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Abstract

In this paper, we consider time series with the conditional heteroskedastic-
ities that are given by nonlinear functions of integrated processes. Such
time series are said to have nonlinear nonstationary heteroskedasticity
(NNH), and the functions generating conditional heterogeneity are called
heterogeneity generating functions (HGF’s). Various statistical properties
of time series with NNH are investigated for a wide class of HGF’s. For
NNH models with a variety of HGF’s, volatility clustering and leptokur-
ticity, which are common features of ARCH type models, are manifest. In
particular, it is shown that the sample autocorrelations of their squared
processes vanish only very slowly, or do not even vanish at all, in the
limit. Volatility clustering is therefore well expected. The NNH models
with certain types of HGF’s indeed have sample characteristics that are
very similar to those of ARCH type models. Moreover, the sample kurto-
sis of the NNH model either diverges or has a stable limiting distribution
with support truncated on the left by the kurtosis of the innovations.
This would well explain the presence of leptokurticity in many observed
time series data. To illustrate the empirical relevancy of our model, we
analyze the spreads between the forward and spot rates of USD/DM ex-
change rates. It is found that the conditional variances of the spreads can
be well modelled as a nonlinear function of the levels of the spot rates.
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1. Introduction

Since the seminal work by Engle (1982) and the later extension by Bollerslev (1986),
the ARCH type models have widely been used to model volatilities for economic and
financial time series data. In the ARCH models, conditional heteroskedasticities are
regarded as being generated in autoregressive-moving average fashions by the squared
past values of the underlying series. As is well known, the processes generated in such
ways necessarily show volatility clustering and leptokurticity, which are observed
commonly for many actual economic and financial time series data. The reader is
referred to Bollerslev, Engle and Nelson (1993) for a good overview, and to Gouriéroux
(1997) for a detailed description of some of basic statistical properties, of the ARCH
type models.

This paper introduces a new class of models for volatility, which can be used as
an alternative to the ARCH type models. We consider time series having conditional
heteroskedasticities given by nonlinear functions of some integrated processes with
unit roots.? There appear to be many potential examples for such time series. The
volatility of a stock return may well be positively related with the level of interest rate
or transactions quantity, which are believed to be integrated. We may likewise con-
sider the volatility in the nominal interest rate differentials as a function of inflation,
which is also commonly considered to have a unit root. It may also be reasonable
to model the volatility of the spread between forward and spot rates as a function of
the level of the spot rate.

In the paper, the conditional heteroskedasticity given by a nonlinear function
of a nonstationary integrated process is said to have nonstationary nonlinear het-
eroskedasticity (NNH), and the function generating conditional heterogeneity is called
heterogeneity generating function (HGF). The statistical properties of the NNH mod-
els depend crucially on the types of HGF’s. Here we consider two different classes
of functions: integrable and asymptotically homogeneous functions. Integrable func-
tions are the functions that are integrable, and asymptotically homogeneous functions
are the functions that behave asymptotically as homogeneous functions. They are
the classes of functions that are considered by Park and Phillips (1999, 2000) in their
studies on nonlinear models with integrated time series. These two classes include
a wide variety of HGF’s. With added technical regularity conditions, the integrable
(I) and asymptotically homogeneous (H) functions are respectively called I- and H-
regular.

We investigate various statistical properties of the time series driven by the NNH
models with a wide class of HGF’s. For the NNH models with a variety of HGF’s,
manifest are volatility clustering and leptokurticity, which are the well known features
of the ARCH type models. In particular, we show that the sample autocorrelations
of the squared processes generated by the NNH models have strong persistence, i.e.,
they vanish very slowly or do not even vanish for all lags. We may thus expect to
observe substantial volatility clusterings for the time series generated by the NNH

2Nonstationa,ry volatility was studied earlier by Hansen (1995). His model, however, specifies the
volatility as a function of normalized (near-integrated) process, and does not have the main features
of our model which are due to the presence of stochastic trend in the process generating volatility.



models. The squared processes from the NNH models with H-regular HGF’s have in
general sample autocorrelations that have the same random limit for all lags. On the
other hand, the NNH models with I-regular HGF’s yield the squared processes whose
sample autocorrelations decrease very slowly as the lag order increases. The NNH
models with certain types of HGF’s indeed have sample characteristics that are very
close to those of the stationary and nonstationary ARCH type processes.

The NNH models also well explain the observed leptokurticity in the economic
and financial time series data. The processes generated by the NNH models with
various HGF’s all unambiguously predict the presence of leptokurticity. For the
NNH models with I-regular HGF’s, the sample kurtosis diverges at the rate of \/n.
We would thus normally expect to have large sample kurtosis for any reasonably
large samples. For the NNH models with H-regular HGF’s, the sample kurtosis has
well defined limiting distributions, which have supports truncated on the left by the
kurtosis of the innovations. Therefore, the NNH models with H-regular HGF’s also
produce the data which have leptokurticity. The processes driven by the NNH models
may not necessarily be unconditionally homoskedastic. Depending upon the HGF’s,
they may be unconditionally homoskedastic as for the stationary ARCH models, or
unconditionally explosive similarly as for the nonstationary ARCH (such as IGARCH)
models. Of course, they can be unconditionally heteroskedastic, but not explosive at
the same time. The NNH models thus provide a much more flexible class of volatility
models, especially in terms of the moment characteristics, than the existing ARCH
type models.

The aforementioned properties of the NNH models largely follow from the two
essential characteristics of the model: the nonlinearity of the function and the non-
stationarity of the explanatory variable, which generate conditional heterogeneity. Of
the two, the latter appears to be much more important. In particular, we demon-
strate in the paper that the conditional heterogeneity generated by stationary time
series, i.e., stationary nonlinear heteroskedasticity (SNH), does not produce volatil-
ity clustering. The squared processes from the SNH models, for all classes of HGF’s,
have sample autocorrelations which decay exponentially as the order of lags increases.
Their typical sample paths indeed show little volatility clusterings, regardless of the
classes of HGF’s used to generate the data.

For the purpose of illustration, we present and investigate an empirical NNH
model. The model specifies the volatility of the spread between the forward and spot
USD/DM exchange rates as a function of the level of the lagged spot rates. The
spread is clearly shown to have volatility that is an increasing function of the lagged
spot exchange rates. It becomes more volatile when the lagged spot rates are higher.
For the volatility in the forward-spot spread of the USD/DM exchange rates, the
NNH model with an H-regular HGF appears to be quite appropriate with the lagged
spot USD/DM exchange rate as an explanatory variable.

The rest of the paper is organized as follows. Section 2 introduces the model with
some preliminary theories and concepts. Various statistical properties for the samples
from the NNH models are investigated in Section 3. The asymptotic behaviors of the
sample statistics such as the sample autocorrelations of the squared processes, as well



as the sample variance and kurtosis, are derived. The problem of estimating HGF’s
is addressed in Section 4. We show in particular that appropriately parametrized
HGF’s can be consistently and efficiently estimated from the nonlinear regressions
of the squared processes. Section 5 presents an empirical application of the NNH
model to the volatility in the USD/DM forward-spot exchange rate spreads. Section
6 concludes the paper, and Appendices A and B contain mathematical proofs for the
technical results in the paper.

2. The Model and Preliminaries

We write our volatility model as
Yt = Ot (1)

and let () be a filtration, denoting information available at time ¢.

