 1))( −

We must note that the problem is rather trivial when the inequality (1) does not hold. 
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, the present value of the return at the end of the final period is 

, which diverges to infinity as T  increases, and therefore, implies that 

players’ liability is practically unlimited even in the initial period when the number of 
repetition is sufficiently large. 
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A strategy for player  in  is defined by . Let  denote the set of 

strategies for player i . Let S  and . The 

expected long-run payoff for player  induced by a strategy profile  is 
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9 Here, we assume that utilities are quasi-linear. 
10 Here, for simplicity, we assume that the probability of the history up to period t  being 
verifiable does not depend on t . This assumption, however, is redundant. 
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where  implies the expectation conditional on the play of the strategy profile s . 
Let . The expected long-run payoff for player  induced by  
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3. Efficiency 
 

We specify a side payment contract, denoted by ( , as follows. We need no 
public randomization devices. For every h , let  be the period in 
which there exist the first deviants from the efficient action profile  when h  occurs, 

i.e., 
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Hence, each player will be fined if and only if she is the first deviant from . Note that 
 satisfies the assumptions in Section 2. 
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Proof: Fix , , and h  arbitrarily. If  for some 
, then, according to , player  always continues choosing  after h . Since 

 is a one-shot Nash equilibrium, it follows that 
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The inequality (1) implies that (  is non-increasing with respect to t , and 
therefore, for every t , 
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Q.E.D. 
 

The inequalities (2) imply that in the one-shot game with side payments, each player’s 
one-shot gain from deviation is less than or equals the monetary amount  that 

the contract requires her to pay. This corresponds to the incentive constraints required in 
the final period T  of the repeated game . The inequalities (3) imply that 

Mr T 1)1( −+

),,,( δτ ++Γ mT
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given that all players play according to the trigger strategy profile  from period 2, each 
player’s one-shot gain from deviation in period 1 is less than or equals the future loss 
from the collapse of their implicit collusion plus the monetary amount M  that the 
contract requires her to pay at the end of period 1. This corresponds to the incentive 
constraints required in period 1. Theorem 1 implies that the incentive constraints in the 
initial and finial periods above are sufficient for the perfect equilibrium property in all 
periods. 

+s
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then the inequality (4) does not hold, and therefore, s  is not a perfect equilibrium in 
. This implies that when players are sufficiently patient, it might be 

difficult to achieve efficiency in . This is in contrast to standard models of 

infinitely repeated game where implicit collusion is easier as the discount factor is closer 
to unity. 
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Efficiency is said to be sustainable with respect to (  if for every sufficiently 
large , there exist (  and a perfect equilibrium s  in  such that 

. The following corollary is straightforward from Theorem 1. 
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Hence, efficiency is sustainable with respect to (  irrespective of M  if 
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Whenever the interest rate r  is positive, then efficiency is sustainable even if the 
discount factor  is far less than unity and each player’s liability in the initial period is 
severely limited, i.e.,  is close to zero. 

δ
M

Suppose that  is not only a Nash equilibrium payoff vector but also the minimax 
payoff vector satisfying that u  for all . Then, the 

inequalities (5) are necessary conditions for the existence of perfect equilibria in the 
infinitely repeated game with no side payments that induces the efficient payoff vector 

)( eau
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)( *au
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. Hence, we can conclude that efficiency is sustainable in finitely repeated games 

with small side payments under the same condition as that in infinitely repeated games 
with no side payments. 

The following corollary is also straightforward from Theorem 1. 
 
Corollary 3: If , and  is large enough to satisfy that for every i , 0=r M N∈
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Corollary 3 implies that whenever  is more than or equals the one-shot gain from 

deviation from a , then efficiency is sustainable irrespective of the length of repetition 
 even if all players are myopic and the interest rate is zero, i.e., ( . Hence, 

we can conclude that the establishment of a long-term relationship, together with the use 
of the side payment contract that fines only the first deviants, dramatically economizes on 
monetary fines without harming players’ incentive to collude. 

