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Abstract

This paper investigates infinitely repeated prisoner-dilemma games where the
discount factor is less than but close to 1. We assume that monitoring is truly imperfect
and truly private, there exist no public signals and no public randomization devices, and
players cannot communicate and use only pure strategies. We show that implicit
collusion can be sustained by Nash equilibria under a mild condition. We show that the
Folk Theorem holds when players’ private signals are conditionally independent. These
results are permissive, because we require no conditions concerning the accuracy of
private signals such as the zero likelihood ratio condition. We also investigate the
situation in which players play a Nash equilibrium of a machine game irrespective of
their initial states, i.e., they play a uniform equilibrium. We show that there exists a
unique payoff vector sustained by a uniform equilibrium, i.e, a unique uniformly
sustainable payoff vector, which Pareto-dominates all other uniformly sustainable
payoff vectors. We characterize this payoff vector by using the values of the minimum
likelihood ratio. We show that this payoff vector is efficient if and only if the zero
likelihood ratio condition is satisfied. These positive results hold even if each player has
limited knowledge on her opponent’s private signal structure.

Keywords. Repeated Prisoner-Dilemma Games, Private Monitoring, Conditional
Independence, Folk Theorem, Uniform Sustainability, Zero Likelihood Ratio Condition,
Limited Knowledge.



1. Introduction

This paper investigates infinitely repeated prisoner-dilemma games where the
discount factor is less than but close to 1. We assume that players not only imperfectly
but also privately monitor their opponents actions. Players cannot observe their
opponents’ actions directly, but can only observe their own private signals which are
drawn according to a density function over closed intervals conditional upon the action
profile played. There are no public signals.

The paper investigates the possibility that implicit collusion can be sustained by
Nash equilibria. We show that there exist Nash equilibrium payoff vectors which are
better than the one-shot Nash equilibrium payoff vector if the minimum of the
likelihood ratio indicating whether the opponent has chosen the right action satisfies a
mild condition. Furthermore, we show that an efficient payoff vector is approximated by
a Nash equilibrium payoff vector if this minimum likelihood ratio is equal to zero, i.e.,
if for each player there exists a private signal that indicates accurately whether her
opponent has chosen the right action. Note that as this signal is not public this
efficiency result is not immediate.

Given the zero likelihood ratio condition, it is well known that efficiency is
attainable in the limit of the discount factor even with imperfect monitoring provided
that monitoring is public. With private monitoring the problem is more delicate. Even
when a player is certain that a particular opponent has deviated, this certainty will
typically not be shared by the other players and they will be unable to coordinate on an
equilibrium which punishes the deviant in the continuation game. Nevertheless a more
complicated argument establishes that efficiency is attainable under this condition.

We adso intensively investigate the situation in which players’ private signals are
conditionally independent, i.e., players can obtain no information on what their
opponents have observed by observing their own private signals. We show, as the main
theorem of this paper, that the Folk Theorem holds, i.e., every feasible and individually
rational payoff vector is approximated by a Nash equilibrium payoff vector, provided
that players private signals are conditionally independent. This result is permissive,
because we require no informational conditions concerning the accuracy of players
private signals such as the zero likelihood ratio condition.

The study of repeated games with private monitoring is relatively new. Most earlier
work in this area has assumed that monitoring is either perfect or public and has
investigated only perfect public equilibria. Perfect public equilibrium requires that the
past histories relevant to future play are common knowledge in every period. This



common knowledge property makes equilibrium analyses tractable, because players
future play can always be described as a Nash equilibrium. When monitoring is only
private, however, it is inevitable that an equilibrium sustaining implicit collusion
depends on players private histories, and therefore, the past histories relevant to future
play are not common knowledge. This makes equilibrium analyses much more difficult,
especially in the discounting case, because players future play cannot be described as a
Nash equilibrium.

To the best of my knowledge, Radner (1986) is the first paper on repeated games
with private monitoring. Radner assumed no discounting, and showed that ever
feasible and individually rational payoff vector can be sustained by a Nash equilibrium.
The two papers by Matsushima (1990a, 1990b) appear to be the first to investigate the
discounting case. Matsushima (1990a) provided an Anti-Folk Theorem, showing that it
isimpossible to sustain implicit collusion by pure strategy Nash equilibriawhen private
signals are conditionally independent and Nash equilibria are restricted to be
independent of payoff-irrelevant private histories. The present paper establishes the
converse result: the Folk Theorem holds when we use pure strategy Nash equilibria
which can depend on payoff-irrelevant private histories.

Matsushima (1990b) conjectured that a Folk Theorem type result could be obtained
even with private monitoring and discounting when players can communicate by
making publicly observable announcements. Subsequently, Kandori and Matsushima
(1998) and Compte (1998) proved the Folk Theorem with communication.
Communication synthetically generates public signals and consequently it is possible to
conduct the dynamic analysis in terms of perfect public equilibria as in the paper by
Fudenberg, Levine and Maskin (1994) on the Folk Theorem with imperfect public
monitoring. The present paper assumes that players make no publicly observable
announcements.

Interest in repeated games with private monitoring and no communication has been
stimulated by a number of recent papers, including Sekiguchi (1997), Bhaskar (1999),
Piccione (1998), and Ely and Valimaki (1999). Sekiguchi (1997) investigated a
restricted class of prisoner-dilemma games on the assumption that monitoring was
almost perfect and that players private signas were conditionally independent.
Sekiguchi was the first to show that an efficient payoff vector can be approximated by a
mixed strategy Nash equilibrium payoff vector even if players cannot communicate. By

! See also Lehler (1989) and Fudenberg and Levine (1991) for the study of repeated games with
no discounting and with private monitoring.



using public randomization devices, Bhaskar (1999) extended Sekiguchi’s result to
more general prisoner-dilemma games.

Piccione (1998) and Ely and Vaimaki (1999) also considered repeated prisoner-
dilemma games when the discount factor is close to 1, and provided their respective
Folk Theorems. Both papers constructed mixed strategy equilibria in which each player
is indifferent between the right action and the wrong action irrespective of her
opponent’s possible future strategy. Piccione used dynamic programming techniques
over infinite state spaces, while Ely and Valimaki used two-state Markov strategies.
Both papers investigated only the almost-perfect monitoring case, and most of their
arguments rely heavily on this assumption. However, in the last section of his paper,
Piccione provides an example in which implicit collusion is possible even if players
private observation errors are not infinitesimal.

Mailath and Morris (1998) investigate the robustness of perfect public equilibria
when monitoring is amost public, i.e., each player can always discern accurately which
private signal her opponent has observed by observing her own private signal. The
present paper does not assume that monitoring is amost public.

In consequence, this paper has many substantial points of departure from the earlier
literature. We assume that there exist no public signals, players make no publicly
observed announcements, and there exist no public randomization devices. We do not
require that monitoring is either aimost perfect or aimost public. Hence, the present
paper can be regarded as the first work to provide affirmative answers to the possibility
of implicit collusion with discounting when monitoring is truly imperfect and truly
private.

As such, this paper may offer important economic implications within the field of
industrial organization. In the real economy, communication between rival firms
executives is restricted by Anti-Trust Law, on the assumption that such communication
enhances the possibility of a self-enforcing cartel agreement.” Moreover, in redity,
firms usually cannot directly observe the prices or quantities of rival firms and the
aggregate level of consumer demand is stochastic. Instead, each firm’'s only information
about its opponents’ actions within any particular period, isits own realized sales level
and, therefore, each firm cannot know what its opponents have observed. These

2 See such industrial organization textbooks as Scherer and Ross (1990) and Tirole (1988).
Matsushima (1990b), Kandori and Matsushima (1998) and Compte (1998) provided a
justification of why communication is so important for the self-enforcement of a cartel
agreement.



circumstances tend to promote the occurrence of price wars, as each firm cannot know
whether afall in its own salesis dueto afall in demand or a secret price cut by arival
firm. In thisway, it has been widely believed that a cartel agreement is most likely to be
breached when each firm’s monitoring of its opponents’ actions is truly private.” In
contrast, the present paper shows that collusive behavior is possible even if
communication is prohibited and each firm obtains no public information on the prices
or quantities of itsrivals.

This paper is closely related to Piccione (1998) and Ely and Vaimaki (1999),
particularly the latter. This paper is also related to Matsushima (1999), which
investigated the impact of multimarket contact on implicit collusion in the imperfect
public monitoring case and provided the efficiency result by using the idea of a review
strategy equilibrium. Our equilibrium construction may be viewed as extending the
equilibrium construction of Ely and Valimaki combined with that of Matsushima to
general private signal structures.

