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1 Introduction

Consider the canonical form of the multivariate normal linear model in which the p ×m
random matrixX and the p×p random symmetric matrix S are independently distributed
as Np,m(Ξ,Σ, Im) andWp(Σ, n), respectively, where we follow the notation of Srivastava
and Khatri (1979, p.54, 76). We shall assume that the covariance matrix Σ is positive
definite (p.d.) and that the sample size n ≥ p, and thus S is positive definite with
probability one, see Stein (1969). In this paper, we consider the problem of estimating
the covariance matrix Σ and the generalized variance |Σ|, the determinant of the matrix
Σ under the Stein loss function

L(Σ̂,Σ) = tr Σ̂Σ−1 − |Σ̂Σ−1| − p, (1.1)

where Σ̂ is the estimator of Σ and every estimator is evaluated in terms of the risk
functions R(ω, Σ̂) = Eω[L(Σ̂,Σ)], ω = (Σ,Ξ).

Beginning with the work of James and Stein (1961), where they showed that the
estimator

Σ̂
JS
= TDT t, (1.2)

where S = TT t, T is a lower triangular matrix with positive diagonal elements (and
hence unique), and

D = diag (d1, . . . , dp), di = (n+ p+ 1 − 2i)−1, i = 1, . . . , p, (1.3)

dominates the uniformly minimum variance unbiased estimator Σ̂
UB

= n−1S, many

estimators have been proposed in the literature dominating Σ̂
UB
, see Stein (1977) and

Haff (1980) among others.

The estimators mentioned above did not use the information available in the observa-
tion matrixX while Stein (1964) has shown in the univariate case, p = 1, that a truncated
estimator that utilizes the information in the sample mean dominates the uniformly min-
imum variance unbiased estimator of the variance σ2. Attempts in this direction utilizing
the information contained in the sample mean were first made by Shorrock and Zidek
(1976) and Sinha (1976) who provided minimax estimators for the generalized variance
using the information available in the observation matrix X.

Sinha and Ghosh (1987) provided a truncated estimator of the covariance matrix Σ
utilizing the information contained in the observation matrix X . Hara (1999) recently
showed that Sinha and Ghosh’s estimator is dominated by

Σ̂
HR

= S1/2Qdiag (φ1, . . . , φp)Q
tS1/2 (1.4)

for

φi =

 min{n−1, (n+m)−1(1 + γi)} if γi > 0

n−1 if γi = 0,
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where Q is an orthogonal matrix such that QtS−1/2XXtS−1/2Q = diag (γ1, . . . , γp).
Dominance results for m = 1 were earlier given by Perron (1990) and Kubokawa et al .
(1992). However, none of these estimators were shown to dominate the initial James-Stein

minimax estimator Σ̂
JS
.

Thus, our aim is to obtain an estimator that dominates Σ̂
JS
when we utilize both S

and X in estimation of Σ. For this purpose, we introduce a new method. This method is
applied in Section 3 not only to construct a new form of an improved estimator of |Σ| but
also to give another proof of the result of Shorrock and Zidek (1976) and Sinha (1976).
When the rank of X, ρ(X) = m ≥ p, another type of minimax improved estimators
motivated by Srivastava and Kubokawa (1999) is provided in Subsection 2.2. Monte
Carlo simulations are carried out in Section 4 to compare risk behaviors of the proposed
estimators.

2 Estimation of the Covariance Matrix

2.1 Improvements on the James-Stein minimax estimator

Consider the problem of estimating the covariance matrix Σ based on (S,X) relative
to the Stein loss function. Every estimator is evaluated in terms of the risk function
R(ω, Σ̂) = Eω[L(Σ̂,Σ)], where ω = (Σ,Ξ).

Let G+
T be the triangular group consisting of p × p lower triangular matrices with

positive diagonal elements. Let T = (tij) ∈ G+
T such that S = TT t. For constructing an

estimator improving on the James-Stein minimax estimator (1.2), define an m× p matrix
Y and an m× (p− j + 1) matrix Y j by

Y =
(
T−1X

)t
= (y1, . . . ,yp) = (y1, . . . ,yj−1,Y j), Y j = (yj, . . . ,yp),

for j = 2, . . . , p. Also for j = 1, . . . , p, define inductively an m×m matrix C j based on
(y1, . . . ,yj−1) by

Cj = Cj−1 − (1 + yt
j−1C j−1yj−1)

−1Cj−1yj−1y
t
j−1Cj−1 (2.1)

where C1 = Im. Then it can be shown that

|Ip + Y
tY | =

p∏
i=1

(1 + yt
iCiyi). (2.2)

Using the statistics yt
iCiyi’s, we propose a new estimator given by

Σ̂
TR
= TGT t, (2.3)

where G = G(y1, . . . ,yp) = diag (g1, . . . , gp) for

gi = gi(y1, . . . ,y i) = min

{
1

n+ p + 1− 2i,
1 + yt

iCiyi

n+m+ p + 1− 2i
}
.
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Theorem 1. The truncated estimator Σ̂
TR

dominates the James-Stein minimax es-
timator Σ̂

JS
relative to the Stein loss (1.1).

Proof. For the sake of convenience, let

tj−1 = (tj,j−1, . . . , tp,j−1)
t,

T j =


tjj 0tj+1,j tj+1,j+1
...