M
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The following theorem shows a sufficient condition under which s  is the unique 
perfect equilibrium in  irrespective of and . 
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Proof: Let  be a perfect equilibrium in Γ . Since a  is the unique Nash 
equilibrium in G , it follows that for every , and every , 
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Fix t  arbitrarily, where we assume that for every t , and every 

, 
},...,1{ T

() −′∈ tH
},...,1{ Tt +∈′

)1
   if  for all . *))1(( aths =−′ *)( aa =τ t′<τ
Fix h  arbitrarily, where we assume that )1()1 −∈− tHt

*)( aa =τ  for all . t<τ

                                                 
11 Note that the inequalities (7) are more restrictive than the inequalities (6). 
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Fix i  and  arbitrarily, where we assume a . Suppose N∈ }/{ *aAa∈ *
ii a≠

aths =− ))1(( . 

Then, from the inequalities (7), 
))1(,())1(,/( −−−+ thsvthssv iii  

0})1()()/({
1

)1( 1*
1

>++−
−
−

≥ −
−

Mrauaau t
iiiT

t

δ
δδ . 

This is a contradiction, and therefore, 
  . *))1(( aths =−
Hence, we have proved that   is the unique perfect equilibrium in . +s ),,,( δτ ++Γ mT

Q.E.D. 
 

Next, we specify a side payment contract (  as follows. Here, we do use 
public randomization devices. Let n  denote the number of players i  choosing 

. Let  be the first period  in which there exist deviants from  and the 
realized public signal  is less than the number of the deviants divided by , i.e., 

), ++++ τm
)(a++

t*
ii aa ≠ ))(( Th++τ *a

n)(tλ

  
n
an ))(()( ττλ

++

≥  for all , t<τ

and 

  
n

tant ))(()(
++

<λ , 

If there exists no such , let . For every , let t TTh =++ ))((τ )()( THTh ∈

  M
n

ThanThmi )
1

1))))((((())((
−

−
=

++++
++ τ  if , *)))((( ii aTha ≠++τ

and 

M
n

ThanThmi 1
))))(((())((

−
=

++++
++ τ  if . *)))((( ii aTha =++τ

If no agent has been fined in the past and  agents deviate in the present, then they will 

be fined with probability 

n~

n
n~ . Note that (  satisfies the assumptions in Section 2. 

We specify a ‘modified’ trigger strategy profile s  as follows. For every 
, and every  

), ++τm ++

S∈++

},...,1{ Tt∈

*))1(( ii aths =−++  if 
n
an ))(()( ττλ

++

>  for all , t<τ

and 
e
ii aths =−++ ))1((  

n
an ))(()( ττλ

++

≤  for some . t<τ

Note that , i.e., the strategy profile  induces the efficient payoff vector )()( *ausv =++ ++s
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u a( )* . 

1( −th

t
( −′th

(

∈

The following theorem shows a sufficient condition under which s  is the unique 
perfect equilibrium in . 

++

),,,( δτ ++++Γ mT

 
Theorem 5: If a  is the unique Nash equilibrium in , and for every , e G Ni∈
(8)  , )}/()({max)1( *1

iiiAa

T aauaunMr −>+
∈

−

and 

(9)  )}/()({max)}()({
1

)1( **
1

iiiAa

e
ii

T

aauaunauauM −≥−
−

−
+

∈

−

δ
δδ , 

then, the strategy profile  is the unique perfect equilibrium in  ++s ),,,( δτ ++++Γ mT .

 
Proof: Let  be a perfect equilibrium in . Since  is the unique Nash 
equilibrium in G , it follows that for every i , every t , and every 

, 

s

(tH

),,,( δτ ++++Γ mT
N∈

ea
1{∈ },...,T

)1) −∈

eaths =− ))1((  whenever 
n
an ))(()( ττλ

++

<  for some . t<τ

From the inequality (8), it follows that for every , if )1()1( −∈− THTh
n
an ))(()( ττλ

++

≥  

for all , then the choices of  are strictly dominant in period T , and therefore, t<τ *a
  . *))1(( aThs =−
Fix  arbitrarily. Suppose that for every t , and every 

, 
},...,1{ T∈

()1 −′∈ tH
},...,1{ Tt +∈′

)1

   if *))1(( aths =−′
n
an ))(()( ττλ

++

≥  for all . t′<τ

Fix h  arbitrarily, where we assume )1()1 −∈− tHt
*)( aa =τ  for all . t<τ

Fix i  and  arbitrarily, where we assume a . Suppose N }/{ *aAa∈ *
ii a≠

   aths =− ))1(( .