The latter part of this paper, i.e.,, Sections 7 and 8, are devoted to considering
situations in which players have limited knowledge on their opponents’ strategies. Both
sections provide their respective sets of multiple possible strategies for each player.
Each player only knows that her opponent plays one of these possible strategies, but has
no idea which strategy is the correct one. We assume that it is common knowledge that
the played strategy profile satisfies the Nash equilibrium property, while which Nash
equilibrium is the correct one is not common knowledge.” The purpose of these sections
is to clarify the possibility of implicit collusion even when players have limited
knowledge on their opponents’ strategies.

Section 7 regards a repeated prisoner-dilemma game as a machine game as explored
by, for instance, Rubinstein (1984), Neyman (1985), and Abreu and Rubinstein (1987).
A player behaves according to a machine which is defined as a combination of an
output function, a transition function, and an initial state of machine. A rule for player

% Stigler (1964) is closely related. Moreover, Green and Porter (1984) investigated repeated
quantity-setting oligopoly when the market demand is stochastic and firms cannot observe the
quantities of their rival firms. They assumed that firms can publicly observe the market-clearing
price. In contrast, the present paper assumes that there exist no publicly observable signals such
as the market-clearing price.

“ In the analysis of situations in which strategies are not common knowledge, Bernheim (1984)
and Pearce (1984) introduced the concept of rationalizability instead of assuming that it is
common knowledge that players’ behaviors are described as a Nash equilibrium.



i is defined as a combination of an output function and a transition function. We
assume that players rules are common knowledge, but their initial states are not
common knowledge. Each player knows that her opponent’s play is consistent with this
rule, but has no idea which initial state is the correct one. A rule profile is called a
uniform equilibrium if every machine (i.e., rule plus initial state) profile consistent with
this rule profile is a Nash equilibrium. Hence, all possible Nash equilibria are
interchangeable. A payoff vector is caled uniformly sustainable if there exists a
uniform equilibrium such that every machine profile consistent with it induces virtually
the same payoff vector as the given payoff vector. Hence, all possible Nash equilibria
virtually induce this given payoff vector, i.e., are virtually payoff-equival ent.

We show that there exists a unique uniformly sustainable payoff vector which
Pareto-dominates all other uniformly sustainable payoff vectors. This Pareto-
dominance property is in sharp contrast with the fact that there exist a
continuum/countable set of Pareto-undominated perfect equilibrium payoff vectors. We
characterize this Pareto-dominant uniformly sustainable payoff vector by using the
values of the minimum likelihood ratio. We show that this payoff vector is efficient if
and only if the zero likelihood ratio condition is satisfied. Hence, the zero likelihood
ratio condition is not only sufficient but also necessary for efficient uniform
sustainability.

Abreu, Pearce and Stacchetti (1986) is related to this analysis. They investigated
symmetric repeated oligopoly with imperfect public monitoring modeled by Green and
Porter (1984), and characterized the optimal symmetric equilibrium, where the future
punishment is triggered by the observation of the public signals which correspond to the
minimum likelihood ratio. This optimal symmetric equilibrium is efficient if and only if
the minimum likelihood ratio is equal to zero. In contrast with their work, the present
paper does not assume that the model is symmetric, equilibria are restricted to be
symmetric, or that there exists any public signal.

Ely and Valimaki (1999) is aso, and more closely, related. In their analysis of
Prisoner-Dilemma games with amost-perfect monitoring, Ely and Valimaki
constructed interchangeable Markov strategy Nash equilibria. A point of difference is
that Ely and Vaimaki did not require that Nash equilibria are virtualy payoff-
equivalent, whereas the present paper does.

Section 8 considers the situation in which players have limited knowledge on their
private signal structure. Each player knows her own private signal structure, i.e., knows
the conditional density function of her own private signal, but does not know her
opponent’s private signal structure, i.e., does not know the conditional density function



of her opponent’s private signal. Each player’s strategy depends on her own private
signal structure, but isindependent of her opponent’s private signal structure.

We provide the following two positive results. We reconsider the sustainability of
Nash equilibria and clarify whether the Folk Theorem can be achieved by using only
players strategies which depend only on their own private signal structures. Each
player behaves according to a mapping which assigns a strategy for this player to each
possible conditional density function over her own private signal. Their mappings are
assumed to be common knowledge, but each player does not know which strategy in the
range of the opponent’s mapping is actualy played. We require that every pair of
strategies in the ranges of their mappings are Nash equilibria. We establish the Folk
Theorem with interchangeability and virtual payoff-equivalence. That is, if it is
common knowledge among players that private signals are conditionally independent,
then, for every feasible and individually rational payoff vector, there exists a profile of
mappings assigning each possible private signal structure a Nash equilibrium which
induces approximately the same payoff vector as this payoff vector. Hence, al possible
Nash equilibria can be regarded as being interchangeable and virtually payoff-
equivalent.

We aso reconsider uniform sustainability discussed in Section 7 and show that the
Pareto-dominant uniformly sustainable payoff vector can be uniformly sustained by
using only players rules which depends only on their own private signal structures.
Each player behaves according to a mapping which assigns arule for this player to each
possible conditional density function over her own private signal. Their mappings are
assumed to be common knowledge, but each player does not know which rule in the
range of the opponent’s mapping is the correct one. We require that every pair of rules
in the ranges of their mappings are uniform equilibria. Hence, all possible uniform
equilibria can be regarded as being interchangeable. We do not require the conditional
independence assumption. We show that the arguments in Section 7 hold even if each
player only knows her own private signal structure, i.e., we show that there exists a
profile of mappings which assigns each possible private signal structure a uniform
equilibrium such that every machine profile consistent with it induces virtually the same
payoff vector as the associated Pareto-dominant payoff vector.

The organization of this paper is as follows. Section 2 defines the model. Section 3
provides a theorem which characterizes a subset of sustainable payoff vectors. Section 4
gives the proof of this theorem. Section 3 shows that efficiency is sustainable under the
zero likelihood ratio condition. Section 5 assumes conditional independence and
provides the Folk Theorem. Section 6 gives the proof of this Folk Theorem. Section 7



shows that there exists the Pareto-dominant uniformly sustainable payoff vector, and
this payoff vector is efficient if and only if the zero likelihood ratio condition is
satisfied. Section 8 considers two scenarios in which each player has limited knowledge
on her opponent’s private signal structure, and shows that the positive results provided
in the previous sections hold in each of these scenarios. Section 9 concludes.
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2. The M odd

An infinitely repeated prisoner-dilemma game I(d)=((A,4,9Q;),,,,0,p) IS
defined asfollows. In every period t=>1, players 1 and 2 play a prisoner-dilemma game
(AU ), . Throughout this paper, wewill denote j #i,i.e, denote j =1 when i=2,
and j=2 when i=1. Player i's set of actions is given by A ={c,d}. Let
A=A xA,. Player i's instantaneous payoff function is given by u:A - R. We
assume that for every =12, u(c)=1, u(d)=0, u(d/c)=1+x >1, and
u(c/d;)=-y, <0, where we denote c=(c,¢,) and d=(d;,d,). We assume aso

that x, +x, <y, +V,,i.e, thepayoff vector (11) isefficient. The feasible set of payoff
vectors VOR is defined as the convex hull of the set
{(11),(0,0), @+ x,,—Y,),(—y,,1 +%,)} . The discount factor is denoted by o [J[01). At
the end of every period, each player i observes her own private signa « . The set of
player i's private signals is defined as Q, =[0]]. Let Q=Q, xQ,. A signal profile
w=(w, w)UJQ is determined according to a conditional density function p(wla).
Let p(wla)= J’p(aja)doq . We assume that p (w|a) is continuous w. r. t.

w;[Q;
w @, p(wla)>0 for dl alJA and amost al w [@Q ., and p (08)# p,(08")

for all alJA and al a' JA/{a}. Based on the above definitions, we may regard
u (a) asthe expected value defined by

u@s= [m(a.a)p(wla)d o,

where 1 (w,a,) is the realized instantaneous payoff for player i when player i
chooses action a, and observes her own privatesignal w..
Remark: An example is the model of a price-setting duopoly. Actions ¢, and d, are
regarded as the choices of high price A (c;) and low price A (d,), respectively, for
firm i's commodity, where A, (c)>A,(d))=0.Firm i's saleswhen privatesignal w
is observed is given by q,(w,)=0. The realized instantaneous profit for firm i is
given by m(aw,a)= A(a)a(w)-C(a(w)), where C(q)=0 is firm i's tota

cost of production.