...
. . .

tpj tp,j+1 · · · tpp

 ,

for j = 2, . . . , p. T 1 corresponds to T . For calculating the risk for the Stein loss function
given in (1.1), we may assume that Σ = Ip without any loss of generality. The risk
difference of the two estimators is expressed as

R(ω; Σ̂
JS
)−R(ω; Σ̂

TR
) = E

[
tr (D −G)T tT − log |DG−1|

]
=

p∑
i=1

∆i,

where
∆i = E

[{
(di − d∗i aii)(t

2
ii + t

t
iti)− log di/(d

∗
i aii)

}
I(di ≥ d∗i aii)

]
, (2.4)

for aii = 1 + y
t
iC iyi and d∗i = (n+m+ p+ 1 − 2i)−1.

For the proof of Theorem 1, it is sufficient to show that ∆i ≥ 0 for i = 1, . . . , p. We
shall first show that ∆1 ≥ 0. For this purpose, we write the joint density function of
(T ,Y ) as

c0(Ξ)
p∏

i=1

tn+m−i
ii etr

[
−2−1

{
T (Ip + Y

tY )T t − 2TY tΞ t
}]

, (2.5)

which is obtained by making the transformations S → TT t and X → Y t = T−1X with
the Jacobians 2p ∏p

i=1 t
p−i+1
ii and |T |m respectively, where c0(Ξ) is a normalizing function.

Let us decompose Ip + Y
tY and Y tΞ t as

Ip + Y
tY = Ip +

(
yt

1

Y t
2

)
(y1,Y 2) =

(
a11 at

21

a21 A22

)
,

Y tΞ t =

(
yt

1

Y t
2

)
(ξ1,Ξ2) =

(
θ11 θ12

θ21 Θ22

)
,

where a11 = 1 + yt
1y1, a21 = Y t

2y1, A22 = Ip + Y t
2Y 2, θ11 = yt

1ξ1, θ12 = yt
1Ξ2,

θ21 = Y t
2ξ1 and Θ22 = Y t

2Ξ2. Then we can write the exponent in (2.5) as

tr
{
T (Ip + Y

tY )T t − 2TY tΞ t
}

= tr

{(
t11 0
t1 T 2

)(
a11 at

21

a21 A22

)(
t11 tt1
0 T t

2

)
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−2
(

t11 0
t1 T 2

)(
θ11 θ12

θ21 Θ22

)}
=

(
a11t

2
11 − 2θ11t11

)
+
(
a11t

t
1t1 + 2t

t
1(T 2a21 − θt

12)
)

+
(
trT 2A22T

t
2 − 2trT 2Θ22

)
=

(
a11t

2
11 − 2θ11t11

)
+ a11||t1 + a−1

11 (T 2a21 − θt
12)||2 − a−1

11 θ12θ
t
12

+trT 2(A22 − a−1
11 a21a

t
21)T

t
2 − 2trT 2(Θ22 − a−1

11 a21θ12) (2.6)

=
(
a11t

2
11 − 2θ11t11

)
+ a11||t1 + z1||2 + h1(y1,Y 2,T 2),

where ||u||2 = utu for a column vector u, z1 = a−1
11 (T 2Y

t
2 −Ξ t

2)y1,

h1(y1,Y 2,T 2) = trT 2(Ip−1 + Y
t
2C2Y 2)T

t
2 − 2trT 2Y

t
2C2Ξ2 − a−1

11 y
t
1Ξ2Ξ

t
2y1,

and C2 is defined in (2.1).

We are now ready to prove that ∆1 ≥ 0. Combining (2.4), (2.5) and (2.6) gives that

∆1 =
∫
· · ·

∫ {
(d1 − d∗1a11)(t

2
11 + t

t
1t1)− log d1/(d

∗
1a11)

}
I(d1 ≥ d∗1a11)

×c0(Ξ)(
p∏

i=1

tn+m−i
ii )eθ11t11−a11t211/2−a11||t1+z1||2/2e−h1(y1,Y 2,T 2)/2

×dt11dt1dT 2dy1dY 2. (2.7)

From the middle expression in the last line of the equation (2.6), and the joint density in
(2.5), it follows from that given y1, Y 2 and T 2, w1 = a11t

t
1t1 is distributed as noncentral

chisquare with (p− 1) degrees of freedom and noncentrality parameter a11z
t
1z1. We shall

denote this conditional density of w1 by fp−1(w1; a11z
t
1z1). Hence ∆1 is rewriten as

∆1 =
∫

· · ·
∫ {

(d1 − d∗1a11)(t
2
11 + w1)− log d1/(d

∗
1a11)

}
I(d1 ≥ d∗1a11)

×c1(Ξ, a11)(
p∏

i=1

tn+m−i
ii )eθ11t11−a11t211/2e−h1(y1,Y 2,T 2)/2

×fp−1(w1; a11z
t
1z1)dt11dw1dT 2dy1dY 2 (2.8)

for a positive function c1(Ξ, a11). Note that a11, z
t
1z1 and h1(y1,Y 2,T 2) do not change

under the transformation y1 → −y1, while θ11 changes to −θ11 under the same transfor-
mation since θ11 = y

t
1ξ1. Using this argument, we can rewrite ∆1 as

∆1 =
∫

· · ·
∫ {

(d1 − d∗1a11)(t
2
11 + w1)− log d1/(d

∗
1a11)

}
I(d1 ≥ d∗1a11)

×c1(Ξ, a11)(
p∏

i=1

tn+m−i
ii )

1

2

(
eθ11t11 + e−θ11t11

)
e−a11t211/2e−h1(y1,Y 2,T 2)/2

×fp−1(w1; a11z
t
1z1)dt11dw1dT 2dy1dY 2 (2.9)
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We shall evaluate (2.9) in two stages, first as a conditional expectation given y1,
Y 2 and T 2. In what follows, we shall only write as conditional expectation without
mentioning the above random vector and matrices. Let conditionally v1 be distributed as
χ2

n+m and is independently distributed of w1 defined above. Then ∆1 can be expressed as

∆1 = c∗1(Ξ)E [E [k1(v1, w1)g1(v1)|y1,Y 2,T 2]] (2.10)

where c∗1(Ξ) is a constant,

k1(v1, w1) =

{
(d1/a11 − d∗1) (v1 + w1)− log d1

d∗1a11

}
I(d1 ≥ d∗1a11),

g1(v1) = exp{θ11

√
v1/a11}+ exp{−θ11

√
v1/a11}.