Note 
  v  ))1(,())1(,/( −−−++ thsvthss iii

)}()({
1

)1()1[(
)1(

)1( *1
1

e
ii

tT
t

T

t

auauMr
n

−
−

−
++

−
−

≥
−

−
−

δ
δδ

δ
δδ  

)}]/()({ *
iii aauaun −− . 

Let 

)}()({
1

)1()1()( *1 e
ii

tT
t

i auauMrtB −
−

−
++≡

−
−

δ
δδ  

 



 15 

)}/()({max *
iiiAa

aauaun −−
∈

. 

The inequalities (8) and (9) imply  and , respectively. Note 0)( >TBi 0)1( >iB

)()1( tBtB ii −+ )}()()1{( *11 e
iiT

tttT auaurMr +−+= −−−

δ
δδ . 

Since the inequality (1) implies that (  is non-increasing with respect to t , it 
follows that for every , 

11)1 −−+ ttr δ
}2,....,1{ −∈ Tt

   if , ) )()1( tBtB ii <+1()2( +<+ tBtB ii

which implies that if  and , then  for all . Hence, 0)( >TBi 0)1( >iB 0)( >tBi },....,1{ Tt∈
0)( >tBi  for all i  and all , N∈ },....,1{ Tt∈

and therefore, 
0))1(,())1(,/( >−−−++ thsvthssv iii . 

This is a contradiction. Hence, we have proved that  is the unique perfect equilibrium. ++s
Q.E.D. 

 
The inequalities (8) imply that in the one-shot game with side payments, each player’s 

one-shot gain from deviation is less than or equals the monetary amount  that 

the contract requires a deviant to pay, irrespective of which actions the other agents will 
choose in this game. This corresponds to the incentive constraints in terms of dominance 
required in the final period T . The inequalities (9) imply that given that all players play 
according to the trigger strategy profile s  from period 2, each player’s one-shot gain 
from deviation in period 1 is less than or equals the future loss from the collapse of their 
implicit collusion plus the monetary amount  that the contract requires her to pay at 
the end of period 1, irrespective of which actions the other agents will choose in period 1. 
This corresponds to the incentive constraints in terms of dominance required in period 1. 
Hence, Theorem 5 implies that the incentive constraints in terms of dominance in the 
initial and finial periods are sufficient for the unique perfect equilibrium property in all 
periods. 

Mr T 1)1( −+

++

M

Efficiency is said to be uniquely sustainable with respect to (  if for every 
sufficiently large T , there exist (  and  such that  is the unique perfect 
equilibrium in Γ  and induces . The following corollary is 

straightforward from Theorem 5. 

),, rMδ
0>
,,( τmT

),τm
v

s
u=

s
),δ )()( *as

 
Corollary 6: Efficiency is uniquely sustainable with respect to  if , and for 

every i , 

),,( rMδ 0>r

N∈

)}()/({max)}()({
1

** auaaunauauM iiiAa

e
ii −≥−

−
+

∈δ
δ . 
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Hence, efficiency is uniquely sustainable with respect to (  irrespective of 

 if , and for every i , 

),, rMδ

0>M 0>r N∈

)}()/({max)}()({
1

** auaaunauau iiiAa

e
ii −≥−

− ∈δ
δ . 
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4. Approximate Efficiency 
 

This section assumes that the interest rate of the asset is zero, i.e., r , and that 
players’ liability in the initial period, M , is so small that the inequities (6) do not 
necessarily hold. Efficiency is said to be approximately sustainable with respect to 

 if for every , and every sufficiently large T , there exists  and a 
perfect equilibrium  in  such that 

0=

(m),,( rMδ 0>ε
(Γ

0> ),τ
s ),,, δτmT

ε≤− )()( *ausv ii  for all i . N∈

 
Theorem 7: Suppose that r , and there exists an infinite sequence of action profiles 

 such that 
0=

∞
=1

)( )( r
ra

(10)  , )}()/({max )1()1( auaauM iiiAa ii

−≥
∈

for every  2≥r ,

(11)  , )}()/({max)}()({ )()(
1

1

)( r
ii

r
iAa

r

h

e
i

hr
i

h auaauauauM
ii

−≥−+
∈

−

=

−∑δ

and 
(12)  . )()(lim *)( auau r

s
=

∞→

Then, efficiency is approximately sustainable with respect to ( . )0,,Mδ

 
Proof: We specify a side payment contract (  as follows. We do not use public 
randomization devices. For every h , let τ  be the period in which 
there exist the first deviants from (  when h  occurs, i.e., 