A private history for player i up to period t=1 is denoted by
h' =(a(1),w (1)).,, where a(r)0A is the action chosen by player i and
w (1) [@Q , isthe private signal observed by player i inperiod 7. The null history for
player i isdenoted by h°. The set of al private histories for player i is denoted by
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H,. A (pure) strategy for player i is defined as a function s:H, - A. The set of

strategies for player i isdenotedby S.Let S=S xS,. Player i's normalized long-

run payoff induced by a strategy profile sOS is given by

v,(9,8) = (1—5)E[§ d7u(a(t))|s]. Let v(d,s) =(v,(9,9),V,(5,9)). A strategy profile
t=1

s[S is said to be a Nash equilibriumin (d) if for each i =12 and every § US,
V.(5,5)=2V,(5,s/9). Since each player's private signal structure has amost full
support, the set of Nash equilibrium payoff vectors is equivaent to the set of sequential
equilibrium payoff vectors.

Definition 1. A payoff vector v=(v,,v,) OR? is sustainable if for every £>0 and
every infinite sequence of discount factors (8™),., satisfying lim 0™ =1, there exists

m- +oo
[

an infinite sequence of strategy profiles (s™),., such that for every large enough
m=212,..., s"isaNashequilibriumin (d™), and
v—(g,€) < Iirp v(d", s sv+(¢g€).

Note that the set of sustainable payoff vectors is compact. We denote by s|, the
strategy for player i induced by s after the private history hf CJH, occurs.
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3. Efficiency

The likelihood ratio function for player i's private signals, L:Q, x A> » R, is
defined by

To(@la) p(wla’)#0
Li(w,aa’)= Dpi(wlla(l)vla) '
Emgﬁ%jﬁﬁ if p(wla)=0

We assume that such afunction L; existsandiscontinuousw.r.t. w, [Q ;. We define
the minimum likelihood ratio function for player i, L,:A* — R, by
Li(aa') = mEiQ Li(w,a,a’).

We define

v =1 Li(c,c/d)x
"7 1-L(ccldy)’

and
_ Ly(d.d/c)y,

Y1l (ddlc)
Let v=(v,,V,) and v=(v,,V,). Notethat if for each i =12,
,Lieeld)x | Lddic)y 0
1-L,(c,c/d) 1-L,(d,d/c)
then it holds that v>v. We define a subset V' OV by the convex hull of the set
{(0,0),v,(V;,v,),(v,,V,)} . See Figure 1.

[Figurel]

Theorem 1: If inequalities (1) hold, then every vV’ issustainable.
We provide the proof of Theorem 1 in the next section.
Theorem 2: If for each 1 =12,

L,(cc/d;)=0, )

and

Li(d,d/cj)<1+1 : 3)



13

then, (1) issustainable.

Proof: Equalities (2) and inequalities (3) imply inequalities (1). Equalities (2) implies
Vv =(11) . Hence, Theorem 1 impliesthat (1) issustainable.

Q.E.D.

Theorem 2 states that the efficient payoff vector (1,1) can be approximately
sustained by a Nash equilibrium when the minimum likelihood ratio L,(c,c/d;)

between ¢ and c/d, is zero and the minimum likelihood ratio L;(d,d/c;) between

d and d/c; islessthan a positive value for each 1 =1,2. Note that Theorems

1+y,

1 and 2 do not depend on any informational assumption such as conditional
independence.
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4. Proof of Theorem 1
The proof of Theorem 1 is divided into three steps.”

Step 1: Weshow that forevery v T V" andevery v 1 V', if
V3vi>v 3y,
then, v, v, (v;,v,) and (v;,v;) aedl sustanable.
From the continuity of L, , we can choose W, T W for each i =1,2 which stisfies
L (W;,c,c/ d,)x

Vi T Wceld)’
i ir“y i
that is,
L, (W, CC/d.):i )
i v ] Xj +1- VJ_+ )

For each =12, choose X >0 close to 0. From the continuity of L, we can choose
W, =W, (x,)T W foreach i=12 which satisfies
v +% . v
>, (w,d,d/c)> - (5)

YtV X Y tv;

Let € >0 and I~i >0 be postive real numbers which are closeto 0.

Congider the following Markov strategies with two States, i.e, “play c,”, and “play d. .
When player i's state is “play c¢,” and player i observes a private sgna which belongs to
(does not belong to) the interval (W, - e,W. +e] in the current period, player i's statein
the next period will be “play d.” (“play c,”, respectively). When player i's state is “play
d. ” and player i observes a private sgna which belongs to (does not belong to) the interval
(W, - |~|VT/| +I~i] in the current period, player i's sate will be “play ¢,” (“play d ”,

respectively). See Figure 2.

[Figure 2]

According to Ely and Vaimaki (1999), we require that each player i =1,2 is indifferent
between the choice of action ¢, and the choice of action d irrespective of her own

private history. This incentive condraint is much stronger than sequentid equilibrium but

> This proof does not depend on the assumption of X, +X, £y, +Y,.
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dragticdly smplifies equilibrium andyses. In the following proof, we show that for every
discount factor close to 1, there exist € and |, for each i =12 such that dl of the four

Markov drategy profiles associated with different initid State profiles satify this incentive
congtraint, i.e., are Nash equilibria, and virtualy induce the payoff vectors v*, v, (v;,V,)
and (v, ,v;).
Fix 1=12 abitrarily. Choose e >0 close to 0. From equality (4), we can choose
Vv, =V,(e) which sdidfies
~ OP(wc)dw,
wiT (W;- & W;+g ]

- ©
op(wlc/d )dw,  x, +1- U,

wil (W - & Wi +e]
Notethat v, =V, (e) tendstowards v].+ as e agpproaches 0. We define
oP (W [c/d;)dw

a =a.(e)° wil (W - Wi+g] ) 7
=8, ()0 S G

Notethat a (e ) tendstowardsOas € approachesO.
We define I_i = IT(Q) ad |, =1 (e) by

I_i >|_i >0,
op(wild/c))dw, = (y; +vj +Xx)a,,
wil (Wi- 1 Wi+l ]

and
op, (w[d/c;)dw; = (y; +v;)a;.

wil (wi- Ly wi+lg]
Note that both I, (e) and | (e) tend towards O as e approaches O, because
a,=a,(g) tends towards 0 as € approaches 0. Choose any continuous function
W, =W, (e,,xj):[l_i,l_i]® [v;,Vv; +X ] which sttisfies that

W, (I_i)=v} +X;,

W (L) =v;,
andforevery |, I [1,,1],

O, (wld /¢;)dw; = (y, +w, (I, ))a,. ®

wiT (Wi- 1 Wi+ ]
Since L (w;,d,d/c;) isapproximated by
OP, (Wi d)dw
wil (W1 Wi + ]
Op (wd/ ¢ )dw; ’
wil (W -1 Wi+ ]

one gets from inequdities (5) that




16

= _ OP: (W, | d)dw,
wil) __vitX wii(vvi-g,vvﬁﬁ]
yitwi () oy +v+x oP(wd/c;)dw,
wil (Wi- 1w+l 4]
S v, _ W; (L)) .
y+vioytw()
Hence, the continuity of w,(1,) impliesthet thereexists |, =1 (g,x ) Such that
op, (w;|d)dw, ~
W-T(VV-—l-- VV-+|-] Wj (I i)
i i~ Wil — . (9)
(:)pi(yvildlcj)dwi y, +w(l)
wiT (Wi- 1 Wi+l ]
We define
Vi =Vi(e.%) 0 wie.x )1 (e.%) =w (1 (e,x)).
Notethat v, =Vv,(e,x ) tendstowards v, as x approaches 0, because IT:IT(e,,x].)
tendstowardsO as X approaches 0. We define d; =d, (q,xj)T (01 by
1-d, . -
d—:(vj -V))a;. (20

i
Notethat d, tendstowards1as € approaches 0, because a (€ ) tendstowardsOas €
approaches 0.

