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1. Introduction

The analysis of seasonality in major economic time series has been one of important
applications of modern statistical time series analysis. Since the central statistical
offices in governments including the United States as well as Japan publish monthly
and quarterly official statistics, this problem has been not only important in scientific
point of view, but also in practical applications for policy evaluations and decisions.
Most statistics offices in advanced countries in the world need some device to handle
economic seasonality in order to make the seasonal adjustments before they publish final
seasonally adjusted data. In this respect, the most important development in recent
years is the new release of the X-12-ARIMA program by the research group of the
Census Bureau in the United States Government. In this program the statistical time
series model called the RegARIMA model has been extensively utilized. See Findley
et. al. (1998) for its details.

The first purpose of this paper is to investigate important issues on the RegARIMA
modeling. When we fit the RegARIMA model to actual economic time series, the
estimated time series are often regarded as realizations of seasonally integrated time
series. Then there is a natural question whether these actual seasonality should be
treated as realizations of seasonal non-stationary time series. If the economic time
series contained integrated seasonalites, then the variance of seasonal component should
become large as time goes on and it should be roughly proportional to the data horizon.
In many seasonal economic time series, however, it seems that the seasonal patterns
fluctuate over time but do not change very wildly as the random walk models or the
integrated stochastic processes predict. Although the fitting the seasonal random walk
and the integrated stochastic models are often satisfactory, they could be spurious in
some sense and there can be some other ways to describe seasonality in actual economic
time series. If it is the case, there are important implications on statistical modeling
including the prediction of seasonal economic time series and the seasonal adjustment
procedures in particular.

In this paper we shall propose to use the seasonal switching ARMA (SSARMA)
models and the regression SSARMA (RegSSARMA) models to handle seasonality in
economic time series. They are simple extensions of the univariate seasonal ARMA
models and the seasonal RegARMA models, which can have stationary seasonal com-
ponents with the non-stationary trend components. We shall argue that the SSAR
models are quite flexible to include the possible seasonal time series models as special
cases. Also we shall illustrate why we often find the seasonal unit roots components
when we fit the standard seasonal ARIMA models by using some theoretical results as
well as real empirical examples. There will be some applications of the SSAR models
and the RegSSAR models to deal with actual economic seasonality including the stat-
sitical seasonal adjustment procedures in practice.

In Section 2 we shall analyze one important problem of estimating the regression
part in the RegARIMA models and point out the resulting difficulty. Then in Section 3
we shall introduce the SSARMA and RegSSARMA models and discuss their statistical
properties. In Section 4 we shall report some empirical results on economic time series
including the macro consumption data in Japan and the well-known airline traffic data
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of Box and Jenkins (1971). Finally some concluding remarks will be given in Section
5. The proof of some theoretical results will be given in the Appendix.

2. RegARIMA model and Non-stationarity

We consider the class of the RegARIMA model developed by the U.S. Census Bureau
and explained by Findley et. al. (1998). Let {yt, t = 0, 1, · · ·} be the univariate time
series satisfying

φp(B)ΦP (Bs)(1 −B)d(1 −Bs)D[yt −
r∑

j=1

βjzjt] = θq(B)ΘQ(Bs)σvt ,(2.1)

where B is the backward shift operator (Byt = yt−1), p, q, d, s, P,D, Q are non-negative
integers (s ≥ 2), and {zjt, j = 1, · · · , r} are the set of explanatory variables. The
associated lag polynomials of the seasonal ARIMA model are given by

φp(B) = 1 − φ1B − · · · − φpB
p ,

ΦP (Bs) = 1 − Φ1B
s − · · · − ΦPB

sP ,(2.2)
θq(B) = 1 − θ1B − · · · − θqB

q ,

ΘQ(Bs) = 1 − Θ1B
s − · · · − ΘQB

sQ ,

where {φj} , {Φj} {θj} , {Θj} are the unknown coefficient parameters of the ARIMA
part, σ (> 0) is the standard deviation parameter, and {βj} are the unknown coefficient
parameters of the regression part.
We assume that
(i) the absolute values of solutions of the corresponding equations

φp(z) = 0 ,ΦP (z) = 0 , θq(z) = 0 ,ΘQ(z) = 0(2.3)

are greater than 1, and
(ii) {vt} are a sequence of independently and identically distributed random variables
with E(vt) = 0, E(v2

t ) = 1, and the density function is positive almost everywhere in
R.

The stochastic processes defined by the RegARIMA model can be non-stationary and
there are non-trivial issues on the statistical estimation of unknown parameters of the
regression part in particular. We first illustrate the problem of our concern by using a
simple example.

Example 1

In the X-12-ARIMA procedure there are some procedures such as the level shift and
the detection of change points. For the simplicity, let {yt, t = 0, 1, · · ·} be the univariate
time series satisfying

(1 −Bs)[yt − β0 − β1zt] = σvt ,(2.4)

where the simple explanatory variable {zt} is defined by zt = −1 (0 ≤ t < [λT ]),
zt = 0 ([λT ] ≤ t ≤ T ), and [λT ] (0 < λ < 1) is the period of level shift. By following
the explanation of the RegARIMA model in Findley et. al. (1998), this model should
be written as

(1 −Bs)yt = β1(1 − Bs)zt + σvt .(2.5)

3



Then Findley et. al. (1998) recommend to use the standard regression technique
with stationary disturbances to estimate the unknown parameter β1 in this simple
RegARIMA model.
By ignoring the initial conditions, in this case we have the explanatory variable defined
by

z∗t = (1 −Bs)zt =




0 if 0 ≤ t < [λT ]
1 if t = [λT ], · · · , [λT ] + s − 1
0 if [λT ] + s < t ≤ T

.(2.6)

Then we immediately observe that the standard regression procedure including the
t-statistic is only valid when the sequence of disturbance terms follow the normal dis-
tribution in the strict sense. If it was not satisfied, it seems that there are no strong
reasons why we should use the standard regression procedures including statistical test-
ing. Also there is no large sample justification for this procedure because the standard
conditions on the regression variables cannot be satisfied. (See Section 2.6 of Anderson
(1971) on the standard conditions for asymptotic theory, for instance.)