), ** τm
)(T

))

)( HT ∈
,..., 1()( aa T

))((* Th
)(T

)1))(((* *

)))((( +−≠ ThTaTha ττ , and  for all . )1()( +−= tTata ))((* Tht τ<
When there exist no deviants, i.e., a  for all , let . 
Let  denote the number of the first deviants, i.e., the number of players i  

choosing . For every , and every , let 

)1()( +−= tTat

)1+

},...,1{ Tt ∈

(Th

TTh =))((*τ

)(TH

))((* Thn

(ia τ ))(((* *

)))(( −≠ ThT
iaTh τ i N∈ )∈

M
n

ThnThmi )1
1

1))((())((
*

* −
−

−
=  if , )1))(((* *

)))((( +−≠ ThT
ii aTha ττ

and 

M
n

ThnThmi 1
))(())((

*

−
=++  if . )1))(((* *

)))((( +−= ThT
ii aTha ττ

Note that  satisfies the assumptions in Section 2. We specify a strategy profile 
 as follows. For every , and every , 

),( ** τm
Ss ∈* t ∈{ ,..., }1 T )1()1( −∈− tHth

)1(* ))1(( +−=− tTaths  if  for all , )1()( +−= ττ Taa τ < t

and 



 18 

eaths =− ))1((*  if  for some . )1()( +−≠ ττ Taa τ < t
Note from the equality (12) that when T  is sufficiently large,  is approximated by 

. 
)( *sv

)( *au
Fix , , and h  arbitrarily. If  for 

some , then, according to , player i  always continues choosing  after . 

Since  is a Nash equilibrium in G , it follows that 

Ni∈
t<

e

},...,1{ Tt∈ )1()1( −∈− tHt )1()( +−≠ ττ Taa
e
ia ( −thτ

a

*
is )1

  v  for all . ))1(,/())1(,( ** −≥− thssvths iii ii Ss ∈

Suppose that a  for all . Fix a  arbitrarily. Let  be 

the strategy satisfying that 

)1()( +−= ττ Ta t<τ }/{ )1( +−∈ tT
iii aA is

   ii aths =− ))1(( ,
and for every t , and every h , },...,1{ T∈′ )1()1( −′∈−′′ tHt
   if . ))1(())1(( * −′′=−′′ thsths ii )1()1( −≠−′′ thth

Note that if , then it follows from the inequalities (10) that Tt =
))1(,/())1(,( ** −−− thssvthsv iii  

0})/()({
1

)1( )1()1(
1

≥+−
−

−
=

−

Maauau iiiT

T

δ
δδ . 

Note from the inequalities (11) that if t , then T<
))1(,/())1(,( ** −−− thssvthsv iii

 ∑
−

=

−−
−

+
−
−

=
tT

h

tT
i

h
T

t

auM
1

(
1

({{
1

)1( δ
δ
δδ

0)}()/( )1()1( ≥+− +−+− tT
ii

tT
i auaau

+ − e
i

h au)1 )}()

 . 

Hence, we have proved that  is a perfect equilibrium. *s
Q.E.D. 

 
Note that (  is the sequence of action profiles that players choose on the 

equilibrium path. Here, M  can be so small that the instantaneous payoff vector in the 
final period T , , is very close to the one-shot Nash equilibrium payoff vector 

. However, the switch of action choices from a  to  in period  (slightly) 

strengthens players’ incentive to play more collusively in period , and therefore, the 
instantaneous payoff vector in period T , , could be better than u . By 

recursively using the same arguments, it follows that in the periods that are far from the 
final period, players have incentive to play (almost) fully collusive behavior. 