Assumption 1 Assume that
(a) (et) is id (0,1) and adapted to (Ft), and
(b) (04) is adapted to (F—1).

The conditions introduced here are minimal. Some of our subsequent results in
particular require stronger moment conditions for (&) such as E|g;|P < oo for p > 4
or p > 8. This will be specified more precisely later.

Under Assumption 1, we have

E(y:F:-1) =0 and E(y}|F-1) =07

The time series (y:) has conditional mean zero with respect to the filtration (%), and
therefore, (y;, F;) is a martingale difference sequence. It is, however, conditionally
heteroskedastic with conditional variance o2. We consider in the paper conditional
heteroskedasticity generated by a nonlinear function of some explanatory variable.

Assumption 2 Let
ot = f(ze) 2)

Jor some nonnegative function f : R — R, and

Tt = pTe-1+ Wy (3)
with p = 1. Assume that (x;) is adapted to (F;_1).

With p = 1, the explanatory variable (z;) defined in (3) becomes a nonstationary
integrated process. However, we also consider () generated as in (3) with |p| < 1
for the purpose of comparison. In our subsequent discussions, our volatility model
given by Assumptions 1 and 2 will be referred to as NNH(Nonstationary Nonlinear
Heteroskedasticity). In contrast, the volatility model with |p| < 1 in (3) is called
SNH(Stationary Nonlinear Heteroskedasticity). The function f introduced in (2)
will be called the heterogeneity generating function (HGF) throughout the paper.



Our NNH model here is suggested as an alternative to ARCH or its variants
such as GARCH and EGARCH. The conditional heteroskedasticity given by (1) and
Assumption 1 is routinely modelled using one of such models. Among many ARCH

type models, the most commonly used seems to be the GARCH(p, ¢) model, which
we may write as

P g
ol =p+ Z axop_y + Z Bryi_x (4)

k=1 k=1
for some p, ax’s and By’s > 0. Let a(z) = Y8 _; axz® and B(2) = YI_, B2~
Normally, we assume 0 < (1) + 8(1) < 1 in (4), which as is well known implies

that the squared process (y7) is stationary. If a(1) + 3(1) = 1 in (4), then (y2)
becomes an integrated process,® and for this reason, the model is called an integrated
GARCH(p, g) or IGARCH(p, q). For the model with p = ¢ = 1, we will signify the
parameters simply by o and 3.

The behavior of our NNH model depends crucially on the HGF f in (2). Among
the three classes of functions — integrable functions, asymptotically homogeneous
functions and exponential functions — introduced by Park and Phillips (1999), we
consider only the first two classes. The integrated processes have stochastic trends,
and their exponential transformations appear to be too explosive to be useful for
practical applications. With added regularity conditions, the functions that are inte-
grable and asymptotically homogeneous will be called respectively I and H-regular.
The classes of functions will be introduced below. Here we just give a brief description
of each class of functions with required regularities. For more details on the descrip-
tions and regularity conditions for each class of functions, the reader is referred to
Park and Phillips (1999, 2000).

'To derive the asymptotics for the NNH models with I-regular HGF’s, we assume
that (w¢), ws = x4 — 41, is either an iid sequence with E|w¢|? < oo for some ¢ > 4
(as in Assumption 3S), or a linear process driven by an iid sequence (1,) such that
E|n,|? < oo for some g > 4 (as in Assumptions 4S and 5S). In the following definition,
we let g be the number that will be given later by such moment conditions.

Definition 1 A transformation f on R is called I-regular if f is bounded, integrable
and piecewise Lipschitz, i.e.,

[f(z) = f)] < clo ~y[*

on each piece of its support, for some constant ¢ and £ > 6/(q — 2).

Roughly, I-regular functions are the bounded and integrable functions which are
piecewise smooth. As stated in Definition 1, the required smoothness depends on the
order of existing moments for the innovation (w;) of the explanatory variable (z;). If
the higher moments of (w;) exists, then we may allow for less smooth functions in the
class of I-regular transformations. Examples of I-regular functions include indicators

3This, of course, does not imply that the process (y:) itself is nonstationary. It is indeed shown
by Nelson (1990) that the IGARCH(1,1) process is strictly stationary without finite second moment.



on compact intervals and smooth bounded integrable functions such as the Laplacian
function, e~1®l| and the Gaussian function, e,

To define H-regular functions, we first introduce some classes of transformations
on R. We denote by 7.5 the class of locally bounded transformations on R, and
define 7;3 to be its subset consisting of T" such that T(z) = O(e®®!) as |z| — oo for
some constant c. Also, we let 7 be the class of all bounded functions vanishing at

infinity, i.e., T(x) — 0 as |z| — oo, which is a subset of the class 73 of all bounded
transformations on R.

Definition 2 A transformation f on R is called H-regular if f can be written as
) = v(Wh(&) + (2, )
where h is a homogeneous function on R, and where r satisfies

r(z,A) = a(M)p(z) or b(A\)p(z)g(Az)

with a and b such that a(\)/v(A) — 0 and b(A\)/v()) < 00 as A — o0, and p and q
such that p € 1,5 and q € T.

‘The H-regular functions behave asymptotically as homogeneous functions. The con-
ditions in Definition 2 guarantee that the remainder term r(z, \) becomes negligible
as A — o0o. Therefore, it follows that f(Az) = v(A\)h(z) for A large. We will call v
and h respectively the asymptotic order and the limit homogeneous function of f.
The class of H-regular functions includes a wide variety of functions. It includes,
for instance, constant functions, all distribution function-like functions, logarithmic
functions and all functions that behave asymptotically as polynomials.

For a bounded H-regular function f, the corresponding limit homogeneous func-
tion h becomes homogeneous of degree zero, and is given by

h(z) = c11{z > 0} + co1{z < 0} (5)

where c1,c2 € R are some constants. Such an H-regular function has the asymptotic
order v(A) = 1. The class of such H-regular functions includes in particular constant
functions and distribution functions, which have limit homogeneous function A given
as in (5) respectively with ¢; = c3 = ¢ for some constant ¢ and with ¢y = 0 and
c2 = 1. As shown in Park and Phillips (1999), the logarithmic functions are also H-
regular with the asymptotic order ¥(\) = log A and the limit homogeneous function
h in (5) for ¢; = ¢ = 1. The H-regular function f that behaves asymptotically as a
polynomial of order p has the limit homogeneous function h given by

h(z) = c|z|? (6)

for some constant c, which is homogeneous of degree p > 0. For the H-regular
functions having h in (6) as the limit homogeneous function, we have v(\) = ¥, We

“We may consider H-regular functions with the limit homogeneous functions having negative
degrees of homogeneity, like the reciprocal function, as in Park and Phillips (1999, 2000). Such
functions, however, appear to be of little empirical relevance here, and thus not considered in the
paper.



refer to as Ho- and Hp-regular functions, respectively, the H-regular functions with
the asymptotic homogenous functions given by (5) and (6).

Our subsequent asymptotic theory is presented using various functionals of stan-
dard Brownian motion defined on [0, 1], which will be signified by W throughout the
paper. It also involves the local time L of Brownian motion W. The Brownian local

time L is a stochastic process with two parameters, ¢ and s, say, which can be defined
as

L(t, s) = lim % /Ot {|W(r) — 5| < e} dr

e—0

Roughly, it may be interpreted as the time spent by W in an immediate neighborhood
of s up to time ¢t. The Brownian local time is known to have a version continuous
both in ¢ and s, so we may assume L is given as such. The reader is referred to
Chung and Williams (1990) for an elementary introduction to the concept of local
time. The asymptotics for the NNH models with I-regular HGF’s, in particular,
include the Brownian local time at ¢ = 1 and s = 0, i.e., L(1,0). It is well known
that L(1,0) has the same distribution as [W(1)], i.e., the modulus of the standard
normal variate. See, e.g., Revuz and Yor (1994). The distribution of L(1,0) is thus
given by the truncated standard normal supported on the positive half of R.