More generally, we consider the estimation problem of regression coefficients when
the disturbance terms follow the Seasonal ARIMA model as

yt = β
′
zt + ut ,(2.7)

where β
′
zt =

∑r
i=1 βizit and {zt = (zit)} are the vector of fixed regressors. In the

purely formal way we could write

ut = [φp(B)ΦP (Bs)(1 − B)d(1 −Bs)D]−1[θq(B)ΘQ(Bs)]σvt .(2.8)

In the standard large sample theory we usually assume the conditions that
(iii) the vector sequence of explanatory variables zt = (zit) satisfy

1
n

n∑
j=1

z(j−1)s+iz
′
(j−1)s+i → Mi =

∫ 1

0
zi(t)z

′
i(t)dt(2.9)

and
1
n

max
1≤j≤n,1≤i≤s

‖z(j−1)s+i‖2 → 0(2.10)

as n → ∞, where sn = T, zi(t) is the r×1 vector depending on t (0 ≤ t ≤ 1, i = 1, · · · , s)
and M =

∑s
i=1 Mi is a positive definite matrix.

Let the t-statistic for the k-th regression coefficient βk (k = 1, · · · , r) be defined by

t(βk) =
β̂k − βk√

σ̂2
LSe′

k(
∑T

t=1 ztz
′
t)−1ek

,(2.11)

where β̂k is the least squares (LS) estimator of βk , σ̂2
LS is the standard LS estimator

of σ2 , and ek = (0, · · · , 0, 1, 0, · · · , 0) is the unit vector with 1 at the k-th component.
Then we have the weak convergence result on the t-statistic and the sketch of its proof
is given in the Appendix.
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Theorem 2.1 In the RegARIMA given by (2.1) with d = 0, D ≥ 1, we assume (i),
(ii) and (iii). Then the limiting random variable of 1√

T
t(βk) as T → +∞ can be written

as

t∗k =
e
′
kM

−1
∫ 1
0 [
∑s

i=1 zi(r)B̄i(r)]dr√
e′

kM−1ek

√
s
∫ 1
0

∑s
i=1 B̄

2
i (r)dr − ∫ 1

0 [
∑s

i=1 zi(r)B̄i(r)]
′
drM−1

∫ 1
0 [
∑s

i=1 zi(r)B̄i(r)]dr
,

(2.12)
where B̄i(rD) (i = 1, · · · , s) have the Ito’s multiple integral representation as

B̄i(r0) =
∫ r0

0
· · ·
∫ rD−1

0
dBi(rD)

D−1∏
l=1

drD−l(2.13)

and Bi(t) are the independent Standard Brownian Motions on [0, 1] .

For the definition and properties of the Brownian Motions and Ito’s multiple in-
tegral representations, see Ikeda and Watanabe (1989) as the standard reference in
stochastic analysis. In the above theorem we have treated the case when d = 0. It
is also straightforward to extend the above representation theorem to the case when
d ≥ 1 .

Corollary 2.1 In the RegARIMA given by (2.1) with d ≥ 1, D ≥ 1, we assume (i),
(ii) and (iii). Then the limiting random variable of 1√

T
t(βk) as T → +∞ can be written

as

t∗k(2.14)

=
e
′
kM

∗−1
∫ 1
0 [z∗(r)B̄∗(r)]dr√

e′
kM∗−1ek

√∫ 1
0 B̄∗2(r)dr − ∫ 1

0 [z∗(r)B̄∗(r)]′dr M∗−1
∫ 1
0 [z∗(r)B̄∗(r)]dr

,

where M∗ = (1/s)M, z∗(r) = (1/s)
∑s

i=1 z(r), and B̄∗(r) (0 ≤ r ≤ 1) have the Ito’s
multiple integral representation as

B̄∗(r0)(2.15)

=
∫ r0

0
· · ·
∫ rd−1

0

s∑
i=1

∫ rd

0
· · ·
∫ rd+D−1

0
dBi(rd+D)

∏d+D−1

l=1
drD+d−l

∏d

l
′
=1
drd+1−l′ .

There are two distinctive features on the distribution of random variable t∗k (k =
1, · · · , s). The first one is that we need the normalizing factor 1/

√
T for the underlying

t-statistic. The second one is that the limiting distribution is significantly different
from the standard t-distribution as well as the standard normal distribution. We have
done a number of simulations to generate the limiting distribution function of t∗k (k =
1, · · · , s) and investigate their statistical properties. We have found that they are skewed
considerably depending on the integration orders d and D.