),..., )1()( aa T

)( )1(au
)( eau )1( ea

T

T

(
1−

1− )( )2(au ))1(a

Efficiency is said to be uniquely and approximately sustainable with respect to 
 if for every , and every sufficiently large T , there exist (  and a 

strategy profile s  such that  is the unique perfect equilibrium in Γ  and it 
satisfies 

),,( rMδ 0>ε 0> ),τm
),, δτs ,( mT

ε≤)− ()( *asvi ui  for all . Ni∈
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Theorem 8: Suppose that r ,  is the unique Nash equilibrium in G , and there 
exists an infinite sequence of action profiles (  such that 

0= ea
∞
=1

)( )r
ra

(13)  , )}/()({max )1(
iiiAa

aauaunM −>
∈

for every  2≥r ,

(14)  , )}/()({max)}()({ )(
1

1

)( r
iiiAa

r

h

e
i

hr
i

h aauaunauauM −>−+
∈

−

=

−∑δ

and the equality (12) holds. Then, efficiency is uniquely and approximately sustainable 
with respect to . )0,,( Mδ

 
Proof: We specify a side payment contract (  as follows. We use public 
randomization devices. Let n  denote the number of players i  satisfying 

. For every h , let  be the first period t  in which there 
exist deviants from (  and the realized public signal  is less than the 

number of the deviants divided by , i.e., 

), **** τm

))T
),(** ta

)(TH
))1(

n

)1( +−≠ tT
ii aa )(T ∈

,...,)( aT

((** hτ
a )(tλ

n
an )),(()(

** τττλ ≥  for all , t<τ

and 

  
n

ttan )),(()(
**

<τλ . 

If there exists no such , let . For every , let t TTh =))((**τ )()( THTh ∈

  M
n

ThThanThmi )
1

1)))(())),((((())((
******

**

−
−

=
ττ  if 

)1))(((** **

)))((( +−≠ ThT
ii aTha ττ , 

and 

M
n

ThThanThmi 1
)))(())),(((())((

******
**

−
=

ττ  if 

)1))(((** **

)))((( +−= ThT
ii aTha ττ . 

Note that (  satisfies the assumptions in Section 2. We specify a strategy profile 
 as follows. For every , and every , 

), **** τm
Ss ∈** },...,1{ Tt∈ )1()1( −∈− tHth

)1(** ))1(( +−=− tT
ii aths  if 

n
an )),(()(

** τττλ >  for all , t<τ

and 
e
ii aths =− ))1((**  if 

n
an )),(()(

** τττλ ≤  for some . t<τ

Let a strategy profile s  be a perfect equilibrium in Γ . Since a  is the 
unique Nash equilibrium in G , it follows that for every i , every t , and 

),,,( **** δτmT
N∈

e

}T,...,1{∈
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every , )1()1( −∈− tHth

ths − ))1((

n
an )),((** ττ

>

1(( Ths −
}1,...,1{ −∈ Tt

},...,1 T+

))1(( −′ths

ea=  whenever 
n

an )),(()(
** τττλ ≤  for some . t<τ

From the inequality (13), it follows that for every h , if )1()1( −∈− THT

)(τλ

T

 for all , then the choices of a  are strictly dominant in period 

, i.e., 

T<τ )1(

  . )1()) a=
Fix  arbitrarily, where we assume that for every i , and 

, 
N∈

{t ∈′ t

   if )1( +′−= tTa
n

an )),(()(
** τττλ >  for all , t′<τ

Fix h  arbitrarily, where we assume )1()1( −∈− tHt

n
an )),(()(

** τττλ >  for all , t<τ

Fix i  and  arbitrarily, where we assume a . Suppose N∈ }/{ )1( +−∈ tTaAa )1( +−≠ tT
ii a

  . aths =− ))1((

Note from the inequalities (14) that 
  v  ))1(,())1(,/( ** −−− thsvthss iii

∑
−

=

−+−−
−

−++
−
−

≥
tT

h

e
i

htT
i

ht
T

t

auauMr
n 1

)1(1
1

)}()({)1[(
)1(

)1( δ
δ
δδ  

0)]/()( )1( >+− +−tT
iii aauau . 

This is a contradiction. Hence, we have proved that  is the unique perfect equilibrium. **s
Q.E.D. 

 
In the next section, we investigate specified partnership games where there exists a 

sequence (  that satisfies the conditions in Theorem 7 or Theorem 8. ,...), )2()1( aa
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5. Partnerships 
 

This section investigates partnership games defined as follows. For every , let 
, and 

Ni∈
]1,0[=iA

  u  for all a  i
ij

ji aaa −= ∑
≠

α)( A∈

where we assume 
  ( . 01)1 >−− αn
Note that there exists the unique one-shot Nash equilibrium , and  
is the minimax payoff vector. Let the efficient action profile be given by , 
where  Pareto-dominates , i.e., 

)0,...,0(=ea )( eau
)1,...,1(* =a

*a ea
)(01)1()( * e

ii aunau =>−−= α  for all i . N∈
From Corollary 2, it follows that efficiency is sustainable with respect to  

if , and 
),,( rMδ

0>r

(15)  
Mn

M
−−

−
≥

α
δ

)1(
1 . 