3. Statistical Properties of NNH

In this section, we investigate the statistical properties of the NNH model. In partic-
ular, the asymptotic behaviors of the sample autocorrelation function of the squared
process and other sample moments such as the sample variance and the sample kur-
tosis of the process generated by the NNH model are derived, and compared with
those from the competing models such as the GARCH and the SNH models intro-
duced in the previous section. The sample paths for the NNH and SNH with some
selected HGF’s, and the GARCH models with several parameter values, are simu-
lated and presented in Figures 1 — 3. They will be referred frequently as we explain
our statistical results given below.®

3.1 Sample Autocorrelations of the Squared Process

We first consider the sample autocorrelations of the squared processes generated from
the NNH models and compare them with those generated by other volatility models.

*For all the simulated sample paths, the innovations (¢;) in (1) are generated as independent
normals. For the NNH and SNH models, the innovations (w) in (3) are drawn independently of (&)
as independent standard normals with p = 1 and 0.5, respectively. The parameter values for the
GARCH models are chosen so that a+3 = 1 and 0.5, to make their results roughly more comparable
to those from the NNH and SNH models.



Define the sample autocorrelations for (y?) by

n
> W -2y -3
t=k+1
R’?xk =

n
> (W —y2)?
t=1

where 32 denotes the sample mean of (y?). To precisely characterize the asymptotic
behavior of B2, under the NNH models, we make the following assumptions, in
addition to Assumptions 1 and 2.

Assumption 3S Assume

(a) (wt) are iid.

(b) Ef*(z + wyt) < 00 for allz € R and k > 1, where Wit = Weg1 + - + Weyk.

(c) Elet|P < 00 for some p > 8.

(d) (et) and (w:) are independent.

(e) (wt) has distribution absolutely continuous with respect to Lebesque measure,
characteristic function ¢(t) such that t"¢(t) — 0 as t — oo for some r > 0, and
E |w|? < 0o for some q > 4.

Assumption 3W  Assume (a) — (d) of Assumption 3S, and
(e) Ew? < o0.

Clearly, Assumption 3W is weaker than Assumption 3S, where ‘W’ and ‘S’ respec-
tively stand for weak and strong. Whenever the distinction is unnecessary, we will
just refer to Assumption 3. Under Assumption 3S, (wy;) has density with respect to
the Lebesque measure on R, and we signify the density by px. Also, we denote by
02, the variance of (wt), and by k% the kurtosis of (g¢) throughout the paper.

The classical Donsker’s theorem applies to (w;) under Assumption 3. Therefore,
if we let [nr] be the integral part of nr for r € [0,1] and define

then it follows that
W, —-a W (7)

where W is the standard Brownian motion on the unit interval [0,1]. Here and
elsewhere in the paper, —4 denotes the convergence in distribution. Likewise, we use
—, in the paper to signify the convergence in probability.

We now present the asymptotic results for Rﬁk under the NNH models.



Theorem 1 Let Assumptions 1 and 2 hold, and let k > 1.
(a) If f is I-regular, then under Assumption 3S

/:: /_ Z f@)f(z+ y)l;k(y)dxdy
[ P

2
Roy —p

as n — oo,
(b) If f is H-regular with limit homogeneous function h, then under Assumption 3W

N /0 " RAW(r)) dr — ( /0 W) dr>2

R - - 5
K /0 h2(W(r))dr—( /0 h(W(r))dr)

as n — oQ.

It is expected that the results in Theorem 1 hold under weaker conditions than
we impose here. Some of the conditions in Assumption 3 are indeed not absolutely
necessary. The independency assumption between (¢;) and (w;) in Assumption 3(d) is
not necessary. Only the orthogonality between (w;) and certain higher order functions
of (e¢), such as (e2€2_,), is required. We may thus allow for the presence of correlation
between (e;) and (w;) without affecting our results in Theorem 1. See the proof of
Theorem 1 in Appendix B. Moreover, we may substantially weaken Assumption 3S(e),
which was introduced earlier by Park and Phillips (1999) to develop the asymptotics
for the integrable transformations of the integrated time series. This will be shown
in a later work.

Theorem 1 shows the asymptotic behaviors of the sample autocorrelation func-
tions of the squared processes generated by the NNH models. For the NNH model
with I-regular HGF, Rflk converges in probability to a nonrandom limit, which as a
function of ¥ > 1 we may regard as the asymptotic autocorrelation function of the
squared process. The actual values of the asymptotic autocorrelation function are
determined by the distribution of (w:), as well as the HGF. A quite different picture
emerges if the NNH model is given by an H-regular HGF. For the NNH model with
H-regular HGF, R2, has a random limit, in sharp contrast with the NNH model with
I-regular HGF. Moreover, the limit is independent of k and given by a random con-
stant for all values of the lag order & > 1. It is also not affected by the distribution
of (wt)

For the NNH model with I-regular HGF, the asymptotic dependency of R2, on the
lag order k can further be investigated by introducing some additional assumption.
Let the distribution of (w;) be stable, and assume, in particular, that wx; =4 cxws
for some numerical sequence (cx) such that ¢y — 00 as k — 00, where =; denotes
the distributional equivalence. Then it follows that

pr(z) = ¢ 'p(c; 'z)



where p is the density of (w;) with respect to the Lebesque measure, and we have

[ [ s@iatvmwist= [~ [ 101+ oty - 0

Consequently, the asymptotic autocorrelation function of the squared process de-
creases down to zero as k — 00. It is thus expected that Rﬁk for the NNH model
with I-regular HGF has small values for large k, at least for large enough samples.
The asymptotic autocorrelation functlon of the squared process for the Gaussian
NNH model with HGF f(z) = e —=% ig given in the second column of Table 1 for some
selected values of k.

It is illuminating to compare the behaviors of the sample autocorrelations of
the squared processes for the data generated by the NNH and the GARCH models.
Consider the simple, but most popular GARCH(1,1) model with parameters o and 3.
For the stationary GARCH model with 0 < a+ 3 < 1, the theoretical autocorrelation
of the squared process decreases at an exponential rate. One may also easily see that
the sample autocorrelation of the squared process has probability limit given for & > 1
by
r-10+af” +

1—ap

which is just the k-th autocorrelation of the stationary process (y?). When a+8 = 1,
the process (y?) becomes an integrated process and R2 . converges in probability to
unity at all values of k.

Both for the NNH model with I-regular HGF and the stationary GARCH process,
the sample autocorrelation of the squared process is expected to decrease, at least
for the large enough samples, as k increases and to ultimately vanish as k tends to
infinity. It seems, however, that there is an important difference in their respective
decreasing patterns. Under the stationary GARCH model, the probability limits of
Rﬁ x decrease at an exponential rate monotonically as k increases. On the other hand,
when the data are generated by the NNH model with I-regular HGF, the limiting
values of R2, remain significantly different from zero for very large values of k. See
the second column of Table 1. The typical sample paths of the processes driven
by the NNH model with an I-regular HGF would thus be expected to show more
volatility clusterings. In contrast, the volatility clusterings for the samples generated
from the stationary GARCH model are supposedly not very conspicuous. This is
clearly demonstrated in Figures 1 and 2.