3. The SSARMA and RegSSARMA Models

In this section we shall introduce a new class of seasonal switching autoregressive
moving-average (SSARMA) models and the regression SSARMA models. We denote
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the latter class as the RegSSARMA model which includes the class of the RegARIMA
models as a special case. The main feature of the SSARMA models is a simple nonlinear
time series model which includes the class of the seasonal ARIMA models as a special
case and also they can handle the ”spurious seasonal non-stationarity” in many cases.

3.1 Seasonal Switching ARMA model

Let {yt, t = 0, 1, · · ·} be the univariate time series satisfying

φp(B)
s∑

i=1

Φi
P (Bs)I i

t [yt −
r∑

j=1

βjzjt] = θq(B)[
s∑

i=1

Θi
Q(Bs)I i

tσi]vt ,(3.1)

where p, q, s, P, Q are non-negative integers (s ≥ 1), and σi (> 0) are the unknown
seasonal standard deviations, I i

t are the seasonal indicator functions, and {zit} are the
set of explanatory variables. The associated polynomials of the ARMA part are given
by

φp(B) = 1 − φ1B − · · · − φpB
p ,

Φi
P (Bs) = 1 − Φi

1B
s − · · · − Φi

PB
sP ,(3.2)

θq(B) = 1 − θ1B − · · · − θqB
q ,

Θi
Q(Bs) = 1 − Θi

1B
s − · · · − Θi

QB
sQ ,

where {φj}, {Φi
j}, {θj}, {Θi

j} are the unknown coefficients, and {βj} are unknown re-
gression coefficients.
We assume that
(i) the absolute values of solutions of the corresponding characteristic equations

φp(z) = 0 ,Φi
P (z) = 0 , θq(z) = 0 ,Θi

Q(z) = 0(3.3)

are greater than 1, and
(ii) {vt} are a sequence of independently and identically distributed random variables
with E(vt) = 0 , E(v2

t ) = 1, and the density function is positive almost everywhere in
R.
In the above notation the indicator function I i

t can be defined by I i
t = 1 when t is in the

i-th season of some year and I i
t = 0 otherwise. In this formulation the SSARMA model

and the RegARMA model are slightly different from the existing linear seasonal time
series models. The stochastic processes in the discrete time defined by the SSARMA
model can be stationary in many cases and we illustrate the distinctive features of the
SSARMA model by using a simple example.

Example 2

Let {yt, t = 0, 1, · · ·} be the univariate time series satisfying

yt =
s∑

i=1

I i
t [ai + biyt−s + σivt] ,(3.4)

where {ai}, {bi}, {σi} are unknown parameters and we denote this model simply as the
SSAR(1) model.
When we have the stability conditions

max
i=1,···,s

|bi| < 1 ,(3.5)
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then the SSAR(1) model can be re-written as

s∑
i=1

(1 − biB
s)I i

t [yt − µi] = [
s∑

i=1

σiI
i
t ]vt ,(3.6)

where (1 − bi)µi = ai (i = 1, · · · , s) .
The most important feature of the SSARMA model is the mechanism of seasonal switch-
ings and it can be natural to be regarded as a kind of non-linear phenomena. The
unrestricted form of the SSAR(1) model, for instance, has 3s unknown parameters and
it nests many existing linear seasonal time series models, i.e., the seasonal ARIMA
models of Box and Jenkins (1971). If we have the equal seasonal variances, σi = σ,
then the SSAR(1) model becomes the seasonal random coefficient models. If we further
have the equal coefficients, i.e. ai = a and bi = b, then we have the linear seasonal AR
model in the Box-Jenkins approach. We have the standard non-stationary (seasonal)
integrated process only if

bi = 1 (i = 1, · · · , s)(3.7)

and ai = a , σi = σ at the same time.

3.2 Statistical Properties of the SSARMA model

Because the SSARMA model is a kind of non-linear time series model with switching
mechanism, we need to investigate its statistical properties. For the SSAR(1) model
explained in the last subsection for instance, we take the s-dimensional state space
vector for Example 2 as Y

′
(t) = (yt, yt−1, · · · , yt−s+1) for t = 1, · · · , T . Then we have

the Markovian representation

Y (t) = a(t) + B(t)Y (t− 1) + V (t)(3.8)

where a(t) is an s× 1 vector and B(t) is an s× s coefficient matrix

a(t) =




s∑
i=1

aiI
i
t

0
...
0




, B(t) =




0 · · · 0
s∑

i=1

biI
i
t

1 0
. . .

0 1 0




,

and V (t) is an s × 1 disturbance vector

V (t) =




s∑
i=1

σiI
i
t

0
...
0



vt .

By using (3.8), the associated characteristic equation for the Markovian representation
can be given by

|λIs −B(t)| = 0 ,(3.9)
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where Is is the s × s identity matrix. Then we immediately notice that the absolute
values of all characteristic roots of (3.9) are less than 1 if we have the condition

max
i=1,···.s

|bi| < 1 .(3.10)

Alternatively, we take the s-dimensional state vector for Example 2
Y

′
j = (y(j−1)s+s, y(j−1)s+s−1, · · · , y(j−1)s+1) for j = 1, · · · , n and we take T = ns for the

resulting simplicity. Then we have the alternative Markovian representation as

Yj = a + B1Yj−1 + Vj ,(3.11)

where a is an s× 1 vector and B1 is an s× s coefficient matrix such that

a =




as

as−1
...
a1


 , B1 =




bs 0 · · · 0
0 bs−1 0 0

.. .
0 b1


 ,

and Vj is an s× 1 disturbance vector

Vj =




σsv(j−1)s+s

σs−1v(j−1)s+s−1
...