Since  is the minimax payoff vector, it follows that the inequality (15) 
is a necessary condition for the existence of a side payment contract  and a 
perfect equilibrium payoff vector other than  in . Moreover, from 
the inequality (15), it follows that efficiency is sustainable with respect to  
irrespective of  if , and 

)0,...,0()( =eau

M

),( τm

(δ
)( eau ),,,( δτmTΓ

),, rM
0>r

(16)  
α

δ
)1(

1
−

≥
n

, 

where the inequality (16) is a necessary condition under which there exist  and a 
perfect equilibrium payoff vector other than  in Γ , irrespective of 

. We must note that the inequality (16) is a necessary condition under which there 
exists a perfect equilibrium payoff vector other than  in the infinitely repeated 
game with no side payments. 

),( τm
)( eau ),,,( δτmT

)ea
M

(u

 
Proposition 9: In the partnership game, there exists an infinite sequence of action 
profile  that satisfies the inequalities (10) and (11) and the equality (12) if 
the inequality (15) holds. 

,...),( )2()1( aa

 
Proof: We specify  as follows. For every , let ,...),( )2()1( aa Ni∈
  a . Mi =)1(

For every , and every , let Ni∈ 2≥r

  a  if , ∑
−

=

−+=
1

1

)()( )(
r

h

hr
i

hr
i auM δ 1)(

1

1

)( <+ ∑
−

=

−
r

h

hr
i

h auM δ

and 

  a  if . 1)( =r
i 1)(

1

1

)( ≥+ ∑
−

=

−
r

h

hr
i

h auM δ
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Note that the specified  satisfies the inequalities (10) and (11). Suppose 
that the inequality (12) does not hold. Then, it must hold that 

,...),( )2()1( aa

1)(
1

1

)( <+ ∑
−

=

−
r

h

hr
i

h auM δ  for all r , 

and therefore, 

∑
−

=

−+=
1

1

)()( )(
r

h

hr
i

hr
i auMa δ  for all r . 

Since  is non-decreasing with respect to , there exists  such that 
 where b . Note 

)(r
ia

br =)

r Rbi ∈

ai
r ∞→

(lim 1<i

  
δ

δαδ
−
−−

=∑
−

=

−

∞→ 1
)1)1(()(

1

1

)( i
r

h

hr
i

h

r

bnaulim , 

and therefore, it must hold that 

δ
δα

−
−−

+=
1

)1)1(( i
i

bnMb . 

Since , it follows that 1<b

  
Mn

M
Mbn

Mb

i

i

−−
−

<
−−

−
=

αα
δ

)1(
1

)1(
, 

which is a contradiction because of the inequality (15). Hence, we have proved 
. 1)1()(lim )( −−=

∞→
αnau r

i
s

Q.E.D. 
 

The following theorem is straightforward from Theorems 7 and 8, and Proposition 
9. 
 
Theorem 10: Efficiency is approximately sustainable with respect to  if the 
inequality (15) holds. Efficiency is approximately sustainable with respect to  
irrespective of  if the inequality (16) holds. 

)0,,( Mδ
(δ )0,,M

M
 
Hence, it follows from Theorem 10, together with the arguments above, that 

approximate efficient sustainability when  holds under the same condition as 
efficient sustainability when . From Corollary 6, it follows that efficiency is 
uniquely sustainable with respect to  if , and 

0=r

)r
0>r

,,( Mδ 0>r

(17)  
nMn

nM
)1(1)1(

)1(
−+−−

−
>

α
δ . 

Note that the right hand side of the inequality (17) converges zero as  increases. This 
implies that when the gains from the increase of the other players’ effort levels are 
sufficiently large, efficiency is uniquely sustainable, even if the discount factor is close 
to zero. Moreover, from the inequalities (17), it follows that efficiency is uniquely 
sustainable with respect to  irrespective of  if , and 

α

),,( rMδ M 0>r

(18)  
)1)(1( +−

>
α

δ
n

n . 
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Proposition 11: In the partnership game, there exists an infinite sequence of action 
profile  that satisfies the inequalities (13) and (14) and the equality (12) if 
the inequality (17) holds 

,...),( )2()1( aa

 
Proof: Choose  arbitrarily, which is sufficiently close to . From the 
inequality (17), it follows that 

),0(~ MM ∈ M

(19)  
nMn

nM
)~1(1)1(

)~1(
−+−−

−
>

α
δ . 