Since E[w1|y1,Y 2,T 2] = p− 1+ a11z
t
1z1 ≥ p− 1, the conditional expectation in (2.10) is

greater than or equal to

E [k1(v1, p− 1)g1(v1)|y1,Y 2,T 2] . (2.11)

Noting that both functions k1(v1, p − 1) and g1(v1) are increasing in v1, we see from
Theorem 1.10.5 of Srivastava and Khatri (1979) that

E [k1(v1, p − 1)g1(v1)|y1,Y 2,T 2]

≥ E [k1(v1, p − 1)|y1,Y 2,T 2]× E [g1(v1)|y1,Y 2,T 2] . (2.12)

Since v1 ∼ χ2
n+m conditionally, we have on the set {d1 ≥ d∗1a11},

E [k1(v1, p − 1)|y1,Y 2,T 2] = (d1/a11 − d∗1) (n+m+ p− 1) − log d1

d∗1a11

=
d1

d∗1a11
− log d1

d∗1a11
− 1 ≥ 0. (2.13)

Combining (2.10), (2.11), (2.12) and (2.13) shows that ∆1 ≥ 0. For an alternative proof,
see Kubokawa and Srivastava (1999).

Next we shall prove that ∆i ≥ 0 for i = 2, . . . , p. To employ the same arguments as
in the above proof, we need to verify that for i = 2, . . . , p− 1,

tr
{
T (Ip + Y

tY )T t − 2TY tΞt
}

(2.14)

=
i∑

j=1

{
ajjt

2
jj − 2yt

jCjξjtjj + ajj ||tj + zj||2 − a−1
jj y

t
jCjΞj+1Ξ

t
j+1Cjyj

}
+trT i+1

(
Ip−i + Y

t
i+1Ci+1Y i+1

)
T t

i+1 − 2trT i+1Y
t
i+1Ci+1Ξ i+1,
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where aii = 1 + yt
iCiyi, zi = a−1

ii

(
T i+1Y

t
i+1 −Ξt

i+1

)
Ciyi and Ξ

t = (ξ1, . . . , ξ i,Ξ i+1)

for column vectors ξi’s. The same arguments as in (2.6) are used to check the expression
(2.14). In fact, we observe that

trT i

(
Ip−i+1 + Y

t
iCiY i

)
T t

i − 2trT iY
t
iCiΞ i

= tr

{(
tii 0
ti T i+1

)(
aii at

i+1,i

ai+1,i Ai+1,i+1

)(
tii tti
0 T t

i+1

)

−2
(

tii 0
ti T i+1

)(
θii θi,i+1

θi+1,i Θi+1,i+1

)}
=

(
aiit

2
ii − 2θiitii

)
+ aii||ti + a−1

ii (T i+1ai+1,i − θt
i,i+1)||2 − a−1

ii θi,i+1θ
t
i,i+1

+trT i+1(Ai+1,i+1 − a−1
ii ai+1,ia

t
i+1,i)T

t
i+1

−2trT i+1(Θi+1,i+1 − a−1
ii ai+1,iθi,i+1)

=
(
aiit

2
ii − 2yt

iCiξitii
)
+ aii||ti + zi||2 − a−1

ii y
t
iC iΞi+1Ξ

t
i+1Ciyi

+trT i+1

(
Ip−i + Y

t
i+1

(
C i − a−1

ii Ciyiy
t
iCi

)
Y i+1

)
T t

i+1

−2trT i+1Y
t
i+1

(
Ci − a−1

ii Ciyiy
t
iC i

)
Ξi+1,

where ai+1,i = Y t
i+1Ciyi, Ai+1,i+1 = Ip−i+Y

t
i+1CiY i+1, θii = y

t
iC iξi, θi,i+1 = yt

iCiΞ i+1

and Θi+1,i+1 = Y t
i+1CiΞi+1. Hence, the left side of the equation (2.14) is equal to the

right side of that equation.

Using the expression (2.14), we can write ∆i given by (2.4) as

∆i =
∫

· · ·
∫
ki(aiit

2
ii, aiit

t
iti)

×c0(Ξ)(
p∏

j=1

tn+m−j
jj ) exp

− i∑
j=1

{
ajjt

2
jj − 2θjjtjj + ajj‖tj + zj‖2

}
/2


×e−hi/2(

i∏
j=1

dtjjdtjdyj)dY i+1dT i+1, (2.15)

where

ki(x, y) =

{
(di/aii − d∗i ) (x+ y)− log di

d∗i aii

}
I(di ≥ d∗i aii),

hi = hi(y1, . . . ,y i,Y i+1,T i+1)

= −
i∑

j=1

{
a−1

jj y
t
jCjΞj+1Ξ

t
j+1Cjyj

}
(2.16)

+trT i+1

(
Ip−i + Y

t
i+1C i+1Y i+1

)
T t

i+1 − 2trT i+1Y
t
i+1Ci+1Ξ i+1.