The limiting densities for the sample autocorrelations of the squared processes
from the Gaussian NNH models with H-regular HGF’s having limit homogeneous
functions h(x) = 1{z > 0} and h(z) = |z| are given in Figure 4. It is interesting
to note that the limit distributions may vary substantially across different HGF’s.
For the models with HGF’s having limit homogeneous function h(z) = 1{z > 0},
the squared processes are likely to have serial correlations that could be either very
small or very large. In contrast, if the squared processes are generated by the models
with HGF’s having limit homogeneous function h(z) = |z|, the serial correlations of
the squared processes are most likely to have moderate values. For the former, the

(o +B)
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Table 1: Asymptotic Autocorrelations of Squared Processes

NNH SNH
k e e 14 e /(1+€e*) |z

1 .2357 0218  .0040 .0395 .0344

2 1925 .0050  .0009 0197 .0085

3 1667 .0012  .0002 .0098 .0021

1 1491 .0003  .0001 .0049 .0005

5 1361 .0000  .0000 .0025 .0000
10 .1005 .0000  .0000 .0001 .0000
100 .0332 .0000 .0000 .0000 .0000

sample paths may show either little or heavy volatility clusterings. The latter in most
cases generates samples with moderate volatility clusterings.

The expected behaviors of the NNH models with H-regular HGF’s are more com-
parable to those of the IGARCH models. Indeed, some of their typical sample paths
look quite similar, as one may see from Figures 1 and 2. The sample autocorrelations
of the squared processes generated by both models are not expected to decrease as k
increases, though they have different probability limits, i.e., unity for the IGARCH
models and some random numbers for the NNH models with H-regular HGF’s. For
both models, the probability limits of R%k’s do not depend upon the lag length k.
There is, however, one important difference between the two models. For the NNH
mode]l with H-regular HGF, we expect Rﬁk to be in large samples close to unity at
k = 0 and stay at the same value below unity for all ¥ > 1. On the other hand, for
the IGARCH process, R2, is expected to take values close to unity at all lags for
large enough samples. At least as far as the sample autocorrelations of the squared
processes are concerned, the NNH models with H-regular HGF’s seem to be prac-
tically more relevant. In many cases, the sample autocorrelations of the squared
processes are quite persistent, but their values are unambiguously distant from unity.
The sample autocorrelations of the squared returns computed from various stock
price indices are given in Table 2.5

We now look at the SNH models, and compare them with the NNH models. Under
SNH, the sample autocorrelations of the squared process are expected to decrease
as k increases. Let (z:) be generated as in (3) with |p| < 1. Assume that (w)
is iid and independent of (¢;) and that (e;) satisfies a certain moment condition,
as in Assumptions 3(a), (c) and (d). Also, denote by g and g respectively the
densities of (z;) and (z}), where =¥ = w; + pw;_1 + -+ + p* lwy_g41, and assume

8The data were obtained for the period of 1970.1.1 — 2000.6.30, and the returns were calculated
as the first differences of logged stock price indices.
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Table 2: Sample Autocorrelations of Squared Stock Returns

Daily Weekly Monthly
k DJ  SP500 DJ  SP500 DJ  SP500
1 0933 .1152 1547 11352 .0237 .0878
2 .1457  .1505 0926 .1096 0267 .0622
3 0665 .0772 .0651 .0896 .0306 .0651
4 0172 .0234 .0581 .0881 .0101 .0254

5 1058 1367 .0596 .0492 -.0108 -.0088
10 .0084 .0141 0832 .1043 .0158  .0305
100 -.0010 -.0004 -.0250 -.0303 -.0595 -.0504

that Ef%(x;) < co and Ef?(z}) < oo for all values of k. Then we have

- Eyfyf_k—(Ey?)z
" Eyt - (B)

where

o o]

By =Ef(z) = [ @)@ da

Eyf =B a) =xt [ Po)ala)ds
and

Eyly? . = E f(z:) f(ze_p)
- /_w /_w F(p*z + y) f () (=) gr (v)dady

Since we have |p|¥ — 0 and g — q as k — oo, we may easily see that the autocorre-
lation of (y?) vanishes as the order k of lags increases up to infinity.

For the sample autocorrelations of the squared processes, the SNH models thus
yield results similar to the NNH models with I-regular HGF’s. It seems, however, that
the sample autocorrelations of the squared processes from the SNH models diminish
much faster than those from the NNH models with I-regular HGF’s. For the Gaussian
case, the former quickly goes to zero after k = 1, while the latter shows rather strong
persistence though they ultimately vanish as k tends to infinity. This is observed
for a wide class of functions. For the SNH models, the diminishing patterns of R?m
are indeed not significantly different across different classes of functions, which is in
sharp contrast to the NNH models. The patterns of Rﬁk for the processes generated
from the SNH models are roughly close to those for the stationary GARCH processes
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that we considered earlier. The probability limits of R2 - for the processes generated
by the Gaussian SNH models are tabulated in Table 1 for a selected set of functions.
See Figure 3 for some typical sample paths generated by the SNH models.

The result in part (b) of Theorem 1 implies, in particular, that the sample au-
tocorrelations of the squared processes for the NNH models with H-regular HGF’s
having constant limit homogeneous functions converge in probability to zero at all
lags. To further investigate their asymptotic behaviors, we write

f(z)=c+g(z) (8)

for some constant ¢. In what follows, p; is defined as in Theorem 1 and Ni(0,1)’s
denote a sequence of independent standard normal random variates.

Corollary 2 Let Assumptions 1 and 2 hold, and let k > 1. If f is given as in (8)
and g is I-regular, then we have under Assumption 3S

VnRY, —y L(l 0

Ow( 54

1) / - / 9(x)g(z + y)pr(y)dzdy + Ni(0,1)

as n — 00, where Ng(0,1)’s are independent of L(1,0), and given also independently
across all k > 1.

The H-regular functions with constant limit homogeneous functions are normally
expected to be representable as the sum of the constants and integrable functions as
n (8). The result in Corollary 2 therefore should be applicable for a wide range of the
NNH models with H-regular HGF’s having constant limit homogeneous functions.

The sample autocorrelations of the squared processes from the NNH models with
H-regular HGF’s having constant limit homogeneous functions should have small
values at all lags, especially when the sample size is large. Heavy volatility clustering
is therefore not expected. Corollary 2 gives some interesting further characterizations
on their distributions with respect to the lags for the NNH models with H-regular
HGF’s having constant limit homogeneous functions. Of the two independent random
terms representing the limit distribution of R2 .k, the first term decreases a.s. as the
lag order k increases, while the second term is of mean zero and given independently
for each k. Notice that

/_ o:o /_ o; 9(x)g(z + y)px(y)dzdy — 0

as k — 00, under the same condition as that we have assumed earlier for the NNH
model with [-regular HGF. For the NNH models with H-regular HGF’s having con-
stant limit homogeneous functions, the squared processes yield the sample autocor-
relations which may be regarded in large samples as independent random draws from
a normal distribution realized around a declining trend.
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3.2 Other Sample Moments: Sample Variance and Kurtosis

We now investigate the asymptotic behaviors of other sample moments, such as sam-
ple variance and kurtosis.” The sample variance of (y;) is defined by

We first introduce the assumptions to obtain the asymptotics of the sample variance
S2 under the NNH models. Similarly as before for the analysis of the sample auto-
correlation function of (yt2), two sets of conditions, strong and weak, are introduced.