σ1v(j−1)s+1


 .

The associated characteristic equation for the Markovian stochastic process (3.11) can
be given by

|λIs −B1| = 0 ,(3.12)

and the absolute values of all characteristic roots are less than 1 under the same con-
dition in (3.10).
More generally, we can construct the (s+p)-dimensional state vector for (3.1) as
Y

′
j = (y∗(j−1)s+s, y

∗
(j−1)s+s−1, · · · , y∗(j−1)s−(p−1)) for j = 1, · · · , n,where y∗j = yt−∑r

j=s+1 βjzjt,

zit = Iit (i = 1, · · · , s) and r ≥ s . Then we have the following result and the proof is
given in the Appendix..

Theorem 3.2 Let {yt} follow (3.1) and we assume (ii). Then there exists a station-
ary solution for the (s+p)-dimensional vector stochastic process {Yj , j = 1, · · ·} with
E[‖Yj‖2] < +∞ if and only if the absolute values of all solutions of

φ(z) = 0 , Φi
P (z) = 0 (i = 1, · · · , s)(3.13)

are greater than one.

One important problem in the seasonal ARIMA (SARIMA) modeling has been the
seasonal non-stationarity. When we fit the SARIMA models, we often find that the
seasonal differencing looks appropriate in many economic time series. However, from
the view of nonlinearity in the SSARMA modeling this phenomenon should be often
interpreted as the ”spurious seasonal integration” by using the univariate linear time
series modeling.
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Theorem 3.3 Let {yt} follows the SSAR(1) model given by Example 2 with E[v4
t ] <

+∞ . Assume the stability condition given by (3.10) and let

b̂LS =

T∑
t=1

(yt−s − ȳ−s)(yt − ȳ)

T∑
t=1

(yt−s − ȳ−s)2
,(3.14)

where T = sn, ȳ = (1/T )
∑T

t=1 yt, ȳ−s = (1/T )
∑T

t=1 yt−s and the initial conditions
yt (t ≤ 0) are fixed.
(i) As n → ∞ we have

b̂LS
p−→ b∗ =

s∑
i=1

biσ
2
i

1 − b2i
+

s∑
i=1

(µi − µ̄)2

s∑
i=1

σ2
i

1 − b2i
+

s∑
i=1

(µi − µ̄)2
,(3.15)

where µ̄ = (1/s)
∑s

i=1 µi .
(ii) If we have the sequences of µi = µi(n), σi = σi(n) (i = 1, · · · , s) such that

λ(n, s) =

s∑
i=1

(µi − µ̄)2

maxi=1,···,s{σ2
i }

→ ∞ ,(3.16)

then we have b̂LS
p−→ 1 .

It is rather straightforward to extend this result to more general SSARMA models
with some stability conditions. From our results we expect that we often find roots of
the associated characteristic equations whose absolute values are near unity when we
ignored some nonlinear seasonal factors in economic time series.

3.3 Estimation and Seasonal Modeling Procedure

There can be two alternative ways to estimate the SSARMA and the RegARMA models,
that is, the least suares (LS) estimation method and the maximum likelihood (ML)
estimation method.

If we use the SSAR models and the RegSSAR models, we have the direct Markovian
representation for the state vector {Yj , j = 1, · · · , n} (T = sn) and use the standard
LS estimation method for the regression model with stationary time series disturbance
terms provided the conditions (i)-(iii) are satisfied. Then the classical asymptotic theory
on the estimation of regression functions can be applicable. (See Section 2.6 of Anderson
(1971).)

Alternatively, we can use the maximum likelihood (ML) estimation method for
estimating the regression function and the seasonal unknown parameters. This method
is more useful than the standard least squares method because we can use a series
of statistical testing on the parameter restrictions in the RegSSARMA models and
make the model selection procedure easier based on the Akaike’s Information Criterion
(AIC) developed by Akaike (1973). Because the class of the RegSSARMA models
contain a large number of other seasonal time series models, we mainly have used the
ML estimation in our data analysis.
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3.4 Extensions of the SSARMA Models

In this paper we have introduced the class of regression seasonal switching ARMA
models for analyzing economic time series analysis in practice. There can be other
type of extensions of the SSAR models and we should briefly discuss such possibilities.

The traditional additive decomposition of seasonal time series can be represented
as

yt = Tt + St + It ,(3.17)

where Tt stands for the trend component, St stands for the seasonal component, and It

stands for the irregular noise component. Kitagawa (1993), for instance, has proposed
to use the random walk model for Tt and the seasonal random walk model for St in
his DECOMP program. It is rather straightforward to use the stationary SSARMA
models for St in his formulation. Then the SSAR modeling can be incorporated into
the DECOMP program of seasonal adjustments which has been developed by using the
state space representation for {yt}.

4. Some Case Studies

In this section we shall report an empirical application using a set of macro economic
time series data in Japan and the airline traffic data used by Box and Jenkins (1971)
for the illustrative purposes.

In order to elliminate the deterministic trend and deterministic seasonal compo-
nents, we use the regression part of the RegSSAR models as

Tt =
s∑

i=1

βiDit +
s+k∑

i=s+1

βit
i−s ,(4.1)

where Dit are the seasonal dummies, β
′

= (β1, · · · , βs+l) is the vector of regression
coefficients, and z

′
t = (D1t, · · · , Dst, t, · · · , tk) are the vector of regressors 1 . We have

used this formulation mainly because it is easy to treat the seasonal means and the
likelihood calculations. The estimation of unknown parameters of the RegSSARMA
models have been done by the maximum likelihood method and we restrict the highest
order of time trend is 3 in order to avoid unstable trend estimation.