Fix an infinite sequence of discount factors (d™)Y. arbitrarily, which satisfies
limd™ =1. The above arguments imply that there exists (e",x", €', x")* _, such that

me +¥
lim(e[" X", €l",5") = (0,00,0),
and for every largeenough m,
d” =d, (&, x") =d,(&".x,").
Choose (W",I ™, V", V"), satisfying that for every large enough m, w™ ° w, (x"),

™o I, (e"x™, 9" ° v (e"),and V"° V (e",x"). From equdlities (6), (7) and (10),

one gets
N 1_ dm 1_ \7.m
OP, (W €)dw; = (=57)(Grm).
w;T (Wj-e"Wj+e" d Vit -V,
and, therefore,
0" =1 dm+d"ONA- P (wlo)dw;)
wil (Wj-e["W;+ef"
+v" OP; (W, [c)dw;} . (1)

T m.o m
WJI (Wj-ej Wi +ej]

From equalities (7) and (10), one gets
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1- dm +1-
O (wjle/ d)dw, = (= )(‘ ~m' ),
Wi I(wJ eJ WJ+eJ]
and, therefore,
=(L- d™)@+x) +d"(0"@-  dp;(w;lc/ d,)dw;)
WjT(Wj-e'j“,v(/j+e'j“]
+v" c‘)oj (w,|c/d;)dw;}. (12

wiT (Wj-ef"+e "]
From equdities (8) and (10), one gets
1-d™
O, (w1 / ¢ )dw, = (= )(}’,;_ ;m)

w, I(W I W"‘+I m]
and, therefore,
=@-d")(- y;) +d™{v"(1- 0P, (w;|d/ ¢)dw;)
Wi I(wJ rm wJ My ]
LT P, (wld/ c)dw;). 13)

Famm_[m=moTm
le(wj-lj,wj+lj]

From equalities (8), (9) and (10), one gets
P, ()W, = (=) )

le(WJ m WJ+| m !

and, therefore,
\7im = dm{\A/im(l' Opj (Wj |d)de)

T (MM =m,Tm
le(wj'ljij+|J]

+UT O p,(w,|d)dw ). (14)

i
TaSm_[m ~mym
Wll(WJ-lj,WJ+|J]

We specify an infinite sequence of strategy profiles (s™)%_, in the following way. For
ech i=12,
s'(h’) =
§'(h)=cif s"(h")=c and w [ (W - "W, +€"],
(W) =c it s"(h)=d and w T (- 170 +1,7,
§'(h) =d;if ") =c and w, T (W - &" W, +e"],
and
S(W) =d, if s"(h)=d, and w T (- 1"+,
Notethat thereexist D,:A® R suchthatforevery W1 H, andevery h®l H,,
v, (d", 8" sl ) = Di(0) if s"() =¢ and sT(h)=c;,
v (d", 8" s, |h}¢)= D,(d) if s"(h')=d and s'(h})=d,,
v.(d", 57, ,STIhjm): D,(c/d))if s"(h')=¢ and s'(h")=d,,
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ad
vi(d”‘,s’“|hi1 ,s;"|h}¢) =Dy(d/c;) if s"(h')=d; and s}"(hj“t) =c;.
Note that
D.(c)=1-d™ +d™D,(c) op(wic)dw + D, (d) opP(w|c)dw
wil (W;- g™ +ef"] wil (- g™ +e"]
w;T (- ejm,vOj+ejm] w;T(w;- ejm,wj+e?‘]
+D(c/d)  Epwicidw +D(d/c)  Epwiciw},
wil (W - g™\ +e™] wil (- &M\ +e™]
wil (wj-e'j“,wj +e§“] wiT (- e?‘,vvj+e'j“]
D(d)=d™D,(c)  p(Md)dw +D,(d)  p(wid)dw
m I| ((\CIT}JI | TM%TH m " J-I'I'((Vv%i JI ) ;"\A%TL; m
+Dy(c/d;) op(Wd)dw +D;(d/ c)) op(W d)dw}
R e
Di(c/d;)=(1- d")(-y,) +d™{D,(c) op(Wc/ d; )dw
)
+D(d)  gpwlc/d)dw +D(c/d)  Fpwlc/d,)dw
wil (- &My +e"] wil (- ef" i +e"]
le(wj-l’}‘,wj#’j" le(wj-lrj“,wj+ljm]
+D(dlc)  Qpwic/d,)dw,
wil (- & +ef"]
w;T (-1 'j“,wj+l 'j“]
and

D(d/c,)=(- d")1+x)+d™{D/(c)  Qpwld/c,)dw

wil (Wi- 1 "W+ ]

wT (W -elai; +el']
+D.(d) op(wld /c;)dw +D;(c/ d)) or(wd /c; )dw
wiT (wi- 1 "W+ {7 wil (W -1 "W+ ]
ij(ij—eJm,ij +e?”] wji(wj—e?‘,vvj+e’j“]

+D,(d/c;) op(wid /c; )aw} .

wiT (Wi~ 1"+ ]
wj'l' (W;- e W, +e™

From equalities (11), (12), (13) and (14), one gets that
D/(c)=D,(d/c,)=9", D,(d)=D,(c/d,)=
and, for every h'l H, evey h*TH,, ad for every s1
Shaw) = Sl gy fOrAl (@.W)T A" W,
pomif st =c,

vd" s, s'le) = ’
Tt i s (h)=d

v,
S stidying that

and, therefore,
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V@, 5", ST ) =V (A5, 8D (15)

(R
Equalities (15) imply that for every h' T H, andevery h*1 H,, (8", S| ) isaNash
equilibriumin G(d™) . Hence, we have completed the proof of Step 1.

Remark: Step 1 offers the following economic implication. Congder the example of the
price-setting duopoly presented in Section 2. The State profile “play (c,,c,), i.e, play (high
price, high price)” isthe Stuation of price collusion, while the profile“play (d,,d,), i.e., play
(low price, low price)” isthet of a price war. The remaining two profiles, “play (c,d,), i.e,
play (high price, low price)”, and “play (d,,c,), i.e, play (low price, high price)”, can be
regarded as the Situations of a one-sided secret price cut. On the equilibrium peth sugtaining
implicit colluson outlined in Step 1, each of these state profiles emerges infinitdly many times.
Thisisin contrast with the trigger strategy equilibrium used by Green and Porter (1984) in thelr
sudy of a quantity-setting duopoly with public monitoring, according to which, both the
gtuation of a price war and the Stuation of price colluson emerge infinitdly many times but the
Stuation of a one-sided secret price cut never emerges.

Step 2: We show that for every podtive integer K >0 and every K sustainable payoff
éK VI
vectors ViU, .., ViK1 “T is also sugtainable.

Fix (d™)7_ abitrarily, which sttisfies rrln!)rr; d" =1.Fx e>0 abitraily. For every
k=1..,K,let (s“™)%_ beaninfinite sequence of strategy profiles satisfying that for every
largeenough m=12,..., s*™ isaNasheguilibiumin Gd™), and

V9. (e e) £ lim vd™, s“ ™) £V + (g €).

We define an infinite sequence of strategy profiles (Zm)*‘=l satidying that
s (W) =57 (1),
andforevery t3 K+1,
s (W) =s*"(RT) if t=KT +k andforevery t =1,..,1,
(& (€)W (1)) = (& (Kt +k),w (Kt +k)).
Note that
K k1
L a @)« v, kM)
limv((d™)K,s )= limt
me ¥ m® ¥

k-1
K

d")

=

i QJOx

1
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éK. V[k] éK. V[k]
T [ kle - (e, 9), kle + (e1 e)] .

Since ™ isaNash equilibrium in G(d™) for every large enough m=1,2,..., one gets
1

tha s isa Nah equilibrium in G(d™)¥) for evary large enough m=12,.... Hence,

K
g VK
kle issudtainable.

Step 3: Note that (0,0) is sustainable, because the repetition of the choices of d is the
Nash equilibrium in G(d) for dl d1 [0,1). Step 1 and inequdities (1) imply thet v, v,
(v1,v,) and (v,,Vv.) ae dl sustanable. Since the set of sustaineble payoff vectors is

compact, one gets from Step 2 that the set of sustainable payoff vectors is convex. Hence,
every payoff vector in the convex hull of the set {(0,0),V,(V,,V,),(v,,V,)},i.e,in V', is

ugtainable.

From these observations, we have completed the proof of Theorem 1.
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5. TheFolk Theorem

This section assumes that players private signals are conditionally independent, i.e.,
p(wla) = p,(wla)p,(w|a) foral alAandal w@ .

A feasible payoff vector v [V is said to be individually rational if it is more than or
equal to the minimax payoff vector, i.e,, v=(0,0). Let

1+ yl +X2) and Z[2] E(1+ y2 +Xl

Z = (0,—=—=
L1ty 1+y,

0).