Assumption 4S Assume
(a) Elet|P < 0o for some p > 4.
(b) (wy) is generated by

o o)
we =LY =Y PxNi 9)
k=0
where =1, p(1 0 with S22 ok < 00, and are tid and has distribution
Yo ¥ k=0 F|Pk Tt

absolutely continuous with respect to Lebesque measure, characteristic function p(t)
such that t"p(t) — 0 as t — oo for some r > 0, and E|n,|? < oo for some q > 4.

Assumption 4W Assume (a) of Assumption 4S and
(b) (we) is generated by (9) where g9 = 1, (1) # 0 with Y324 k/2|¢x| < 00, and
(n;) are iid (0,0'?,).

The asymptotics for the sample variance are given in Theorem 3 below. The
limiting distribution of the sample variance for the NNH model with I-regular HGF
involves the Brownian local time, which we denote as earlier by L(Z, s).

Theorem 3 Let Assumptions 1 and 2 hold.
(a) If f is L-regular, then under Assumption 4S

VA SE 4 (1) L1,0) [~ f(@)da

as n — oQ,

(b) If f is H-regular with limit homogeneous function h and asymptotic order v, then
under Assumption 4W

7\1775 s? /0 h(ouW(r)) dr

as n — Q.

"To define the sample moments here, we assume that Ey; =0 is known. Our subsequent results,
however, hold also for the sample moments defined in terms of the demeaned (y:), ie., (y: — 7),
without such an assumption.
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The sample variances of the time series generated by the NNH models with I-regular
HGF’s converge in probability to zero, as the sample size increases. The behaviors
of the sample variances for the time series from the NNH models with H-regular
HGF’s are more diverse, depending upon the asymptotic orders of the HGF’s. The
asymptotic order v is unity for the bounded H-regular HGF’s and the time series
generated by the NNH models with such HGF’s have finite, though random in gen-
eral, asymptotic variances, as for stationary ARCH processes. For the NNH models
with logarithmic or polynomial HGF’s, ¥(A\) — oo as A — o0, and the sample vari-
ances of the generated time series would thus diverge as the sample size increase.
They have infinite variances in the limit, and therefore, they are more comparable to
nonstationary ARCH, such as IGARCH, models.

Many financial series like stock returns are known to be leptokurtic. It is thus
interesting to investigate the asymptotic behavior of the sample kurtosis of the process
generated by the NNH model. We define the sample kurtosis of (y) by

1 4

72;%

13 L)
o)

and introduce the assumptions needed for its asymptotic analysis.

K% =

n

Assumption 58 Assume (a) E|e|? < 0o for some p > 8, and (b) of Assumption
4S.

Assumption 5W Assume (a) of Assumption 5S and (b) of Assumption 4W.
The asymptotic theory for the sample kurtosis K2 of () is presented below.

Theorem 4 Let Assumptions 1 and 2 hold.
(a) If f is I-regular, then under Assumption 5S

1 - Owha /_O:o f(z)dzx
VR L) (/::f(x)dx)z

as n — 0o.
(b) If f is H-regular with limit homogeneous function h, then under Assumption 5W

1
nﬁ/o h2(W (r)) dr

( /0 W) dr)2

4
Kn —d

as n — Q.
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Theorem 4 summarizes the asymptotic behaviors of the sample kurtosis for the NNH
models. For the NNH model with I-regular HGF, the sample kurtosis diverges as
n — oo. It is therefore expected to have larger values as the sample size increases.
The leptokurticity observed in many economic and financial data may thus well be
explained.

The sample kurtosis does not, on the other hand, diverge if we consider the NNH
model with H-regular HGF'. Instead, it has a random limit. However, for all H-regular
HGF"s, the limiting distribution of the sample kurtosis has support truncated on the
left by the kurtosis x2 of the innovations (e;). To see this, note that

(/01 h(W (r)) dr)2 < /01 h2(W (7)) dr

which holds for all 2, due to Cauchy-Schwarz inequality. The inequality is strict unless
h is a constant function. The leptokurticity is therefore also naturally expected for
the time series generated by the NNH models with H-regular HGF’s.

For the NNH models with H-regular HGF’s, the actual limiting distribution of
the sample kurtosis is determined by the limit homogeneous function of the HGF. If,
for instance, the HGF is given by a distribution function such as the logistic function
f(z) = /(1 + €®), then its limit homogeneous function becomes h(z) = 1{z > 0}.
As is well known, fo L{W(r) > 0} dr has arcsine law with density 1/(7/z(1 — z)) on
the unit interval (0,1). The limiting distribution of the sample kurtosis in this case
is therefore given by a constant multiple of the reciprocal of arcsine law, which has
the density 1/(mwz+/z — 1) over the support (1, 00).

The densities of the limit distributions of K2 for the Gaussian NNH models with
H-regular HGF’s having limit homogeneous functions h(z) = 1{z > 0} and h(z) = |z|
are given in Figure 5. If we compare the two classes of models with h(z) = 1{z > 0}
and h(z) = ||, the latter are more likely to yield leptokurtic observations. Note that
we have

K} —, Kt

€

if and only if h is a constant function. The asymptotic kurtosis of the observed time
series becomes identical to the kurtosis of the innovations, only for the NNH models
with H-regular HGF’s having constant limit homogeneous functions.

4. Estimation of HGF

Let the HGF f in (2) be specified in a parametric form
f(z) = g(=, b0)

with some known function g. We may then write

vi = g(zs, 00) + ut (10)

where

= f(ze)(ef — 1) (11)
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The unknown parameter value 6 in nonlinear regression (10) can then be consistently
estimated using the standard nonlinear least squares method.

The nonlinear regression with integrated regressor such as the one in (10) has
been studied by Park and Phillips (2000). Our regression here, however, is different

from theirs, since ours has errors that are conditionally heteroskedastic and given as
n (11). We define

(2,0) = 29(z,0) (12)

Similarly as in Park and Phillips (2000), we may show that the nonlinear least squares
estimator 8, of 6y in (10) behaves asymptotically as the least squares estimator in
the linear regression

y; = 0'§(z, 60) +ue (13)

under suitable regularity conditions. The asymptotics for 6, may therefore be de-
duced easily from the linear regression (13).

The regularity conditions required for the asymptotic equivalence between the
nonlinear least squares regression (10) and the linear least squares regression (13)
are given in Park and Phillips (2000). The regression function g is a function of
the parameter, as well as the explanatory variable. The required conditions involve
some additional assumptions other than we introduced earlier in Definitions 1 and
2, to control the behavior of g as a function of the parameter. The conditions are
fairly weak and hold for virtually all functions used in practical nonlinear analysis.
In what follows, we simply assume that g satisfies the conditions in Park and Phillips
(2000) modified in an obvious way to accommodate the conditional heterogeneity in
our model, and only consider the functional properties of

9=9(,60) and g=g(-,60)

The following theorem presents the asymptotic distributions of ,,. Here we signify
by N(0,1) a standard normal random variate independent of L(0,1).

Theorem 5 Let Assumptions 1 and 2 hold.
(a) If g and g are I-regular, then under Assumption 4S

V(B — 60) — ( 4~1)1/2P-1/2Ql/2P-1/‘~’N(0 1)
0 L(1,0 ’

where o oo
P= /_ @)@z ad Q= [ () (@)
as n — oQ.