 
We specify  as follows. For every , let ,...),( )2()1( aa

~
Ni∈

  a . Mi
)1( =

For every , and every , let Ni∈ 2≥r

  a  if , ∑
−

=

−+=
1

1

)()( )(~ r

h

hsr
i

hr
i auM δ 1)(~ 1

1

)( <+ ∑
−

=

−
r

h

hr
i

h auM δ

and 

  a  if . 1)( =r
i 1)(~ 1

1

)( ≥+ ∑
−

=

−
r

h

hr
i

h auM δ

Note that the specified  satisfies the inequalities (13) and (14). Suppose 
that the inequality (12) does not hold. Then, it must hold that 

,...),( )2()1( aa

1)(~ 1

1

)( <+ ∑
−

=

−
r

h

hr
i

h auM δ  for all r , 

and therefore, 

∑
−

=

−+=
1

1

)()( )(~ r

h

hr
i

hr
i auMa δ  for all r . 

Since  is non-decreasing with respect to , there exists  such that 
 where b . Note 

)(r
ia

br =)

r Rbi ∈

ai
r ∞→

(lim 1<i

  
δ

δαδ
−
−−

=∑
−

=

−

∞→ 1
)1)1(()(

1

1

)( i
r

h

hr
i

h

r

bnaulim , 

and therefore, it must hold that 

δ
δα

−
−−

+=
1

)1)1((~ i
i

bnMb . 

Since , it follows that 1<b

  
Mn

M
Mbn

Mb

i

i ~)1(

~1
~)1(

~

−−
−

<
−−

−
=

αα
δ , 

which is a contradiction because of the inequality (19). Hence, we have proved 
. 1)1()(lim )( −−=

∞→
αnau r

i
s

Q.E.D. 
 

The following theorem is straightforward from Theorems 8 and 9, and Proposition 
10. 
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Theorem 12: Efficiency is uniquely and approximately sustainable with respect to 

 if the inequality (17) holds. Efficiency is uniquely and approximately 
sustainable with respect to  irrespective of  if the inequality (18) holds. 

)0,,( Mδ
)0,,( Mδ M

 
Hence, it follows that unique and approximate efficient sustainability when  

holds under the same condition as unique efficient sustainability when . 
0=r

0>r
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6. Renegotiation-Proofness 
 

This section reconsiders the partnership games with two players, i.e., . We 
confine our attention to the class of side payment contracts (  satisfying that 
transfers are made only in the final period, i.e., 

2=n
),τm

   for all h . TTh =))((τ )()( THT ∈
Hence, we will simply write  instead of (  for a side payment contract in the 
class above. 

m ),τm

Fix  arbitrarily. For every t , let  denote the set of 
combinations of a side payment contract and a strategy profile  satisfying that 
for every , every , and every , 

),,( rT δ

,...,{t∈τ

},...,1{ T∈

)1( −τ

)(tZ
(

i N∈
), sm

}T )1( ∈−τ Hh
));1(,/());1(,( mhssvmhsv iii −′≥− ττ  for all , ′ ∈s Si i

and for every , and every , )()( THTh ∈′ i N∈
   whenever  and a  0))(( =′ Thmi )1()1( −=−′ thth ))1(()( −′=′ ττ hs

for all , },...,{ Tt∈τ
where we denote h . Note that  belongs to 

 if and only if  satisfies the perfect equilibrium property in  after 
period  and no players are fined when all players conform to  after period t . 

))(),(),...,1(),1(()( τλτλτ ′′′′=′ aa
s

),( sm
,(TΓ)(tZ ),, rm δ

t s
We allow players to breach and renegotiate the contract in any period by replacing 

the contract with any contract that belongs to , if they unanimously want to do so. 
A combination of a side payment contract and a strategy profile  is said to be 
renegotiation-proof if for every , and every , there exist 
no  such that v , and 

)(tZ

,(sv≠

),( sm
1( −tH},...,1{ Tt∈

));1(, mth ′−
))1( ∈−th

));1 m)(),( tZsm ∈′′ (( ths −′
));1(,());1(,( mthsvmthsv −≥′−′ . 