The same arguments as in the proof of ∆1 ≥ 0 can be used to evaluate ∆i. Note
that given Y and T j+1, tj has Np−j(zj , a

−1
jj ). Integrating out the integrals in (2.15) with
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respect to tj and tjj inductively for j = 1, . . . , i− 1, we see that
∆i =

∫
· · ·

∫
ki(aiit

2
ii, aiit

t
iti)

×ci(Ξ,y1, . . . ,y i−1)(
p∏

j=i

tn+m−j
jj )eθiitii−aiit

2
ii/2−aii‖ti+zi‖2/2

×e−hi/2dtiidti(
i∏

j=1

dyj)dY i+1dT i+1, (2.17)

for a function ci(Ξ,y1, . . . ,y i−1). It is noted that given Y and T i+1, wi = aiit
t
iti is

distributed as noncentral chisquare with (p − i) degrees of freedom and noncentrality
parameter aiiz

t
izi. Also note that aii, z

t
izi and hi(y1, . . . ,y i,Y i+1,T i+1) do not change

under the transformation yi → −yi, while θii changes to −θii under the same transfor-
mation. Hence ∆i is rewriten as

∆i =
∫

· · ·
∫
ki(aiit

2
ii, wi)

×ci(Ξ,y1, . . . ,y i−1)(
p∏

j=i

tn+m−j
jj )

1

2

(
eθiitii + e−θiitii

)
e−aiit2ii/2

×e−hi/2fp−i(wi; aiiz
t
izi)dtiidwi(

i∏
j=1

dyj)dY i+1dT i+1 (2.18)

where fp−i(wi; aiiz
t
izi) is a conditional density of wi. Finally, ∆i can be expressed as

∆i = c∗i (Ξ)E
[
E
[
ki(vi, wi)×

(
eθii

√
vi/aii + e−θii

√
vi/aii

)∣∣∣Y ,T i+1

]]
, (2.19)

where c∗i (Ξ) is a constant and vi is a random variable such that given Y and T i+1, vi is
conditionally independent of wi and conditionally vi ∼ χ2

n+m−i+1. The same arguments
as in (2.11), (2.12) and (2.13) are used to establish that ∆i ≥ 0. Therefore the proof of
Theorem 1 is complete. ✷✷

2.2 Improvements on scale equivariant minimax estimators

It is known that the James-Stein minimax estimator treated in the previous subsection
has a drawback that it depends on the coordinate system. When the rank of the p ×m
matrixX, ρ(X) = m ≥ p, then we show in this subsection that it is possible to construct
truncated equivariant minimax estimators of Σ. In this subsection, we shall assume that
m ≥ p.

We consider the following equivariant estimators under a scale transformation:

Σ̂(H tASAH,H tAXO) =H tAΣ̂(S,X)AH, (2.20)

for any H ∈ O(p), any O ∈ O(m) and any p × p nonsingular symmetric matrix A,
where O(p) is the group of p × p orthogonal matrices. Then it can be seen that (2.20) is
equivalent to

Σ̂(S,X) = (XX t)1/2HΨ(H tFH)H t(XXt)1/2, (2.21)
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for any H ∈ O(p), where F = (XXt)−1/2S(XX t)−1/2, and (XXt)1/2 is a symmetric
matrix such that (XX t) = ((XXt)1/2)2. Let P be an orthogonal p× p matrix such that

P t(XXt)−1/2S(XX t)−1/2P = Λ = diag (λ1, . . . , λp)

with λ1 ≥ λ2 ≥ . . . ≥ λp. Then the estimator (2.21) can be expressed by

Σ̂(Ψ) = (XX t)1/2PΨ(Λ)P t(XXt)1/2 (2.22)

for
Ψ (Λ) = diag (ψ1(Λ), . . . , ψp(Λ)),

where ψi(Λ)’s are non-negative functions of Λ. The diagonalization of Ψ(Λ) follows
from the requirement that the value of Ψ(Λ) = εΨ (εΛε)ε remains unchanged for any
ε = diag (±1, . . . ,±1). This type of estimators is motivated by Srivastava and Kubokawa
(1999). We call them scale equivariant in this paper.

For given estimator Σ̂(Ψ), we define a truncation rule [Ψ(Λ)]TR by

[Ψ(Λ)]TR = diag (ψTR
1 (Λ), . . . , ψTR

p (Λ)), (2.23)

ψTR
i (Λ) = min

{
ψi(Λ),

λi + 1

n+m

}
, i = 1, . . . , p,

which gives the corresponding truncated estimator of the form

Σ̂([Ψ ]TR) = (XXt)1/2Pdiag (ψTR
1 (Λ), . . . , ψTR

p (Λ))P t(XXt)1/2. (2.24)

Then we get the following general dominance result which will be proved later.

Theorem 2. The truncated estimator Σ̂([Ψ ]TR) dominates the scale equivariant es-

timator Σ̂(Ψ) relative to the Stein loss (1.1) if P
[
[Ψ(Λ)]TR �= Ψ(Λ)

]
> 0 at some ω.

It is interesting to show that Σ̂(Ψ ) is minimax under the same conditions on Ψ as for
the minimaxity of an orthogonally equivariant estimators based on S only, given by

Σ̃(Ψ ) =RΨ(L∗)Rt, (2.25)

where R is an orthogonal matrix such that S = RL∗Rt and L∗ = diag ('∗1, . . . , '
∗
p) for

eigenvalues '∗1 ≥ . . . ≥ '∗p.

Proposition 1.
(1) If the orthogonally equivariant estimator Σ̃(Ψ ) is minimax, then for the same

function Ψ , Σ̂(Ψ ) is minimax and scale equivariant one improving on Σ̂
JS

relative to the
Stein loss (1.1).