(b) If g and g are H-regular respectively with limit homogeneous function and asymp-
totic order (v,h) and (i, h), then under Assumption 4W

VAR 5

0 4 1/2R—1/231/2R—1/2N 0.1
V(ﬁ) 0) —d (Ne 1) ( ’ )
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where
R=/0 (hh)(owW (r))dr and S=/0 (R2hR) (oW (r))dr

as n — oQ.

The cases we consider in Theorem 5 are not exhaustive. In particular, it may well
be the case that g is asymptotically homogeneous and ¢ is integrable, as for the
regression function g(z,8) = €% /(1 + €°®). For such a regression function, however,
we normally expect gg to be I-regular. As one may easily see from the proof, the
result in part (a) of Theorem 5 applies in this case.

The limiting distribution of 8, for our regression (10) with I-regular regression
function (having I-regular derivative) is mixed normal and has the convergence rate
+/n, exactly as in the model with homogeneous errors considered in Park and Phillips
(2000). However, our limiting distribution is different from theirs, reflecting the errors
being conditionally heteroskedastic. The presence of conditional heterogeneity has a
more noticeable effect on the limiting distribution of 8, when the regression function
is H-regular (and has H-regular derivative). Here we have in general a differing
convergence rate, which is slower by the factor of v(y/n) compared to the same type
of regression with homoskedastic errors. The conditional heterogeneity in the errors
is therefore more detrimental in this case. The limiting distribution for the regression
with H-regular regression function (having H-regular derivative) is also mixed normal
in our case, since we are effectively looking at the strictly exogenous case here.

In the subsequent empirical application, we consider the nonlinear regression with
the regression function given by g(z,60) = az” with § = (a, ). For such regression
function g, we have v(\) = apA”® and h(z) = %, and

. )\,@0 0 . x:ﬂo
) = (ao)\ﬂ" log A ao)\ﬁ(’) and  h(z) = (xﬁo logw)

We have, in particular, A(\)/v()\) — 00 as A — 00, and the nonlinear least squares
estimator 9n is consistent.

The nonlinear regression given in (10) has conditionally heteroskedastic errors.
It is thus well expected that the usual nonlinear least squares estimator is not effi-
cient. To obtain an efficient estimator, the generalized least squares correction for
heteroskedasticity is required. It can be done by minimizing the weighted sum of
squares

Z (yt — g(xta 9))
2(z+, 0o)

We denote by 6,, the resulting estimator. For the actual implementation, we of
course replace g(z,6p) with g(z4, @n) The estimators én and én will subsequently
be referred to respectively as the ordinary nonlinear least squares (ONLS) estimator
and the weighted nonlinear least squares (WNLS) estimator.

The asymptotics for the WNLS estimator 8,, are given below in Corollary 6. Here
we use the same notation as Theorem 5, which present the asymptotics for the ONLS
estimator én.
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Corollary 6 Let Assumptions 1 and 2 hold.
(a) If g and g are I-regular, then under Assumption 4S

N kt_1\Y2/ oo -1/2
=00~ (555 ) ([ 1) " vo)

as n — oo.

(b) If g and § are H-regular respectively with limit homogeneous function and as-
ymptotic order (h,v) and (h,¥), and if Av(N)/v()) — 00 as A — 00, then under
Assumption 4W

Va(y/n) b o
VI B 00) —a (it = 1) ( /0 (hh/h2)(owW(r))dr> N(©,1)

as n — 0Q.

It is easy to see that the WNLS estimator 8, is more efficient than the ONLS estimator

0. If we let

oo 1.,
A= / (99/9%)(z)dx and B= / (hh/h?) (oW (r))dr
oo ()}
and let P, @, R and S be defined as in Theorem 5, then it indeed readily follows that
A>PQ'P and B>RS!Ras.

which establishes the relative efficiency of 8,, over 8,,.

5. Empirical Evidence

In this section, we consider the NNH model to explain the volatilities in the spreads
between forward and spot exchange rates. The weekly USD/DM exchange rates
for the period of 1986.1.3 — 2000.6.30 (757 observations) are used, and the one-
month forward and spot spread volatilities of them are specified as a function of
the lagged spot rates. The unit root tests for the spot USD/DM exchange rates all
unambiguously support the presence of a unit root. We do not report the details to
save space.

The relationships between the spreads and spot rates for the USD/DM exchange
rates are given in Figure 6. It is clearly seen from Figure 6 that the forward-spot
spreads have volatilities that are positively related to the lagged spot levels for the
USD/DM exchange rates. The NNH model with the lagged spot rates as the ex-
planatory variable seems appropriate for the volatilities in the USD /DM forward-spot
spreads.® Figure 6 also presents the relationship between the squared forward-spot

8

we also have the similar results when we use the USD as the numeraire and consider DM /USD
exchange rates. The relationship between the volitilities of the forward-spot spreads and the lagged
spot rates becomes, however, somewhat weaker. There seems to be a compelling reason. Lothian
(1997) indeed points out that the behavior of the USD has been dominated by one episode, i.e.,
the large appreciation and depreciation in the 1980s, and much more irregular than the DM whose
variation has been caused by a number of episodes.



Table 3: Estimation Results for NNH Model

19

WNLS ONLS
« B o B
estimates 2.2765 3.858 2.336° 3.917
standard errors 1.257° 1.002 1.843% 1.521
t-values 1.811 3.852 1.267 2.576

Table 4: Estimation Result for ARCH and GARCH Models

ARCH(1) GARCH(1,1)
17 a jZ o B
estimates 7.865% 1.695 5.6429 1.318! 1.555
standard errors 1.750° 9.8582  2.464° 4.1482 1.189!
t-values 4495 17.19 2.200 3.178 13.07

spreads and the lagged spot levels for the USD/DM exchange rates. The HGF is
subsequently fitted to a parametric model f(z) = g(x, ) = ax” using the weighted
nonlinear least squares (WNLS) method introduced in the previous section.® For
comparison, we also fit the ARCH(1) and the GARCH(1,1) models to the squared
forward-spot spreads. The estimation results for the NNH model; and ARCH and
GARCH models are summarized and presented in Tables 3 and 4.0

It seems that the NNH model with HGF given by f(z) = g(z,0) = u + az” fits
the USD/DM exchange rate data reasonably well. The fitted errors in the squared
forward-spot spreads become large as the spot levels increase. For the large values of
the spot levels, in particular, the fit does not appear to be particularly good. This,
however, should not be interpreted as the evidence for the lack of fit. It is expected
from the presence of conditional heterogeneity in the errors of our HGF estimation
regression, which is given by (10) and (11). Both the coefficients o and 3 are tested
to be significant, if the inference is based on the efficient WNLS estimation. The
estimated HGF implies infinite variance, leptokurticity and persistence in volatility
for the forward-spot spreads.

For the USD/DM forward-spot spreads, all the estimated coefficients in the
ARCH(1) and GARCH(1,1) models are positive and significant. However, both the
fitted ARCH(1) and GARCH(1,1) models are not stationary or integrated. The sums

*We tried other specifications, especially the given function with constant, i.e., f(z) = g(z,0) =
p+ az®. The constant term, however, turns out to be very small and insignificant.
Y For simplicity, we denote by a® to denote the number a x 10~® in the tables.