Note that the set of all feasible and individually rational payoff vectors is equivaent to
the convex hull of theset {(1,1),(0,0), 2, z'¥} . See Figure 1 again.

We provide the Folk Theorem on the conditional independence assumption in the
following way.

Theorem 3: Suppose that players’ private signals are conditionally independent. Then,
every feasible and individually rational payoff vector is sustainable.

We provide the proof of Theorem 3 in the next section.

Theorem 3 is permissive, because we require no informationa conditions
concerning the accuracy of players private signals such as the zero likelihood ratio
condition. Theorem 3 isin contrast with Matsushima (1990a). Matsushima showed that
the repetition of the one-shot Nash equilibrium is the only Nash equilibrium if players
private signals are conditionaly independent and only pure strategies are permitted
which are restricted to be independent of payoff-irrelevant histories. Here, a strategy
profile s is said to be independent of payoff-irrelevant histories if for each i =12,
every t=12,...,every h' OH,,andevery h'' OH,,

sly=sl, whenever p(hilsh) = p(hjlsh') for all

h} OH;,
where p,(hi|s i) is the probability anticipated by player i that the opponent j
observes private history h} OH; when player i observes private history h' OH,,

provided that both players behave according to s[0S. Theorem 3 shows that the Folk
Theorem holds if players private signals are conditionally independent and only pure
strategies are permitted, but which depend on payoff-irrelevant histories.
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6. Proof of Theorem 3
The proof of Theorem 3 isdivided into four steps.

Step 1. We show that the payoff vectors (1,1), (1,0), (0,1) and (0,0) are all sustainable.

Before constructing Nash equilibria, we consider the situation in which players T
times repeatedly play the prisoner-dilemma game. Denote a' =(a(),...,a(T)),
¢’ =(c,...,c), d' =(d,...,d), (c/d;)" =(c/d,,....c/d,),and soon.

We chooseasubset Q' [0 Q, satisfying that

[p(wloda < [p(wlc/d)da.
w0 e

We denote by f (r,T,a’) the probability that the number of the observed private
signas for player i whichbelongto Q; isequal to r [}{0,..., T}, conditiona that a’

is played. Let Fi*(r,T,aT)Ezfi*(r',T,aT). We choose an infinite sequence
r'=0

(r’ (T))=, satisfying that

lim B (i (T),T,¢") =1, (16)
(1)
L'[Uo? = wi}f)i (wlc)da, (17)

and
ITimTfi*(ri*(T),T -1,c™™)
1

> : (18)
[p(wle/d)da - [p(wlc)dw
oo @o

In the same way as Lemma 1 in Matsushima (1999), one gets that such an infinite
sequence (r; (T))s., exists. The Law of Large Numbersimplies that

lim B (" (T), T,(c/d,)") = 0. (19)
We choose another subset Q. [ Q, satisfying that
[P(wld)da < [p(wld/c)d .
. o

lo;
We denote by f”(T,a") the probability that al of the observed private signals for
player i belongto Q" conditional that a' isplayed. Note that
i f7(T,d")
Tee £7(T,(d/ c))")
Fix an infinite sequence of discount factors (o™

= 0. (20)

(o]
m=l

arbitrarily, which satisfies
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rlni m 0™ =1. We choose an infinite sequence of positiveintegers (T™),._, satisfying that
ImT" =, y"=(3M", limy™=1,

and foreach i =12,
lim mmfi**(Tm,(d/cj)Tm)>yj.

m-0]—

Hence, from equalities (16), (19) and (20), we can choose an infinite sequence
(V" (&M E ™) imro )y Slisfying that &7 0[0] and £ 0[0]] forall m=12,...,
limv™=(11),

m- o

limv™ = (0,0),

m- oo

and for each i =1,2 and every large enough m,

m

S e L (N U T LRV
1-y
=1+ SR (T, T (e )N - V),
1-y
(21)
and
m _ ym m g ** m my/7—m m
Vi _1—ym§‘ fo (T .d’ YV =vy)
=y, +1me EM (T (d )W - V). (22)

From the continuity of p, we can choose two subsets Q: (&) 0Q, and
Q7 (&) 0Q; forevery &[0 sufficiently closeto 1, satisfying that

p (w]c)d
p|(a)||c)d(4 w[[b[i“(g)’ (q
— @(HNY — @l

[p@lda  [p@lody

p(wlc/d)d
pi(wlc/d;)dw w.E@[?.(E), i

— w@(HNQ; — 0w

jpi(w.lc/d,-)daq jpi(wilc/d,-)da%
aYuen aYuen

[ Pi(w]d)da [Pi(wld/c)da

— 979 — Q" (9)

[P@ldde  [p(wld/c)da
oy Wy

These equalities imply that the probability of w @ (&) is the same between the case



24

of the choice of action profile ¢ and the case of the choice of action profile c/d;, the
probability of «w [@ ;(&) conditional on w [@ ° is equivaent to that conditional on
w @ (&, and the probability of , [@ (&) conditional on w, @ ;" is the same

between the case of the choice of action profile d and the case of the choice of action
profile d/c;.

For every m=12,..., we define two subsets of the T™ times product of Q,
O"0Q " and &MOQ, by
D" ={(w(1),..,q(T™) @ " ether  (t)0Q for a most
r(T™) periods, or w,(T™) @ (&M},
and
" ={(w(@),..q(T™)@ " ether w(t)@ [ for all
tO{L.., T, or w(T™) @ (&M}

Based on the above definitions, we consider the following Markov strategies with
2T" dates, i.e, with states (c,,7) and (d,,7) foral 7=1...,T™. When player i's
state is state (c,r) (state (d,,7)) , player i chooses action c (action d,
respectively). When in a period t player i's state is state (c;,r) (state (d,, 7)) and
T<T", player i's dstate in the next period t+1 will be state (c,7+1) (state
(d,, 7 +1), respectively). When in a period t player i's state is (c,,T™) and the
vector of her private signals observed inthe past T™ periods (w (t—T™ +1),..., w(t))
belongsto ®;™ (doesnot belongto @®;™), player i's statein the next period t +1 will
be state (c;,1) (state (d, 1), respectively). When inaperiod t player i's stateis state
(d,T™) and (w (t-T"+1),...,(t)) belongs to ®;™ (does not belong to ®; ™),
player i's state in the next period t+1 will be state (c.1) (state (d;,7+1),
respectively). See Figure 3.

[Figure 3]

We denote by §" and s the strategies which start with state (c,1) and state
(d; 1), respectively. In order to prove that ™, s", s"/s] and s"/S" are all Nash
equilibria, we will make the following two requirements; that for every k=01,..., any
mixture of the choices of action ¢ and action d. inthe T™ times repeated play is less
preferable than the T™ times repeated choice of action c or the T™ times repeated
choice of action d, in period t=KT™+1, irrespective of her own private history; and
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that for every k=01,..., each player i isindifferent between §" and §" in period
t =KT™ +1, irrespective of her own private history. Note that the second requirement is
similar to that of Step 1 in the proof of Theorem 1. This requirement makes our analysis
more complicated than the simple application of the Law of Large Numbersin the study
of review strategies by, for example, Radner (1985). However, by using the lemmata in
Matsushima (1999), we can prove that both requirements are satisfied when m is large
enough.
Formally, we specify an infinite sequence of two strategy profiles (5™,s")", inthe

following way. For each 1 =12,

s"(h™)=c¢ and s"(h™*)=d for al t=1..,T" and dl

h™ OH,,
§ =871 (@@, (M) @ 7,

§' =5 if (@@, q(T™) @ 7,

S =57 (@@ QT @ 7,

and
Sl =8 i (@), q(TM) @ .