Note that  is renegotiation-proof if for every , and every 
,  belongs to the Pareto frontier of the payoff vector 

set, i.e.,  is either a convex combination of  and (  
or a convex combination of  and . The following theorem states 
that when the interest rate is positive, efficient sustainability is robust to 
renegotiation-proofness on the terms of explicit contracting as well as implicit 
agreements, even if players’ liability is severely limited in the initial period. 

),( sm
)1( −t

(, ths −

},...,1{ Tt∈

),1( α−
)1( ∈− Hth

(v
)),1(,( mthsv −

)), m
)1,( −α

1 )1,1 −− αα
)1,1( −− αα

 
Theorem 13: In the partnership game with two players, there exists  that is 
renegotiation-proof such that  is a perfect equilibrium in  and 

 if 

),( sm
,,, m δs )( rTΓ

)();( *aumsv =
(20)  , 1)1( 1 ≥+ − Mr T

and 
(21)  . 1≥δα
 
Proof: We specify a ‘tit-for-tat’ strategy profile  in ways that Ss ∈~

  ~ , ))1,1(())0(( * == ahs
and for every , every , and every , },...,2{ Tt∈ )1()1( −∈− tHth }2,1{∈i
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0))1((~ =−ths  if  and , ))2((~)1( −≠− thsta jj ))2((~)1( −=− thsta ii

and 
1))1((~ =−thsi  otherwise, 

where . Note . We specify  in ways that for every , 
and , 

ij ≠
i N∈

)()~( *ausv = m~ )()( THTh ∈

MrThm T
i

1)1())((~ −+−=
~

 if  and ))1((~)( −≠ ThsTa ii

))1(()( −= ThsTa jj , 

MrThm T
i

1)1())((~ −+=
~

 if  and ))1((~)( −= ThsTa ii

))1(()( −≠ ThsTa jj , 
and 

0))((~ =Thmi  otherwise. 
Hence, each player will be fined if and only if she deviates in the final period. Note that 

 satisfies the assumption in Section 2, and . For every , 
and every h , the future payoff vector induced by (  after 

, , belongs to the Pareto frontier of the payoff vector set, i.e., it 
is either a convex combination of  and  or a convex combination 
of  and ( . This implies that  is renegotiation-proof. 

m~
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Note from the inequality (20) that for every , and , Ni∈ )1()1( −∈− THTh
  . 01)1()~);1(,/~()~);1(,~( 1 ≥−−≥−−− − MmThssvmThsv T

iii δ
Note from the inequality (21) that for every i , every , every 

, and every , if  for all 
 and all , then 
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Hence,  is a perfect equilibrium in . s~ ),,,( rmT δΓ

Q.E.D. 
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7. Conclusion 
 

This paper investigated finitely repeated games with perfect monitoring, where at 
the beginning of the initial period, players can make a budget-balancing side payment 
contract. We assumed that the discount factor may be far less than unity, but is greater 
than or equals the minimal value, above which, efficiency is sustainable by using trigger 
strategies in standard models of infinitely repeated game. We assumed that players’ 
liability may be severely limited in the initial period, and that the history of play may 
not necessarily be verifiable. We showed that whenever the interest rate of the 
contractible asset is positive then efficiency is sustainable. We showed that even if the 
interest rate is zero, efficiency is approximately sustainable in the partnership game. 
Next, we assumed that the discount factor is greater than the minimal value but still far 
less than unity, and that there exists the unique one-shot Nash equilibrium. On these 
assumptions, we showed that efficiency is even uniquely sustainable when the interest 
rate is positive, and also showed that efficiency is uniquely and approximately 
sustainable in the partnership game, even if the interest rate is zero. Finally, we showed 
that in the partnership game with two players and with positive interest rate, efficient 
sustainability is robust to renegotiation-proofness on the terms of explicit contracting as 
well as implicit agreements. 

There are open questions about renegotiation proofness such as whether 
approximate efficiency is robust to renegotiation-proofness when the interest rate is zero, 
whether we can extend the possibility result shown in Section 6 to the three or more 
player cases, and so on. It would be an important future research to characterize the 
class of renegotiation-proof combinations of a side payment contract and a perfect 
equilibrium in the more general games. 
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