20

of their coefficients, except for the constant term, are 1.695 and 1.674 respectively for
the ARCH(1) and GARCH(1,1) models. It is thus strongly suggested that the squared
forward-spot spreads do not have finite second moments, consistently with our result
from the fitted NNH model. For the Gaussian ARCH(1) and GARCH(1,1) models,
however, our estimates for the coefficients imply that the forward-spot spreads are
strictly stationary. See Nelson (1990).

6. Concluding Remarks

In this paper, we propose a new class of volatility models. The models simply set
the conditional heteroskedasticities as functions of integrated explanatory variables.
Unlike the volatility driven by a stationary process, our models generate time series
showing high degrees of volatility clusterings, infinite variance and leptokurticity,
which are common features of many observed economic and financial time series. Yet
the models are quite flexible, and have very diverse characteristics depending upon
the classes of functions generating heterogeneity. We analyze the volatility, for the
USD /DM exchange rates, in the forward-spot spread as a function of the lagged spot,
and show the empirical relevancy of our models.

Our models appear to have a wide applicability in modelling volatilities for many
important economic and financial time series, which are used to be fitted using the
ARCH type models. Our models offer more flexibilities. It seems not rare that none
of the ARCH type models fit the data satisfactorily, in which case our models can
be an attractive alternative. Some of our models have characteristics that are very
similar to both the stationary and nonstationary ARCH type models. It is therefore
expected that both the ARCH type model and our models may often provide fits
equally good. Even in this case, our models have some clear advantage in that they

are more structural and, if appropriately modelled, they may yield much more precise
volatility forecasts in some contexts.

Appendix A: Useful Lemmas and Their Proofs

"The proofs of the theorems in the paper rely on the results from the following lemmas.
For the lemmas and their proofs, we let Assumptions 1 and 2 hold.

Lemma Al Let T be a transformation on R. Define

Min=3 T(z:) and Mom =3 T?(z:)

t=1 t=1

(a) If T is I-regular, we have under Assumption 4S(b)
n"V2My, g (1/ow) L(1,0) / T(z)de

n"V2 My —4 (1/0w) L(1,0) / ~ T2(2)de
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(b) If T is H-regular with asymptotic order k and limit homogeneous function H and
if we let £y, = K(\/n), then we have under Assumption 4W(b)

1
(n’in)_lMln —d / H(O’wW(’l")) dr
0
1
(nk2) 1My, —yq / H*(o,W(r))dr
0
The weak convergences in (a) and (b) hold jointly.

Proof of Lemma A1l See Park and Phillips (1999, 2000). The proofs here are es-
sentially identical to theirs, though the settings and regularity conditions are different.
In particular, it follows from Lemma A6 of Park and Phillips (2000), as a special case
and under weaker conditions, that the classes of I- and H-regular transformations are
closed under the product operation. The square T2 of I-regular transformation 7T is
therefore I-regular. Moreover, if T' is H-regular with limit homogeneous function H,
then T2 is also H-regular with limit homogeneous function H2. 1

Lemma A2 Let T be a transformation on R, and let e15 = €2 —1 and eo¢ = £} — k2.
Define

n n
Uy = ZT(wt)slt and Us, = ZT2(mt)52t
t=1 t=1
(a) If T is I-regular, then Uip,Usy = Op(nl/%) respectively under Assumptions 4S
and 58S.
(b) If T is H-regular with asymptotic order k, and if we let k, = k(\/n), then Uy, =
Op(n*/2kn) and Uan = Op(nY/2k2) respectively under Assumptions 4W and 5W.

Proof of Lemma A2 The stated results follow immediately from Park and Phillips
(1999). ]

In what follows, we let 7> and 7/ be the classes of functions defined as earlier in
the text. Therefore, T' € 77 implies that T is bounded and T'(x) — 0 as |z| — oo, and
S € T3, implies that S is locally bounded and S(z) = O(e'?!) with some constant ¢
for all large |z|.

Lemma A3 Suppose that Assumption 4W (b) holds, and let (us, F¢) be a martingale
difference sequence such that E(u?|F;_1) = 02 < co. Define

n n
Tt
Apn=) T(xt)uy and B, = S(——) Ut

where T' and S are transformations on R.
(a) If T € Ty, then Ap = 0p(n'/?).
(b) If S € T3, then By, = 0,(n'/?*%) for any 6 > 0.
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Proofs of Lemmas A3 The proof of part (a) is in Park and Phillips (1999).
To prove the result stated in part (b), we redefine W,,, up to the distributional
equivalence, and assume W, —,, W, as in Park and Phillips (1999,2000). This is
always possible due to the Skorohod representation theorem. Define

sy = sup |W(r)|
1<r<1
Since W,, —,.;. W, we have

sup [Wo(r)| < sy +1
0<r<1

a.s. for all large n. We therefore have

1< x 1
— S2<—L) =/ 520, Wa(r))dr| < sup |S%(owz 14
n; Tn | 155 (@uWa(r)) dr| |z|3sM+1| (owz)| (14)
for all large n. However,
E sup |S*(ouz)| < o0 (15)
|z|<sm +1

since sy has Gaussian distribution (truncated and restricted to the nonnegative half
of the real line) and S?(z) is of order O,(e°l®l), at most with some constant ¢, for
all large |z|. Due to (14) and (15), we may now apply the dominate convergence to

deduce
2 1< z
E (n-1/2-5 —n2g(ly g (__i) 0
(n Bn) n - ; NG —
from which we have n=1/2-4B, —p 0, as was to be shown. |

Let parts (a) and (b) of Assumption 3 hold, and denote by p; the density of (wy:)
with respect to measure m on R. Then we write
f(@t) = me(@e-r) + ok (@r—k)vke

where

i@ = [ fe+u)pul) miy)

A = [ sarimma) - ([ et on@m@)

Note that

pr(e-1) = E(f(z)|Fig) and  op(zs—1) = var (f(z:)|Fo-x)
Since
_ f(=@) — (i)
or(Te—t)

Ukt
it can be easily deduced that
E (v,%t1 .7-}_;9) =1
for all k > 1.
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Lemma A4 Suppose that Assumptions 3(a) and (b) hold, and let p; and o2 be
defined as above.

(a) If f is I-regular, then so are py and o3.

(b) If f is H-regular with limit homogeneous function h, then so is py. For Ho-regular
f, o € T2. On the other hand, we have o? e 7}25’_1, if f is Hp-regular.

Proof of Lemma A4 For part (a), note that if f is bounded and smooth, then
so are pu; and 0’%. It is indeed straightforward to show that p; and 0'% satisfy the
I-regularity conditions in Park and Phillips (2000). To prove the result for Hy-regular
in part (b), we first consider the simplest Ho-regular function given by

f(@) = 1{z > 0}

For such f, it can be easily seen that y; is given by the distribution function Py, say,
of (—wge), which is Ho-regular with limit homogeneous function 1{z > 0}. Moreover,
we may deduce that o2 is given by Py(1 — Py), which is in class 7;°. The extension
to the general Ho-regular function given by

f(z) = c1l{z > 0} + c21{z < 0} + r(z)

with r € 7 is straightforward.
To complete the proof for part (b), we consider

f(z) =|=f?