These strategiﬁ are regarded as a modification of the review strategy originated by
Radner (1985).” When the T™ times repeated play passes the review of player i, that
is, either (@ (1),..., w(T™)) [@ ™ inthe case of player i's T™ times repeated choice
of action ¢ or (w(2),...,(T™) @ ™ in the case of player i's T™ times repeated
choice of action d,, player i will play collusive behavior during the next T™ periods
accordingto §". Whenthe T™ timesrepeated play failsthereview of player i, that is,
either (@ (1),..., @(T™)) @ ™ inthe case of player i's T™ times repeated choice of
action ¢ or (w(1),...,(T™) @ "™ in the case of player i's T™ times repeated
choice of action d., player i will play punishment behavior during the next T™
periods accordingto s'.
Equalities (21) and (22) imply that
v,(0™,8™) = v, (8", 5"/ s]) =V, (23)

® See also Abreu, Milgrom and Pearce (1991), Matsushima (1999), Kandori and Matsushima
(1998), and Compte (1998). These papers made future punishment triggered by either bad
histories of the public signals during the review phase or bad messages announced at the last
stage of the review phase. In contrast, the present paper assumes the non-existence of such
public signals or messages.
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v;(8",s™) = v, (8", s" /5" =], (24)
and therefore,

iy, (7,87 = i (375" ) =1
and

limv,(3",s") =limv,(&",s"/§") =0.
We show below that ™, s™, "/s] and s™/§" areall Nash equilibriafor every

large enough  m. Suppose that there exists s; [JS; such that

v,(0",s"/s) >V,
and

Sl =8| . foral h" OH,.
The definition of Q?(&Ti ™) and the conditional independence assumption imply that we
can assume that there exists (a;(1),...,a,;(T™)) such that

s(h™) =a(t) foral t=1..,T" andal h™ OH,.
In the same way as Lemma 4 in Matsushima (1999), one gets that, given that m islarge
enough, player j can obtain a positive gain from deviation by choosing action d;
either only in the first period or in al T™ periods. Hence, we can assume that either
a,()=d; and a;(t)=c; for al t=2..T", or al(t)=d; for dl t=1..,T"
Equalities (23) imply that player j cannot obtain any gain from deviation by choosing
action d; inal T™ periods. Moreover, In the same way as Lemma 5 in Matsushima

(1999), we can show that, given that m is large enough, player j cannot obtain any
gain from deviation by choosing action d; only in the first period, as follows. Note that

the difference of the probabilities that event ®;™ does not occur (i.e., player j is
punished) between inthe case of a'" =(c/d,,c,...,.c) andinthecaseof a' =c' is
equal to
&' [p(@le/d)dy - [p(wlo)da} (7 (T").T"-1e™).
@ [K; ol Q;

Hence, the difference of the (un-normalized) long-run payoffs for player j in the case
of the T™ times repeated choice of action c; and the case of the deviation by choosing
action d; only inthefirst period is equal to

X; =& [p(wle/d)dy
oy

m

(v =v]).

_ _ _ N m m_ TM-1 y
@if.(a%lc)dw} G (T, T =4 ) T 25w

From equality (19), the latter equality of (21), limy™=1im(d™)" =1, limv™ = (1)




27

and limv™ =(0,0), one getsthat

i TM-1
o R AC)
lim————&" =lim &M lim 20— =x
m-w (1-90M)T™ moo]—y™" mee T
and therefore, the limit of this difference in long-run payoffsis equal to

X; _Xj{ Ipi(a“C/dj)doq
[Yae)

- [p(wlo)da} imTH ((T), T-1c"™),
W] o

which is less than zero, because of inequality (18). Hence, player | have no incentive
to deviate by choosing action d; only in the first period. This, however, is a

contradiction.
Next, suppose that there exists s, [JS; such that

v,(0",s"'s)> V],
and

Sl n = §T|thm foral h'" OH,.
The definition of Q; (c,?i ™) and the conditional independence assumption imply that we
can assume that there exists (a;(1),...,a,;(T™)) such that

sj(h}‘l) =a,(t) foral t=1..,T" andall h}‘l OH;.
Let 7 0{1,..,T™} denote the number of the periods in which a, (t) =c,;. Without loss
of generality, we can assume that player j choosesaction c; inthelast 7 periods, i.e,

from period T" -1 +1toperiod T™. Note that
£7(™™a")=( [p(wld/c)dw)( [p(wldde)
wo’ al

=g f"(T",d"),
where
[p@ld/c)dw

q= 9l >1.

[P (@ld)da
o

Hence, one gets from equalities (22) that
v,(0",s"'s))
1 5m TM-1 m
( y;) Z(é ) 1

-1 5m( ) Z(é“‘) OV,

Ef (Tmat) (v - v
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We denote by v,(7) theright hand side of these equalities, i.e.,

0=y Sy s
: 1_ym j t:'IZ—r -
Note that
1 . om "1 _ ,,m . .
V(T +D) -v,(1) = (=)0 Yy g (-1
o 1-vy
(25)
Note aso that
v,(0) = vj(5’“,§’“) =v,;(&",8™) =v,(T"). (26)
Giventhat m islarge enough, we can assume that
1
1<—<q.
sm

(5m)Tm—1 _ ym

This, together with equality (25), inequality ——(=y,;) <0, and inequality

(q-2)v} >0, impliesthat for every 7 0{1,...,T"},

V(T +1) -v;(r) 20 if v,(7)-v,(r -1) =0,
and

vi(1)-v,(t -1) <0 if v, (T+1)-v,(1) <0.
This, together with equalities (26), implies that

v,(0) 2 v (r) foral 70{1..,T"}.
Hence, it must hold that v;(8™,s"/'s;) < v, but thisis a contradiction.

m

From these observations, we have proved that s", s

Nash equilibria for every large enough m. Hence, (1,1), (1,0), (0,1) and (0,0) are all
sustainable.

, 8"/s]and §"/S" areall

Step 2: We show that z'¥ and z'? are both sustainable. Consider z™ only. We can
provethat 7% is sustainable in the same way.

Before constructing Nash equilibria, we consider the situation in which players M
times repeatedly play the prisoner-dilemma game. We choose a subset Q) 0 Q,
satisfying that

[P(wrld/e)dw, < [p(wld)dw.
w03 Wl Q3
We denote by f,"(r, M,a") the probability that the number of the observed private
signas for player 2 which belong to Q; is equal to r [{0,..., M}, conditional that

a" isplayed. Let F,(r,M,a")= Z f,"(r',M,a"). We choose an infinite sequence
r'=0
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(r, (M))5,-, satisfying that

lim F(r,;(M),M,(d/c)")=1, (27)
tim 280 = 1. (@jd/6)de., 28)
w, 103

and
lim M, (r; (M), M,(d/¢)")

1+y, (29)
"W [ Po(wy|d)de, = [p(afd/c)d a}
w03 ubl Q3

In the same way as Lemma 1 in Matsushima (1999), one gets that such an infinite
sequence (r, (M))5,, exists. The Law of Large Numbersimplies that

“IAim F(r,;(M),M,d")=0. (30)
We choose a positive real number b > 0 arbitrarily, which isless than but close to
1
1+y,’
satisfying that
fim M (r; (M), M, (d/ ¢)")
by,
" (@b J Po(wy|d)des, = jpz(agld/cl)d W}
w03
Let

vV =b(-y,1+x,) +(1-b)(11).
Notethat v" approximates z", and
V* > ZF] —
Fix an infinite sequence of discount factors (0™)._ arbitrarily, which satisfies
lim ™ =1. We choose an infinite sequence of positive integers (M™);_, satisfying

m- +oo

that
|im|\/|m:0°, XmE(ém)Mm’
and
limx™=1-b. (3D

For every m=12,..., we define a subset of the M™ times product of Q,,
©;" 0 QN by
O™ ={ (w0, (D),.., a(M™) @ " w,(t)0Q; for a most
r,(M™) periods}.
Let (3™, s™)>., betheinfinite sequence of the two strategy profiles specified in Step 1.
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Consider the following strategy profile. In the firss M™ periods, player 1 always
chooses action c, and player 2 aways chooses action d,. From period M™+1, player

1 certainly plays the strategy §". From period M™+1, player 2 plays strategy S,"
(strategy s,) if the vector of the observed private signals (w,(2),..., w,(M™)) passes
the review, i.e, belongs to ®; (fals the review, i.e, does not belong to @7,

respectively). See Figures 4.1 and 4.2.
[Figure4.1]

[Figure4.2]

Formally, we specify an infinite sequence of strategy profiles (s*™)=, in the

following way.
(™t =(c,d,) if 1st<M™,

Slillmllhfm =g" for dl thm,
0 =S (@0, (MM,

and
52”’”“Ih;m=_82" if (w,(D),..., &(M™) @ 7.
Note that
v, (6™, s
= (1= x™(=y,) + X™{F (r; (M™),M™,(d/c)"" )"
+(@1-F,(r,; (M™), M™,(d /)" )V},
and

V(3" 8MM) = (1= XA+ x,) + X"
Note from equalities (27), (30) and (31) that
limv(d™,s"™) =b(-y,1+x,) +(1-b)(1D) =Vv".

m- oo

Hence, v(6™,s™™) approximates z'¥ for every large enough m.