(2) If P [ψi(Λ) < ψj(Λ)] > 0 for some i < j, then Σ̂(ΨO) dominates Σ̂(Ψ ), where
ΨO(Λ) = diag (ψO

1 (Λ), . . . , ψ
O
p (Λ)) majorizes (ψ1(Λ), . . . , ψp(Λ)), that is,

∑j
i=1 ψ

O
i ≥∑j

i=1 ψi for 1 ≤ j ≤ p− 1 and
∑p

i=1 ψ
O
i =

∑p
i=1 ψi.

9



Proof. Recall that F = (XX t)−1/2S(XX t)−1/2 = PΛP t and that S ∼ Wp(n, Ip).
Then it is seen that the conditional distribution of F given X has Wp(n,Σ∗) for Σ∗ =
(XXt)−1. Then the risk function of Σ̂(Ψ) is represented by

R(ω, Σ̂(Ψ)) = EX
[
EF |X[trPΨ(Λ)P tΣ−1

∗ − log |PΨ (Λ)P tΣ−1
∗ | − p

∣∣∣X]] , (2.26)

so that givenX, conditionally PΨP t corresponds to the orthogonally invariant estimator
Σ̃(Ψ) of Σ∗ with S ∼ W(n,Σ∗). Hence the minimaxity of Σ̃(Ψ ) implies the minimaxity
of Σ̂(Ψ), which proves the part (1). The part (2) follows from (2.26) and the results of
Sheena and Takemura (1992). ✷✷

Combining Theorem 2 and Proposition 1 gives the following.

Proposition 2. If an orthogonally equivariant estimator Σ̃(Ψ) is minimax, then
the truncated estimator Σ̂([Ψ ]TR) is scale-equivariant, minimax and improving on Σ̂(Ψ )
relative to the Stein loss (1.1).

It should be noted that Proposition 2 does not imply the dominance of Σ̂([Ψ ]TR) over
Σ̃(Ψ), but states the dominance of Σ̂([Ψ ]TR) over Σ̂(Ψ). Although Σ̂(Ψ ) is not identical
to Σ̃(Ψ ), if Σ̃(Ψ ) is a superior minimax estimator, Σ̂(Ψ) inherits the same good risk
properties with minimaxity and improvement. Proposition 2 states that the minimax
estimator can be further improved on by Σ̂([Ψ ]TR) by employing the information in X.

From Proposition 1, we can obtain some scale equivariant and minimax estima-
tors by using the results derived previously for the estimation of Σ. Of these, the

Stein type scale equivariant minimax estimator is given by Σ̂
S
= Σ̂(ΨS) for ΨS(Λ) =

diag (d1λ1, . . . , dpλp). The minimaxity of Σ̂
S
follows from the result of Dey and Srinivasan

(1985). Applying the truncation rule (2.23) to ΨS(Λ) yields the minimax estimator

Σ̂([ΨS]TR) for [ΨS]TR = diag

(
min

{
λi

n+ p + 1− 2i,
λi + 1

n+m

}
, i = 1, . . . , p

)
,

(2.27)

which improves on the Stein type scale equivariant minimax estimator Σ̂
S
. The scale

equivariant minimax estimators based on estimators of Takemura (1984), Perron (1992)
and Sheena and Takemura (1992) and their improved truncated estimators can also be
derived, but the details are omitted from this paper; the reader is referred to Kubokawa
and Srivastava (1999) for details.

The Haff type scale equivariant estimator is given by

Σ̂
H
=
1

n

(
S +

a0

trS−1XXtXXt
)
. (2.28)

From the result of Haff (1980), it can be verified that Σ̂
H
dominates the unbiased esti-

mator Σ̂
UB

when 0 < a0 ≤ 2(p − 1)/n. Σ̂
H
is expressed as Σ̂

H
= Σ̂(ΨH) by letting

10



ΨH = n−1Λ+ a0(trΛ
−1)−1I. Applying the truncation rule to ΨH yields the estimator

Σ̂([ΨH ]TR) for [ΨH ]TR = diag

(
min

{
λi

n
+

a0

trΛ−1 ,
λi + 1

n+m

}
, i = 1, . . . , p

)
, (2.29)

which improves on the Haff type scale equivariant estimator Σ̂
H
.

Proof of Theorem 2. Without any loss of generality, let Σ = I p. We first consider
the expectation of the general function h(F ,XX t) of F and XXt. The expectation is
evaluated as

E
[
h(F ,XXt)

]
= c0(Ξ)

∫ ∫
h(F ,XXt)|S|(n−p−1)/2 exp

{
−tr (S +XX t − 2XΞt)/2

}
dXdS

= c0(Ξ)
∫ ∫

h(F ,XXt)|S|(n−p−1)/2 (2.30)

× exp
{
−tr (S +XX t)/2

} ∫
exp

{
trXHΞ t/2

}
µ(dH)dXdS,

where µ(dH) denotes an invariant probability measure on the group of orthogonal ma-
trices. Here the second equality in (2.30) follows from the fact that F and XX t are
invariant under the transformation X → XH for m×m orthogonal matrix H. One of
the essential properties of zonal polynomials gives∫

exp
{
trXHΞt/2

}
µ(dH) =

∑
κ

α(m)
κ Cκ

(
ΞΞtXXt

)
,

where α(m)
κ is given in James (1964) and Cκ(Z) denotes the normalized zonal polynomials

of the positive definite matrix Z of order p corresponding to partitions κ = {κ1, . . . , κp}
so that for all k = 0, 1, 2, . . .,

(trZ)k =
∑

{κ:κ1+···+κp=k}
Cκ(Z).