It is immediate from Assumption 3 that

up iy (a)] < /_Z(c+|y|)f’pk(y)m(dy> < o0

sup
|zi<e

@] < [+ W) Ppi(y) m(dy) < oo

for any constant ¢ € R. Therefore, u; and o2 are locally bounded. Moreover, we
o+ L

have for each fixed y
2p
L =1+0(7)
] || ||

as |z| — oo, and it follows from the dominated convergence that

[he
—o | |l

for |z| large. Consequently, we have

1+

b

p 2p
Pr(y) m(dy), ’1 + I%I| Pe(y) m(dy) =1+ O(%l)
p(x) = |z + O(|z[P~!) and oi(z) = O(|=|?7Y)

as one may easily check. It is obvious that we have the same result for the general
Hp-regular functions. [
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Appendix B: Proofs of the Main Results

Proof of Theorem 1 To deduce the stated results, we need to analyze the following

three sample moments:
n n n

DU D ouh D vivik
t=1

3
t=1 t=k+1
The first two sample moments are easy to handle. We only need to write them as

n n
Do =D fl@)+ > fla)(er - 1) (16)
t=1 t=1 t=1
n n n

vi = k2 fHz) + Y Pa)(ef — w2 (17)
t=1 t=1 t=1
and apply Lemmas Al and A2 for each class of functions.

The asymptotics for the third sample moment can be obtained from Lemmas A1,

A3 and A4. To see this, we first write

n

Yo vivir = Y f@)f(ze-r)eier

t=k+1 t=k+1

= i pif(xi-x) + Ry (18)

t=k+1

where the remainder term R, is given by

n n
Ro= Y mf(@er)are+ > oxf(Ter)bre (19)
t=k+1 t=k+1
where in turn
apt = s%s?_k —1 and by = s?ef_ & Vkt (20)

It is easy to deduce the asymptotics for the leading term in (18). Recall that Lemma
A4 specifies the class of functions that u,f belongs to, and Lemma Al establishes
the asymptotic result for each class of functions. Moreover, the stochastic orders of
R, in (19) can readily be obtained by Lemma A3, given the characteristics of yu; f
and o f provided by Lemma A4. Note that (ax:) and (b) introduced in (20) satisfy
the conditions for (u¢) in Lemma A3.

For I-regular f, we have

p‘kf7 ka € T;

due to Lemma A4, and therefore, R, = o,(n'/2) by Lemma A3. If f is Ho-regular,
then

ppf €T3 and oxf €Ty

as shown in Lemma A4. We consequently have R, = o,(n'/2*%) for any 6 > 0, due
to Lemma A3. For Hp-regular f, it follows directly from Lemma A4 that

pef €LX and opf € T2
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and we have R,, = o,(nP*1/2%%) for any 6 > 0 because of Lemma A3.
We now derive each of the results stated in Theorem 1. For the result for I-regular
f in part (a), we first note that

o = Op(”_l/2)
which follows directly from (16) and Lemmas A1 and A2. Moreover, due to (18) and
Lemmas Al and A2,

7 Z ~ Uik —T8) = % Zn: Yy + Op(n%)

t=k+1
= =3 f @)+ opl1)
t=1

—a (o) L(L,0) [ mf(a)da
Similarly, we have from (17) and Lemmas Al and A2
SR = =3+ o)
\/— Ye — y’n, - Yt p\T
t=1

TL

n

= 3 Z FH(m1) + Op(n/%)

—q (1/0w)Kt L(1,0) /_: A(z)dx

from which the stated result in part (a) follows easily.

Set vy, = v(y/n) in what follows. To prove the result in part (b) for H-regular f,
we observe that

1
1-2 2:2
I/ _—
y'n, tyt

= —Ef(wt)+0p(n 1/2)

nnt_

J /0 h(owW (r)) dr

which follows from (16) and Lemmas Al and A2. Moreover, one may easily deduce
from (16), (17) and (18), and from Lemmas Al and A2 that

1 Y _
— Z Wi — 02 Wi k=72 = m/z Z vivix — (va'T2) +0p(n1?)
n t=k+1 n t=—= k+1

2
= mZukf(m) — (va'52) +op(nY/2¥)
n =1

—q /01 W2 (oW (r)) dr — (/01 h(ocwW(r)) dr)2
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and that

1 2
m/z Z(yt—yn = —%ny?*(v;l@ﬁ) + Op(n™1/2)
o4l &K —1—220—1/2
= Hstf (xt)—(l/n Z/n) + Op(n™"/%)

—q Ke / h2 (o, W (7)) dr—(/ h(owW(r))d )2

The stated result in part (b) follows immediately upon noticing that A is a homoge-
neous function. |

Proof of Corollary 2 It follows from the proof of Theorem 1 that
1 n
=D (=G —p Pkt - 1) (21)
g

Under the given specification of f, we may write

y? = c+ g(z:) + c(e 7 — 1)+ g(ze)(? — 1)

It therefore follows from Lemmas Al and A2 that

1 & 1< 2
= Z 3/1% t2 = ‘Z () 9(z-1) + — Z(Et —-1) (Et k—1)
™kt nia nia
22 M
C C —
+— Zg(xt) +— D (eF 1) + Op(n~3/4) (22)
t=1 =1

Moreover, we have
1 n 1 n (84 " 3/4
—D ui=c+ =3 gl@)+ =Y (= 1)+ Op(n¥%)
n n n
t=1 t=1 t=1
and therefore,
2
1 & 2¢ & 2c2 & _
=3y =+ =Y g(m) + =Y (2 — 1) + Op(n~3%) (23)
g nia n g

again using the results in Lemmas Al and A2.
We have from (22) and (23)

n 2
1
( S - (;zyf))
t=k+1 t=1

= — x T —02—- 3 e2 —1)(e2, — n~1/4
= ﬁ;g( £)9( t—k)+\/ﬁ§( i — D(eig — 1) + Op(n™ /%) (24)
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However, it follows as in the proof of Theorem 1 that

7= 2 s@ms) ~a /on) 10,0) [~ [7 at@late+ imtidsay ()

t=k+1

Moreover,
T (= 1)(eh = 1) —a (s~ N0, 1) (26)

which clearly becomes independent of L(1,0) and is given independently for each
k 2 1. The stated result now follows from (21), (24), (25) and (26). [

Proof of Theorem 3 The stated result for I-regular f in part (a) follows imme-
diately from (16) and Lemmas Al and A2. The result for H-regular f in part (b) is
proved in the proof of Theorem 1. |

Proof of Theorem 4 The stated result for the L-regular f in part (a) follows
directly from Lemmas Al and A2, if we write

T

ln
L,

due to (16) and (17). To prove the result for the H-regular f in part (b), we let
vn = v(y/n) and note that
1 & 4
m ; Ye

1 &L\
L 2
Once again, the stated result follows immediately from (16) and (17) by Lemmas Al
and A2. |

4

n

Proof of Theorem 5 Here we assume the regularity conditions in Park and Phillips
(2000), properly modified to account for the presence of heterogeneity in our regres-
sion, are met so that we have asymptotic equivalence of nonlinear regression (10) and
linear regression (13). We may therefore let ,, be the linear least squares estimator
of § in (13), which is given by

bn =00+ (zn:(gg’)(xt)) _ Zn:(gg)(xt)vt
t=1 t=1

where v; = €2 — 1. The stated results now follow immediately as in Park and Phillips
(1999). Notice that (vy) is iid, independent of (z;), and has variance K:—1. [
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Proof of Corollary 6 The stated results are obtained similarly as in the proof of
Theorem 5. The detailed proofs are therefore omitted. |
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Figure 6: USD/DM Forward/Spot Spread Volatility
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