As the first empirical data analysis we use the quarterly time series data of macro
consumption in Japan which has been an important macro variable published by the
Cabinet office of Japan. The original data sets are the quarterly raw data from 2nd
quarter of 1975 to 4th quarter of 2000. All data are transformed such that the level of
the first data point is 100. By using the minimum AIC criterion, we have chosen k = 3 .

The estimated coefficients of the unrestricted RegSSAR model and their t-values are
given in Table 1.

Also by using the RegARMA model under the assumption that µi = µ , bi = b ,
and σi = σ (i = 1, · · · , 4) , we have the estimated result as

y∗t = 105.3578 + 0.9348y∗t−4 + 2.643vt ,
(104.7) (34.2)

(4.2)

1 When we use the time trend variables, the normalization factors for Conditions in (2.9) and (2.10)
should be modified appropriately as Theorem 2.6.1 of Anderson (1971),
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Table 1: Unrestricted SSARMA Model for Consumption

We use the maximum likelihood method under the assumption of stationary time series for estimating

unknown parameters of the underlying models. The figures in the parentheses are the t-ratio’s and the

variances have been estimated by the second derivatives of the likelihood functions.

Seasonal Dummy AR(4) σ2
i

2nd Quarter 101.3410 (10.7137) 0.6246 (4.2474) 5.4642
3rd Quarter 106.6477 (20.3588) 0.6702 (4.7813) 3.4901
4th Quarter 118.8236 (94.5556) 0.6381 (4.2945) 5.5952
1st Quarter 101.1639 (315.8540) 0.4274 (2.3680) 8.0312

AIC=500.53

Table 2: A Restricted SSARMA Model for Consumption

Seasonal Dummy AR (4) σ2
i

2nd Quarter 101.4658 (134.92) 0.6438 (7.30) 6.3610
3rd Quarter 106.7785 (11.81) 0.6438 (7.30) 3.5028
4th Quarter 118.9281 (61.01) 0.6438 (7.30) 6.3610
1st Quarter 101.2872 (211.34) 0.4311 (2.70) 6.3610

AIC=493.72

and AIC = 515.25, where y∗t = yt −
∑3

i=1 βit
i and the values in the parentheses are

t-ratios.
We immediately observe that the estimated AR coefficient is quite near to the non-
stationary region when we fit the RegARMA model. On the other hand, the estimated
AR coefficients of the RegSSAR model are moderate and the estimated coefficients of
the dummy variables are significantly different in each season. We also notice that
the estimated coefficients of the first and 4th dummy variables are similar, and the
estimated 4-th AR coefficient is different from other coefficients. Hence we could expect
to have a more parsimonious RegSSARMA model than the unrestricted RegSSAR
model. Then we have tried to impose some restrictions on coefficients and variances
on the unrestricted RegSSAR model. After some trials and errors mainly by using the
minimum AIC criterion, the best model in the class of the RegSSARMA model and its
estimated result is given in Table 2.

As the second empirical data set, we have used famous airline traffic monthly data
used by Box and Jenkins (1971). In this case we have chosen k = 2 by the minimum
AIC criterion. The estimated coefficients of the unrestricted RegSSAR model and their
t-values are given in Table 3.

Also by using the RegARMA model under the assumption that µi = µ , bi = b ,

11



Table 3: Unrestricted SSARMA Model for Airline Traffic Data

We use the maximum likelihood method under the assumption of stationary time series for estimating

unknown parameters of the underlying models. The figures in the parentheses are the t-ratio’s and the

variances have been estimated by the second derivatives of the likelihood functions.

Seasonal Dummy AR (12) σ2
i

January 98.3693 (364.7219) -0.2663 (-0.9540) 0.6188
February 98.0217 (145.9247) 0.4321 (1.6309) 1.7853
March 100.6701 (192.8839) 0.2696 (0.8097) 1.5956
April 100.0008 (307.8176) -0.3071 (-1.0684) 1.2692
May 99.9298 (353.3433) -0.4169 (-1.6142) 0.8681
June 102.5562 (244.7918) 0.4103 (1.5697) 0.6462
July 104.8678 (146.0224) 0.8104 (4.9099) 0.3569
August 104.5475 (177.1758) 0.7141 (3.6765) 0.4360
September 101.4833 (384.4140) -0.0155 (-0.0699) 0.3441
October 98.5535 (377.2055) -0.0681 (-0.2226) 0.3492

November 95.5138 (325.1808) -0.0810 (-0.1129) 0.6012
December 97.9352 (321.3479) -0.0363 (-0.0486) 0.6385

AIC=429.43

Table 4: A Restricted SSARMA Model for Airline Traffic Data

Seasonal Dummy AR (12) σ2
i

January 98.3620 (341.7981) -0.2091 (-1.9113) 0.5664
February 98.0119 (119.2458) 0.5477 (4.8778) 1.5756
March 100.5922 (132.2600) 0.5477 (4.8778) 1.5756
April 99.9507 (265.3878) -0.2091 (-1.9113) 1.5756
May 99.8754 (363.6894) -0.2091 (-1.9113) 0.5664
June 102.5045 (109.6486) 0.5477 (4.8778) 0.5664
July 104.7370 (136.4556) 0.5477 (4.8778) 0.5664
August 104.4870 (93.4429) 0.5477 (4.8778) 0.5664
September 101.4150 (367.6975) -0.2091 (-1.9113) 0.5664
October 98.4804 (363.7761) -0.2091 (-1.9113) 0.5664