Let W =XXt, and the r.h.s. of (2.30) is written by

c1(Ξ)
∫ ∫

h(F ,W )|S|(n−p−1)/2|W |(m−p−1)/2

× exp {−tr (S +W )/2}∑
κ

α(m)
κ Cκ(ΞΞ

tW )dSdW ,

for the normalizing function c1(Ξ). Making the transformation F =W−1/2SW−1/2 with
J(S → F ) = |W |(p+1)/2 gives that

E
[
h(F ,XXt)

]
= c1(Ξ)

∫ ∫
h(F ,W )|F |(n−p−1)/2|W |(n+m−p−1)/2 (2.31)

× exp {−tr (F + I)W /2}∑
κ

α(m)
κ Cκ(ΞΞ

tW )dF dW .

11



Again making the transformations F = PΛP t and W = PV P t in order, we see that
(2.31) is represented as

E
[
h(F ,XXt)

]
= c2(Ξ)

∫ ∫ ∫
h(PΛP t,W )g(Λ)|W |(n+m−p−1)/2

× exp
{
−tr (Λ+ I)P tWP /2

}∑
κ

α(m)
κ Cκ(ΞΞ

tW )µ(dP )dΛdW

= c2(Ξ)
∫ ∫ ∫

h(PΛP t,PV P t)g(Λ)|V |(n+m−p−1)/2 (2.32)

× exp {−tr (Λ+ I)V /2}∑
κ

α(m)
κ Cκ(ΞΞ

tPV P t)µ(dP )dΛdV ,

where g(Λ) is a function of Λ (see Srivastava and Khatri (1979)).

Based on the expression (2.32), we can evaluate the risk difference of the two estima-
tors, which is given by

∆ = R(ω, Σ̂(Ψ))−R(ω, Σ̂([Ψ ]TR))

= E
[
tr
{
PΨ(Λ)P t − P [Ψ(Λ)]TRP t

}
W − log |Ψ(Λ){[Ψ(Λ)]TR}−1|

]
(2.33)

= c2(Ξ)
∫ ∫ ∫ [

tr
{
Ψ (Λ)− [Ψ(Λ)]TR

}
V − log |Ψ(Λ){[Ψ(Λ)]TR}−1|

]
×g(Λ)|V |(n+m−p−1)/2

× exp {−tr (Λ+ I)V /2}∑
κ

α(m)
κ Cκ(ΞΞ

tPV P t)µ(dP )dΛdV ,

where V = P tWP . By the basic property of zonal polynomials,∫
Cκ(ΞΞ

tPV P t)µ(dP ) = Cκ(ΞΞ
t)Cκ(V )/Cκ(Ip). (2.34)

For simplicity, let us put A = {Ψ(Λ) − [Ψ(Λ)]TR}(Λ+ I)−1 and B = (Λ+ I)−1. Then
from (2.34), it can be seen that

∆ = c2(Ξ)
∫ ∫ ∫ [

trAVB−1 − log |Ψ(Λ){[Ψ(Λ)]TR}−1|
]
g(Λ)|V |(n+m−p−1)/2

× exp
{
−trV B−1/2

}∑
κ

α(m)
κ

Cκ(ΞΞ
t)Cκ(V )

Cκ(Ip)
dV dΛ. (2.35)

Hence, we can see that ∆ ≥ 0 if the following inequality is shown:

∑
κ α

(n)
κ bκ

∫
tr (AV B−1)Cκ(V )|V |(n+m−p−1)/2 exp

{
−trV B−1/2

}
dV∑

κ α
(n)
κ bκ

∫
Cκ(V )|V |(n+m−p−1)/2 exp

{
−trV B−1/2

}
dV

≥ log |Ψ (Λ){[Ψ(Λ)]TR}−1|, (2.36)

12



where bκ = Cκ(ΞΞ
t)/Cκ(Ip). That is, we need to show that∑

κ α
(n)
κ bκE[tr (AV B

−1)Cκ(V )|Λ]∑
κ α

(n)
κ bκE[Cκ(V )|Λ]

≥ log |Ψ(Λ){[Ψ(Λ)]TR}−1|, (2.37)

where conditionally, V |Λ ∼ Wp(n+m,B).
Here, we shall show that

E[tr (AV B−1)Cκ(V )|Λ] ≥ E[tr (AV B−1)|Λ] · E[Cκ(V )|Λ]. (2.38)

Let H be an orthogonal matrix such that V = HDHt for a diagonal matrix D. Then
the l.h.s. of (2.38) is written as

E[tr (AVB−1)Cκ(V )|Λ] = E[tr (H tB−1AHD)Cκ(D)|Λ]
= EH

[
ED|H [tr (H tB−1AHD)Cκ(D)|Λ]

]
, (2.39)

where ED|H [·] denotes the conditional expectation with respect to D given H. Since
coefficients of eigenvalues in Cκ(D) are nonnegative, Cκ(D) is a monotone increasing
function in D. Also tr (H tB−1AHD) is a monotone increasing function in D since
diagonal elements of H tB−1AH are nonnegative. Hence Theorem 1.10.5 of Srivastava
and Khatri (1979) is applied to get that

EH
[
ED|H [tr (H tB−1AHD)Cκ(D)|Λ]

]
≥ EH

[
ED|H [tr (H tB−1AHD)|Λ] · ED|H [Cκ(D)|Λ]

]
= EH

[
ED|H [tr (H tB−1AHD)|Λ]

]
· E[Cκ(D)|Λ]

= E[tr (B−1AV )|Λ] · E[Cκ(V )|Λ], (2.40)

since ED|H [Cκ(D)|Λ] does not depend on H. We thus obtain the inequality in (2.38); for
an alternative method of proving this inequality, see Kubokawa and Srivastava (1999).