We show below that $*™ is a Nash equilibrium for every large enough m. Step 1
and the definition of '™ imply that (%1"“]|thm , S |h2Mm) is a Nash equilibrium for
every (thm,thm) and every large enough m. Since players private signals are
conditionally independent and action d, is dominant in the component game, the
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repeated choice of action d, during the first M™ periods is the best response for
player 2. Hence, al we have to do is to check that the repeated choice of action c,

during thefirst M™ periodsis the best response for player 1 for every large enough m.
Suppose that there exists s S, such that

u(s, &™) > u(s™M),

and
=" . foral h"" OH,.

Sl = 8" e foral B OH,
From the conditional independence assumption, we can assume that there exists
(a,D,...,a,(M™)) such that

s(h™)=a,((t) foral t=1..,M™andal h™ 0OH,.
In the same way as Lemma 4 in Matsushima (1999), one gets that, given that m islarge
enough, player 1 can obtain a positive gain from deviation by choosing action d, either
only in the first period or in all these M™ periods. Hence, we can assume that either
a@®=d, and a(t)=c, foradl t=2..,M" or a(t)=d, fordl t=1..,M"™. In
the same way as Lemma 5 in Matsushima (1999) and Step 1 in the proof of this theorem,

we can show that, given that m is large enough, player 1 cannot obtain any gain from
deviation by choosing action d, only in the first period, as follows. Note that the

difference of the probabilities that event ®™ does not occur (i.e, player j is
punished) between in the case of a' =(d,d/c,...,d/c) and in the case of
a" =(d/c)" isequal to

{ [p(wld)de - [p(@ld/c)da} (5 (M™),M"-1(d/c)""™).

w, [0 bl Q;
Hence, the difference of the long-run payoffs for player 1 in the case of the T™ times
repeated play of action c, and the case of the deviation by choosing action d, only in
thefirst period is equal to

Y1_{ Ipz(wzld)da)z - Ipz(wzldlcl)da)z}

w03 w03
0 (1 (M7, M7 =1(d 1 6)"™) A (0 -],
From equality (31), one gets that
M™-1
. .S EY
lim—X = lim—X— |im = =d-b7
me (1=3MM™  meelo y™ mes M b

which, together with limv™ =(1,1) and limv™ =(0,0), implies that the limit of this

difference in long-run payoffsis equal to
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yl_{ Ipz(wzld)da)z - Ipz(wzldlcl)da)z}

w0 w0

dl_Tb)z’!/llmo |\/|f2+(r2+(|\/|), M _l-(d/Cl)M_l)_

Since b iscloseto , thisvalue is approximated by

Y
Y1_{ Ipz(wzld)da)z - Ipz(wzldlcl)da)z}

@03 @03
2
Sy im ME (1 (M), M -1,(d/6)"),

which is less than zero, because of inequality (29). Hence, player 1 have no incentive to
deviate by choosing action d, only in the first period, when m is large enough. This,

however, is a contradiction. Hence, it must hold that a,(t) =d, for al t=1..,M".

Note from limyv™ = (0,0) and equality (30) that if a,(t)=d, foral t=1...,M™, then
limv, (3", (s, 5"™))
=lim x™(F, (r; (M™), M", d"")g"
+@L-F(r;(M™),M™,d"")v]} =0.

Since limv, (6™, s*™)=v; >0, one gets that v,(6™,(s,s™)) <v, (6", s*™) for

every large enough m, but thisisa contradiction.
Hence, we have proved that z™ issustainable. Similarly, z? is sustainable too.

Step 3: Step 2 in the proof of Theorem 1 has proved that for every positive integer

i [K]
\Y

K>0 and every K sustainable payoff vectors v, .. ¥l kle is aso

sustainable.

Step 4: Step 1 and Step 2 imply that (1,1), (0,0), zM™ and z!¥ are al sustainable. Since
the set of sustainable payoff vectors is compact, one gets from Step 3 that the set of

sustainable payoff vectors is convex. Hence, every payoff vector in the convex hull of
the set {(0,0),(1,1),z™,2} , i.e.,, every feasible and individually rational payoff vector,

is sustainable.

From these observations, we have completed the proof of Theorem 3.
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7. Uniform Sustainability

In contrast with Sections 5 and 6, this section require no presumptions on the private
sgnd dructure such as conditiond indifference. This section regards G(d) as a machine

game.” For each i =1,2, fix the finite set of states of machine for player i, Q,, abitraily,
where |Q 2 2. Let Q° Q™ Q,. A rulefor player i isdefinedby s, ° (f,t;), where
f.Q ® A is an output functiont.:Q "~ W ® Q. is a trandtion function, and t. is
measurable w. r. t. W . The set of rulesfor player i isdenotedby S..Let S°S,” S,.
A machine for player i is defined as a combination of a rule and an initid Sate,
g =(s,,g)!' S~ Q. In every peiod t, player i chooses action a(t) = f.(q (t))
where ¢ (t) isthe State for player i inperiod t. The State for player i will trangt from
g (t) to g(t+1) =t (g (t)w,(T)) in peiod t+1 when she observes private signa
W, (t) in period t. Player i's normalized long-run payoff induced by a machine profile
ql Q is defined by v (d,q)° (1- d) E[g d"*u(a(t))|q]. The st of al machines for
t=1
player i isdenotedby Q,.Let Q° Q,” Q,. A machine profile qT Q is said to be a
Nash equilibriumin G(d) if foreach i =12 adevery qdl Q,, v,(d,q)3 v,(d.,q/q9.
A machine profile g1 Q issometimesdenotedby (s,q)T S™ Q.
For every i=12 and every machine g, =(s,,q)1 Q, for player i, we define a

srategy s(q)1 S for player i andafunction g (q):H ® Q by

q (g )(hio): q [ Q.

s(q)(h’)= fi(qi)T A,
andforevery t31andevery h'l H,,

a (@)(h)=t,(a(q)h""),w (t))T Q.
and

s@)h)=f(a@)(h)NT A,
Let S(Q)° (s(q,).s,(0,)) ! S. Note that g is a Nash equilibrium in G(d) if S(q) isa
Nash equilibriumin G(d) . Noteadso that v(d,q) = v(d, S(q)) .

We assume that players initid dates are not common knowledge. We introduce the

following solution concept of arule profile.

Definition 2: A rule profile s T S isa uniform equilibriumin G(d) if (s,q) is a Nash
equilibiumin (d) fordl gl Q.

’ For the definition of a machine game in the perfect monitoring case, see Rubinstein (1994,
Chapter 9). This section extends this definition to the private monitoring case.
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Definition 2 requires that players dways play Nash equilibria irrepective of ther initid
dates. This means that al possible Nash equilibria are interchangegble.
Notethat s isauniform equilibiumin G(d) if (s, q) isaNash equilibriumin G(d)
fordl g1 Q. Noteaso that
v(d,(s,q)) =v(d,s(s,q)) fordl qi Q.
Notethat if s isa uniform equilibium in G(d), then, for each i =1,2,every gl Q ad
evay q¢l Q,
vi(d.(s.q)) =vi(d.(s.a/q9),
that is, each player can obtain the same payoff irrespective of her own initia state. However,
v,(d,(s,q)) is not necessarily equivaent to v, (d,(s,q/ qf)) forevery gl Q and every
qg:T Q,, i.e, the payoff which each player obtains may depend on her opponent’sinitia state.
The following theorem Sates that for every discount factor there exist a uniform equilibrium
and a date profile, the combination of which sustains the payoff vector Pareto-dominating al
other payoff vectors induced by the machine profiles consgtent with the other uniform
equilibria

Theorem 4: For every d 1 [01), there exists a uniform equilibrium s 1 S in G(d)
and gl Q such that for every uniform equilibrium s¢l S in Gd) and every
q¢l Q,

v(d,(s,a))® v(d,s(s ¢q9).