November 95.4472 (173.7319) -0.2091 (-1.9113) 0.5664
December 97.8733 (345.8628) -0.2091 (-1.9113) 0.5664

AIC=399.66
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and σi = σ (i = 1, · · · , 12), we have the estimated result as

y∗t = 100.8611 + 0.8985y∗t−12 + 1.23vt ,

(116.8150) (31.2683)
(4.3)

and AIC = 498.87 . We also observe that the estimated AR coefficient is quite near to
the non-stationary region when we fit the RegARMA model. On the other hand, the
estimated AR coefficients of the RegSSARMA model are moderate and the estimated
coefficients of the dummy variables are significantly different from month to month. In
particular, the July and August AR coefficients are relatively large and other coefficients
are quite different from these two estimated coefficients which are not significantly
different from zero. We also notice that the estimated coefficients of July and August
dummy variables are similar, and they are larger than other estimated coefficients.
Hence we could expect to have a more parsimonious RegSSARMA model than the
unrestricted RegSSAR model. Then we have tried to impose some restrictions on
coefficients and variances on the unrestricted RegSSAR model. After some trials and
errors mainly by using the minimum AIC criterion, the best model in the class of the
RegSSARMA model and its estimated result is given in Table 4.

5. Conclusions

In this paper we have discussed one important problem in the RegARIMA modeling
which has been extensively used in the X-12-ARIMA seasonal adjustment program
which has been developed by the U.S. Census Bureau. When we have non-stationary
seasonal integrated processes, the estimation problem of the regression function in the
RegARIMA models becomes non-standard. Then we have shown one weak convergence
result on the asymptotic distribution of the t-statistic when the disturbance terms follow
the seasonal ARIMA processes.

Then we have introduced a class of the seasonal switching ARMA (SSARMA) model
and the RegSSARMA model in order to capture the non-linear seasonal patterns. We
have argued that the SSARMA modeling is a simple way to handle the nonlinear
seasonality as we have discussed. From our limited experiences we only need relatively
simple SSARMA models to describe actual seasonality in many economic time series. In
particular we need stationary SSARMA time series models to handle actual seasonality
in many cases.

Finally, there are several problems remain to be investigated. It may be interesting
to develop the SSARMA time series models with non-stationary stochastic trends. For
instance, the non-parametric estimation problem of the trend functions in the non-linear
seasonal time series analysis should be investigated.

6. Mathematical Appendix

In this Appendix, we gather some mathematical details and the proofs of Theorems
which we have omitted in the previous sections.

Proof of Theorem 2.1 and Corollary 2.1 :
First we consider the case when

(1 −B)d(1 − Bs)Dut = vt (t = 1, 2, · · ·) ,(A.1)
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where d ≥ 1, D ≥ 0, σ = 1 , and {vt} are a sequence of i.i.d. random variables and
the initial conditions are fixed as u−s = 0 (s ≥ 0) . We define a sequence of random
variables

u
(k)
t = u

(k)
t−1 + u

(k+1)
t (k = 0, 1, · · · , d− 1),(A.2)

where we denote u
(0)
t = ut, u

(d+D)
t = vt and treat sd−1(T ) as a function of T . Then we

have the representation as
ut =

∑
t≥s1≥···≥sd≥1

u(d)
sd

(A.3)

and then we can decompose

sd−1(T )∑
sd=1

u(d)
sd

=
s∑

i=1

[
sd−1(T )

s
]∑

j=1

u
(d)
(j−1)s+i + R(sd−1(T )) ,(A.4)

where we denote the remainder term as R(sd−1(T )) . We have the condition that
E[R(sd−1(T ))2] is bounded uniformly with respect to T from our assumptions and we
can ignore the initial conditions asymptotically in the following derivations. By using
the substitution of seasonal decompositions for u

(d)
(j−1)s+i (j ≥ 1, i = 1, · · · , s), we can

express

ut ∼ u∗t =
∑

t≥s1≥···≥sd−1

s∑
i=1

∑
[
sd−1

s
]≥sd≥···≥sd+D≥1

v(sd+D−1)s+i .(A.5)

By using the weak convergence arguments and checking the tightness condition (which
are quite similar to the proof of Theorem 3.1 of Tanaka (1996)), we have

1
T d+D−1

√
T

= (
1
s
)D− 1

2
1
T d

1

nD− 1
2

ut(T )(A.6)

w=⇒ (
1
s
)D− 1

2 B̄([
t(T )
T

]) ,

where we have denoted time index t(T ) as a function of T . Next by using the continuous
mapping theorem and the functional central limit theorem (see Billingsley (1967) for
instance), we have the weak convergence as

1

T d+D+ 1
2

T∑
t=1

ztut =
1
T

T∑
t=1

zt[
1

T dnD−1
√
n
ut][

1
s
]D− 1

2(A.7)

w=⇒ (
1
s
)D− 1

2

∫ 1

0
z(r)B̄(r)dr .