Noting that E[tr (AV B−1)|Λ] = (n+m)trA and using the inequality (2.38), we see
that the l.h.s. of (2.37) is evaluated as

E[tr (AV B−1)Cκ(V )|Λ]
E[Cκ(V )|Λ] ≥ (n+m)trA

=
p∑

i=1

{
n+m

λi + 1
ψi(Λ)− 1

}
I
(
n+m

λi + 1
ψi(Λ) ≥ 1

)
.

Since the r.h.s. of (2.37) is written by

p∑
i=1

log
n+m

λi + 1
ψi(Λ)I

(
n+m

λi + 1
ψi(Λ) ≥ 1

)
,

the inequality (2.37) is satisfied. Therefore the proof of Theorem 2 is complete. ✷✷
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3 Estimation of the Generalized Variance

In this section, we treat the problem of estimating the generalized variance |Σ| which has
been studied as one of the multivariate extensions of the Stein result. The method used in
Section 2.1 will be applied in Section 3 not only to construct a new improved estimator of
|Σ| but also to give another proof of the conventional result given by Shorrock and Zidek
(1976) and Sinha (1976). It is supposed that every estimator δ = δ(S,X) is evaluated
in terms of the risk function R(ω, δ) = Eω[L(δ, |Σ|)] for ω = (Σ,Ξ) relative to the Stein
(or entropy) loss function

L(δ, |Σ|) = δ/|Σ| − log δ/|Σ| − 1. (3.1)

Shorrock and Zidek (1976) and Sinha and Ghosh (1987) showed that the best affine
equivariant estimator of |Σ| is given by δ0 = {(n − p)!/n!}|S| and that it is improved
upon by the truncated estimator

δSZ = min

{
(n − p)!

n!
|S|, (n+m− p)!

(n+m)!
|S +XX t|

}
. (3.2)

Shorrock and Zidek (1976) established this result by expressing the risk function in zonal
polynomials. Since their approach was somewhat complicated, Sinha (1976) gave another
method based on the distribution of a nonsymmetric square root matrix of S with respect
to the Lebesgue measure. Using (2.2) and T = (tij) ∈ G+

T such that S = TT t, we see
that the estimator δSZ is rewritten by

δSZ =
p∏

i=1

(n− i+ 1)−1t2ii ×min
{
1,

p∏
i=1

Gi

}
, (3.3)

where

Gi =
n − i+ 1

n+m− i+ 1

(
1 + yt

iCiyi

)
. (3.4)

Also we can consider another type of estimators which are sequentially defined by

δTR
k =

p∏
i=1

(n− i+ 1)−1t2ii ×min
1, G1, G1G2, . . . ,

k∏
j=1

Gj

 , (3.5)

for k = 1, . . . , p. Then the method used in Subsection 2.1 can be applied to establish that
δSZ dominates δ0 and that δ

TR
k beats δTR

k−1 for k = 1, . . . , p. The two improved estimators
δSZ and δTR

p are possible choices though the preference between them cannot be compared
analytically.

Theorem 3.
(1) The estimators δSZ dominates the δ0 relative to the loss (3.1).
(2) For k = 1, . . . , p, the truncated estimator δTR

k dominates δTR
k−1 relative to the loss

(3.1), where δTR
0 denotes δ0.
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Proof. We first prove the part (1). The risk difference of the estimators δ0 and δSZ

is given by

∆ = R(ω, δ0)−R(ω, δSZ)

= E

[{ p∏
i=1

eit
2
ii(1 −

p∏
i=1

Gi) + log
p∏

i=1

Gi

}
I(

p∏
i=1

Gi < 1)

]
,

where ei = (n− i+ 1)−1 for i = 1, . . . , p. Using the expression (2.14) gives that

tr
{
T (Ip + Y

tY )T t − 2TY tΞ t
}

(3.6)

=
p∑

i=1

{
aiit

2
ii − 2θiitii − ki(y1, . . . ,y i)

}
+

p−1∑
i=1

aii||ti + zi||2,

where aii = 1+y
t
iCiyi, θii = y

t
iC iξi, zi = a−1

ii (T i+1Y
t
i+1−Ξt

i+1)C iyi and ki(y1, . . . ,yj) =

a−1
ii y

t
iCiΞ i+1Ξ

t
i+1Ciyi. Note that given Y and T i+1, ti has conditionallyNp−i(−zi, a

−1
ii ).

Integrating out the density with respect to t1, . . . , tp−1 in turn, we write the risk differnce
∆ as

∆ =
∫

· · ·
∫ { p∏

i=1

eit
2
ii(1−

p∏
i=1

Gi) + log
p∏

i=1

Gi

}
I(

p∏
i=1

Gi < 1) (3.7)

×
p∏

i=1

tn+m−i
ii exp

{
−

p∑
i=1

{
aiit

2
ii − 2θiitii − ki(y1, . . . ,y i)

}
/2

}

×c(Ξ, a11, . . . , app)
p∏

i=1

dtiidY ,

for a function c(Ξ, a11, . . . , app). Note that for i = 1, . . . , p and j = 1, . . . , i,

θii(y1, . . . ,yj, . . . ,y i) = (−1)δijθii(y1, . . . ,−yj, . . . ,y i),

ki(y1, . . . ,yj, . . . ,y i) = ki(y1, . . . ,−yj, . . . ,y i),

where δij is the Kronecker’s delta. Then, similarly to (2.9), the risk difference ∆ can be
rewritten as

∆ =
∫

· · ·
∫ {

p∏
i=1

eit
2
ii(1−

p∏
i=1

Gi) + log
p∏

i=1

Gi

}
I(

p∏
i=1

Gi < 1) (3.8)

×
p∏

i=1

{
1

2

(
eθiitii + e−θiitii

)
tn+m−i
ii e−aiit2ii/2dtii

}

×c(Ξ, a11, . . . , app) exp

{
p∑

i=1

ki(y1, . . . ,y i)/2

}
dY .