Also by using the convergence condition on {zt} as

1
T

T∑
t=1

ztz
′
t = (

1
s
)

s∑
i=1

1
n

n∑
j=1

z(j−1)s+iz
′
(j−1)s+i(A.8)

−→ M∗ =
1
s

s∑
i=1

Mi > 0 ,
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and cheking the tightness condition, we have the weak convergence

1

T d+D− 1
2

(β̂LS − β) = (
1
T

T∑
t=1

ztz
′
t)
−1[

1

T d+D+ 1
2

T∑
t=1

ztut(A.9)

w=⇒ (
1
s
)D− 1

2M−1
∫ 1

0
z(r)B̄(r)dr ,

where β̂LS = (β̂k) is the least squares estimator of the unknown vector β = (βk) . Then
by using similar and tedious arguments, we also have

(
1
T

)2(d+D)
T∑

t=1

u2
t = (

1
s
)2(D− 1

2
) 1
T

T∑
t=1

[
1

T dnD−1
√
n
ut]2](A.10)

w=⇒ (
1
s
)2(D− 1

2
)
∫ 1

0
B̄2(r)dr ,

and

(
1
T

)2(d+D)
T∑

t=1

û2
t(A.11)

w=⇒ (
1
s
)2(D− 1

2
)[
∫ 1

0
B̄2(r)dr − (

∫ 1

0
z(r)B̄(r)dr)

′
M−1(

∫ 1

0
z(r)B̄(r)dr ,

where ût (t = 1, · · · , T ) are the least squares residuals. By gathering the above random
terms, we finally have the desired weak convergence as

1√
T
t(βk) w=⇒ t∗k .(A.12)

When d = 0, we need to modify the above derivations slightly. For instance, (A.5)
should be replaced by the simple form as

(A.5)
′

ut ∼ u∗t =
∑

[
t(T )

s
]≥s1≥···≥sD≥1

v(sD−1)s+i

for t = ([ t(T )
s ] − 1)s + i (i = 1, · · · , s) and then (A.7) should be replaced by

(A.7)
′ 1

TD+ 1
2

T∑
t=1

ztut
w=⇒ (

1
s
)D+ 1

2

s∑
i=1

∫ 1

0
zi(r)B̄i(r)dr .

Because the following derivations are completely pararell to those for the case when
d ≥ 1, we omit their details.

The rest of our proof is the results of standard and tedious arguments of weak
convergence for weakly dependent time series which are routine. In the general case we
divide both the numerator and the denominator of (2.11) by σ and also we need to show
that we can ignore the initial conditions asymptotically. Then under the assumptions
we have made it is straightforward to show that β0 = 1 and βj = O(ρj) (|ρ| < 1) ,
where we write

ut =
∑

t≥s1≥···≥sd−1

s∑
i=1

∑
[
sd−1

s
]≥sd≥···≥sd+D≥1

u
(d+D)
(sd+D−1)s+i ,(A.13)
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and

u
(d+D)
(sd+D−1)s+i ∼ u

(d+D)∗
(sd+D−1)s+i =

∞∑
j=0

βjv(sd+D−1)s+i−j .(A.14)

Hence we can show that the effects of weak dependence are cancelled out in the numer-
ator and the denominator of the t-ratio and we have the desired result in the general
case. Q.E.D.

Derivation of Theorem 3.2 :
Without loss of generality we take the seasonal dummy variables and we write

∑s
j=1 βjzjt =∑s

j=1 ajI
(j)
t , where I

(j)
t (j = 1, · · · , s) are seasonal indicator functions. (If there are no

seasonal dummy variables, we need to define the state vector and other notations ac-
cordingly.) Also we consider the case when p ≥ 1, P ≥ 1, r ≥ s and 1 ≤ p ≤ s for the
resulting simplicity. (When s ≤ p ≤ 2s, we can use similar arguments below by con-
structing a different set of 2s+(p−s) dimensional vector and transformations involved,
for instance. Nonetheless, the essential arguments are the same in other cases.) Then
the (s+p)-dimensional state vector {Yj} has the vector representation

Yj = [Is+p −D0]a + D0Yj + D1Yj−1 +
P∑

i=2

B∗
i Yj−i −

P∑
i=1

AiYj−i + Vj,(A.15)

where V
′
j = (v(j−1)s+s, · · · , v(j−2)s+s−p+1) are (s+p)×1 random vectors, a

′
= (as, · · · , as−p+1)

is a (s + p) × 1 vector, Bj = diag(Φi
j) (j = 1, · · · , P ) are s × s diagonal matrices,

B∗
j =

(
Bj O

O O

)
,

D0 =




0 φ1 · · · φp 0 · · · 0
0 0 φ1 · · · φp 0 · · · 0
0 0 0 · · ·
0 0 0 0 · · ·
0 · · · 0 φ1 · · · φp

O O · · · O O




,(A.16)

Ai =




0 φ1Φs−1
i · · · φpΦ

s−p
i 0 · · · 0

0 0 φ1Φs−2
i · · · φpΦ

s−p−1
i 0 · · ·

0 0 0 · · ·
0 0 0 φ1Φ1

i · · · φpΦ
s−p+2
i 0

0 · · · φ1Φs
i · · · φpΦ

s−p+1
i

O O O



,

and

D1 =

(
B1 O

Ip O O

)
,

are (s + p) × (s + p) matrices.
This vector representation of time series model looks very complicated. However, we
have the next key results on the associated characteristic equation after lengthy ma-
nipulations of related matrices. For the completeness of our discussions we give two
lemmas on the determinants of the associated matrices. We note that Lemma A.1 is a
simple consequence of Lemma A.2.
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Lemma A.1 : The associated characteristic equation for the vector AR process defined
by (A.15) can be written as

c(λ) = |λP [Ij −D0] − λP−1[D1 − A1] −
P∑

i=2

λP−i[B∗
i −Ai]| = 0 .(A.17)

Then we have the equality that

c(λ) =
p∏

i=1

(λ− ρs
i )

s∏
i=1

[λP − λP−1Φi
1 − · · · − Φi

P ] ,(A.18)

where ρi (i = 1, · · · , p) are the solutions of the equation

λp − λp−1φ1 − · · · − φp = 0 .(A.19)

Lemma A.2 : We have the simple relation on the determinants of the associated
matrix as

|




1 −φ1 · · · −φp 0 · · · 0
0 1 −φ1 · · · −φp 0 0
0 0 1 · · ·
0 0 0 · · · · · ·
0 · · · 1 −φ1 · · · −φp

−φp · · · 0 λ −λφ1 · · · −λφp−1

· · ·
−φ2 · · · λ −λφ1

−φ1 · · · −φp · · · 0 λ




|(A.20)

=
p∏

i=1

(λ− ρs
i ) ,

where ρi (i = 1, · · · , p) are the solutions of the characteristic equation of (A.19).

Proof of Lemma A.2 :
We define a sequence of p×1 vectors {cj} (j = −p+2, · · · , p) by the difference equation

cj = φ1cj−1 + · · ·+ φpcj−p (j = 2, · · · , s− p) ,(A.21)

and the initial conditions

(c−p+2, · · · , c1) =




0 0 · · · 0 φp

1 0 · · · 0 φp−1

0 1 0 · · · φp−2

· 0
0 · · · φ1


 .(A.22)

Also we define cs by

cs = φ1cs−1 + · + φpcs−p + (

−φp−1λ
...

−φ1λ
λ

)(A.23)
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and the last (p-1) vectors cs−1, · · · , cs−(p−1) in the similar way. By applying a sequence
of elementary transformations of matrices, we can evaluate the determinant (A.20)
which is equivalent to the determinant of p× p matrix (cs−(p−1), · · · , cs) . Then we use
the relation

(cs−p+1, · · · , cs) = λIp − (c2, · · · , cp)




0 0 · · · 0 φp

1 0 · · · 0 φp−1

0 1 0 · · · φp−2

· 0
0 · · · φ1




s−p

.(A.24)

Finally by considering the determinant of (A.24) and using the initial conditions on
{cj} , we have the desired result.

Proof of Theorem 3.2 :
By using Lemma A.1, we notice that the stability assumptions in Theorem 3.2 are
equivalent to the conditions that the absolute values of all characteristic roots of (A.18)
are less than one. Then we immediately obtain the desired result by using the standard
arguments in the statistical time series analysis. (See Chapter 5 of Anderson (1971) for
instance.)

Proof of Theorem 3.3 :
We first multiply I

(i)
t to (3.4) and take the expectations. Under the stability conditions,

we have
µi = E[ytI

(i)
t ] =

ai

1 − bi
(i = 1, · · · , s) .(A.25)

Then by using the Ergodic Theorem we have

1
T

T∑
t=1

yt =
1
s

s∑
i=1

[
1
n

n∑
j=1

y(j−1)s+i]
p−→ 1

s

s∑
i=1

µi = µ̄(A.26)

as n ↑ +∞ . In the similar vein, by multiplying I
(i)
t to y2

t and taking the expectations,
we have

E[y2
t I

(i)
t ] =

1
1 − b2i

[a2
i + σ2

i + 2aibiµi] .(A.27)

Hence
1
T

T∑
t=1

y2
t =

1
s

s∑
i=1

[
1
n

n∑
j=1

y2
(j−1)s+i]

p−→ 1
s

s∑
i=1

[
a2

i + σ2
i + 2aiσiµi

1 − b2i
](A.28)

as n ↑ +∞ . Then by using the relation of ai = (1 − bi)µi (i = 1, · · · , s) , we can
calculate the probability limit as

1
T

T∑
t=1

(yt − ȳ)2 =
1
T

T∑
t=1

y2
t − ȳ2(A.29)

p−→ 1
s

s∑
i=1

σ2
i

1 − b2i
+

1
s

s∑
i=1

ai(ai + 2biµi)
1 − b2i

− µ̄2

=
1
s

s∑
i=1

σ2
i

1 − b2i
+

1
s

s∑
i=1

(µi − µ̄)2
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as n ↑ +∞ . Also we notice that

1
T

T∑
t=1

(yt−s − ȳ−s)(yt − ȳ)(A.30)

=
1
T

T∑
t=1

(yt−s − µ̄)[
s∑

i=1

(ai + biyt−s + σivt) − µ̄] + op(1) .

Hence by using simple calculations, its probability limit can be written as

s∑
i=1

aiE[
1
T

T∑
t=1

(yt − µ̄)I(i)
t ] +

s∑
i=1

biE[
1
T

T∑
t=1

(yt−s − µ̄)yt−sI
(i)
t ](A.31)

=
s∑

i=1

ai(
µi − µ̄

s
) +

s∑
i=1

bi[
1
s

a2
i + σ2

i + 2aibiµi

1 − b2i
− µ̄

µ

s
]

=
1
s

s∑
i=1

biσ
2
i

1 − b2i
+

1
s

s∑
i=1

(µi − µ̄)2 ,

where we have used the relation ai = (1−bi)µi (i = 1, · · · , s) . Then we have the desired
result. Q.E.D.
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