Letting vi be a random variable such that given Y , vi is conditionally distributed as
χ2

n+m−i+1, we can express the risk difference ∆ as

∆ = c∗(Ξ)E

[{ p∏
i=1

ei
vi

aii
(1−

p∏
i=1

Gi) + log
p∏

i=1

Gi

}
I(

p∏
i=1

Gi < 1)
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×
p∏

i=1

(eθii

√
vi/aii + e−θii

√
vi/aii)

]
, (3.9)

for a constant c∗(Ξ). The same argument as in (2.12) shows that

E

[
(

p∏
i=1

vi)
p∏

i=1

(eθii

√
vi/aii + e−θii

√
vi/aii)

∣∣∣Y ]

=
p∏

i=1

{
E
[
vi(e

θii

√
vi/aii + e−θii

√
vi/aii)

∣∣∣Y ]}

≤
p∏

i=1

{
E[vi|Y ]× E[eθii

√
vi/aii + e−θii

√
vi/aii |Y ]

}
. (3.10)

Also it is seen that

E

[ p∏
i=1

eivi/aii

∣∣∣Y ] = ( p∏
i=1

Gi)
−1. (3.11)

Combining (3.9), (3.10) and (3.11), we can verify that ∆ ≥ 0, which completes the proof
of the first part of Theorem 3.

For the proof of the part (2), the risk difference can be written by

R(ω, δk−1)−R(ω, δk) = E

[{
(Fk − 1) (

k∏
i=1

Gi)(
p∏

i=1

eit
2
ii)− logFk

}
I(Fk ≥ 1)

]
,

where

Fk = min

(
1, G1, . . . ,

k−1∏
i=1

Gi

)
/

k∏
i=1

Gi.

By using the same arguments as in the proof of (1), the risk difference can be expressed
as

c∗(Ξ)E

[{
(Fk − 1) (

k∏
i=1

Gi)(
p∏

i=1

ei
vi

aii
)− logFk

}
I(Fk ≥ 1)

p∏
i=1

(eθii

√
vi/aii + e−θii

√
vi/aii)

]
,

which can be shown to be nonnegative from (3.10) and (3.11). Therefore, the part (2) is
proved and the proof of Theorem 3 is complete. ✷✷

4 Simulation Studies

It is of interest to investigate the risk behaviors of several estimators given in the previous
sections. We provide results for p = 2 of a Monte Carlo simulation for the risks of the
estimators where the values of the risks are given by average values of the loss functions
based on 50,000 replications. These are done in the cases where n = 4, m = 1, 10,
Σ = diag (1, 1), ξ1j = a/3 and ξ2j = a for Ξ = (ξij) and 0 ≤ a ≤ 8.
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Table 1. Risks of the Estimators UB, HR, JS and TR in Estimation of Σ
for m = 1 and p = 2

a 0 0.5 1 2 3 4 5 6 7 8
UB .925 .925 .925 .925 .925 .925 .925 .925 .925 .925
HR .922 .922 .923 .924 .925 .925 .925 .925 .925 .925
JS .861 .861 .861 .861 .861 .861 .861 .861 .861 .861
TR .839 .839 .840 .844 .850 .853 .855 .856 .857 .858

The risk performances of estimators of Σ are first investigated. For the sake of sim-

plicity, the estimators Σ̂
HR
, Σ̂

JS
, Σ̂

TR
, Σ̂([ΨS ]TR) and Σ̂([ΨH ]TR) with a0 = (p− 1)/n,

given by (1.4), (1.2), (2.3), (2.27) and (2.29), are denoted by HR, JS, TR, STR and HTR,

respectively. Also denote the unbiased estimator Σ̂
UB

by UB.
Table 1 reports the values of the risks of the estimators UB, HR, JS and TR for

m = 1, p = 2 and a = 0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8. In this case, HR, JS and TR are possible

candidates where Σ̂
HR

is identical to Sinha and Ghosh’s estimator.
For m = 10 and p = 2, the scale equivariant minimax estimators proposed in Section

2.2 are added to candidates, and the risk behaviors of the estimators JS, TR, STR and
HTR are given in Figure 1 for 0 ≤ a ≤ 8.

Table 1 and Figure 1 reveal that
(1) in the case that m = 1 < p = 2, the estimator TR is slightly better than UB, HR

and JS,
(2) in the case that m = 10 > p = 2, the estimator HTR is the best of the five,
(3) the risk gain of TR is not as much as the scale equivariant minimax estimators

STR and HTR for m = 10, p = 2.
The truncated minimax estimator TR is thus recommended when m < p. When

m ≥ p, the estimators HTR and STR are recommended for practical use.

The risk performances in estimation of the generalized variance |Σ| are investigated
in Figure 2, where δUB, δSZ and δTR are denoted by UB, SZ and TR, respectively. Figure
2 reveals that TR has a smaller risk on a large parameter space while the risk gain of SZ
is significant at Ξ = 0.
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