Proof: Fix d1[01) arbitrarily, and congder a uniform equilibium s T S in G(d). Note
that forevery gl Q,
v(d,s,q) 2 O,
because each player i obtainsat least payoff zero by dways choosing action d. .
Suppose that there exists | =1,2 suchthat f,(g)=d, fordl ¢ T Q.. Since the choice
of action d; isthe dominant action for player j in the component game G, it must hold thet
f(q)=d fordl g, TQ,.
Hence, one gets that both players repeatedly choose this dominant action profile d, and
therefore,
v(d,s,q) =0.
Next, supposethat for each i =12, thereexists ¢ 1 Q suchtha f,(g)=c . Wecan
check that for each i =12 theredso exists q¢l Q suchthat f, (g = d,. Otherwise, the
only best response for her opponent | is to adways choose action d, irrespective of her

date, but thisis a contradiction. Hence, one gets from the definition of uniform equilibrium that
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esch player i isaways indifferent between the choicesof ¢, and d , and therefore, sheis
indifferent among al machines, i.e,

v(d,s,q)=v(d,(s,q)/q) fordl g | Q, anddl gl Q.
Thisimpliesthet for every s 1 S,evary s¢l S,every gl Q andevery q¢l Q,if s
and s ¢ are both uniform equilibriain (d) , then (s,,s4) isdso auniform equilibrium and
stisfies

v(d,(s;,s $),(q,98) = (v,(d,s,q),v,(d,s ¢a9).
These observations and the compactness of the set of uniform equilibriaimply that there exist a
uniform equilibrium s 1 S and gl Q such thet for every uniform eguilibrium s ¢l S and

every q¢l Q, v(d,(s,q))® v(d, (s ¢q9).
Q.ED.

Theorem 4 is in sharp contrast with the fact that there exist a continuous/countable set of
Pareto-undominated perfect equilibrium payoff vectors. The following theorem provides an
upper-bound of al payoff vectors sustained by machine profiles congstent with uniform
equilibria

Theorem 5: If s 1 S isauniformequilibriumin G&(d), then for each =12,
max[0,vi] 3 v,(d,s,q) for all g7 Q.

Proof: Suppose that there exists i =12 suchthat f,(g)=d, fordl g 1 Q.Snce d is
the dominant action profile, it must hold that A
f,(q,)=d, fordl q, 1 Q,.
Hence, players repeatedly choose d, and therefore,
v(d,s,q) =0.
Suppose that for each i =12, thereexists G 1 Q suchthat f (G)=c.Fix i =12
arbitrarily, and let
W (q;)® maxvi(d,qg(s;,q,))-
The uniform eouilibrium property of s impliesthat forevery gl Q,
vi(d,s,q) =W(q;),
and therefore,
W(q;) = (1- d)u(c, f;(a;))
+d Op,(w[c,, (g V(L (g, w,))dw, .

WjTWj
Choose q; T Q, whichmaximizes W,(q; ), and supposethat W (q;) > 0. Note that
W(g;) =u(c, f;(q)))
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+

d . . . .
1 g OP; (wle, T, (a)RW (0. w;)) - W(g )} aw, .
Wj|Wj
Since W (t ,(q;,w,))- W(q;)£0 fordl w, T W,, one getsthat W (q]) is less than or
equd to the vaue induced by the following conditiona maximization.
e:\{ngn%{O},{ui(Ci’aj ) - TOVVpJ (Wj |C| ’aj )e(WJ )dW]}
ajl A Wit VY
subject to
ui(Ciiaj ) - bpj(wj |C|7aj)e(wj )de
wiTw;
3 ui(di!aj) - (\)pj (ledi 7a‘j )e(Wj)de .
w T w;

Since V\{(q;)>0 and u(c/d;)=-y, <0,onegestha a, =c; mus hold. Hence, the
vaue induced by the above conditiona maximization is equivaent to

e:wjg'gﬁo}{l - W.i(a/pj (w;|c)e(w; )dw, }
subject to
d P; (ledi ’Cj) - b (lec)}e(wj)dwj s K
wil W,
The vadue induced by this conditiona maximization is equd to
Li(c,c/d;)x
1- Li(c,c/d)’

whichisequd to Vi
Q.E.D.

We show below that the upperbound provided by Theorem 5 is the least upperbound.
We dso show below that there exigs a uniform equilibrium such tha this upperbound is
goproximately sustained by every machine profile consstent with it. We introduce the notion of
uniform sugtainability asfollows.

Definition 3: A payoff vector (v,,v,)T R? isuniformly sustainable if for every (d™)¥
sisfying Jﬂ!)rg d™ =1, and for every e>0, there exists an infinite sequence of rule profiles
(s ™., suchtha for every lageenough m, s™ isauniform equilibiumin G(d), and for

evay ql Q,
v- (e e) <nlﬁlarg v(d",s™ g)<v+(ee).

Uniform sugtainability requires that players dways play Nash equilibria irrespective of their
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initid states and dways obtain virtudly the same payoff vector irrespective of ther initid Sates,
that is, al possble machine profiles are interchangeable and virtudly payoff-equivadent Nash
equilibria. Note that the set of uniformly sustainable payoff vectors is compact.

Theorem 6: If v>v and v=(v,v,)] R satisfies
v3 v3y,

then it is uniformly sustainable.

Proof: Fix v' TV and v 1V’ abitraily, which sttisfies v3 v" >v™ 3 v. Fix an infinite
sequence of discount factors (d™)Y_, arbitrarily, which stisfies ”Iérg d"=1.Let (s")'.,
be the infinite sequence of strategy profiles specified in Step 1 in the proof of Theorem 1. Let
Q ={01:G 50} » Where b °|Q|. We define an infinite sequence of rule profiles
(s™¥_, inthefollowing way. Forech i =12,
fi"(a,.)=c,
f."(q) =d foral g * q,,
(0w =g, if w T (W - e +e,
t7(g,W) =g, if w T W-e"W+e",
andforevery gt q,,
£ W) = g, i w T (W - 17w+,
ad
£ (@.wW) =q, if w1 (W - "W+,
where W, w,, €",and | were specified in Step 1 in the proof of Theorem 1. Note that
s(si"a,)=9", if §"(h) =c,
andforevery g, ! q;,,
s(s".) =", if S"(h)=d,.
Since (slm|hi,%m|h£¢) is a Nash equilibrium in G(d™) for evey h'T H, and every
heT H,, one gets that S(s™,q) is a Nash equilibrium in G(d™) for dl g1 Q, ad
therefore, s™ isauniform equilibriumin G(d™) . Sincefor each i =12,
vi(d,(s™q)=v(d,s(s"a)=9"if q =0,
v(d,(s™a)=v(dss"q)=v"if q*q,,
and we can choose v ascloseto V' as possble, we have proved that v* is uniformly

sustainable. Since the set of uniformly sustainable payoff vectors is compact, we have proved
that every v sisying v3 v 3 v isuniformly sustaingble
Q.E.D.
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Theorems 5 and 6 imply that v is the unique uniformly sustainable payoff vector
which Pareto-dominates all other uniformly sustainable payoff vectors.

Theorem 7. Suppose that for each 1=1,2, inequality (3) holds, i.e.,
1
L(d.d/c)) <.

Then, (11) is uniformly sustainable if and only if for each i=1,2, equality (2) holds,

ie,
Li(c,c/d;)=0.

Proof: We show the “if’ part. Theorem 6, the definition of v, and equdities (2) imply thet if
(11D 3 v >v,then v isuniformly susainable. Inequdities (3) and the definition of v imply
1D >v.
Hence, (11) isuniformly sugtainadle.
We show the “only if” part. Theorem 5 impliesthat for eech i =12,
max[0,Vvi]3 1.
Hence, v =(1,1) mus hold, which implies equdities (2).
Q.E.D.

Theorem 7 implies that the efficient payoff vector (11) is uniformly sustainable if and

only if the zero likelihood ratio condition holds, and implies also that if this efficient
payoff vector is uniformly sustainable, then it Pareto-dominates all other uniformly
sustainable payoff vectors.
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8. Limited Knowledge on the Signal Structure

This section investigates the gtuation in which players have limited knowledge on their
private sgna sructures. Each player i =1,2 knows her own monitoring ability, i.e., knows
p,, but does not know her opponent’s monitoring ability, i.e, does not know p;, and

therefore, behaves according to a strategy which does not depend on p; . All notationsin the
previous sections will be rewritten as being parameterized by p, if necessary. For example,
we write v =(v/? glP) and VP = (V% V) ingteed of v =(v,V,) ad
v =(V,,V,), respectively.

8.1. The Folk Theorem

We reconsder sustainability by Nash equilibrium. For each i =12, fix an abitrary
compact and nonempty subsst P* of conditiond density functions on player i's private
dgnd.Let P°° P " P,. We assume that each player i only knows which element of P’

is the correct conditional dengty function for her own private sgnd. We assume that it is
common knowledge that the correct conditiona densty function belongsto P*. We assume
aso that it is common knowledge thet players private signds are conditiondly independent. A
mapping assigning each dement of P a dtrategy for player i isdenotedby r:P ® S.
Let r©°(r,r,), and r(p)° (r,(p).r,(p,)). Payer i plays the assgned Strategy
r.(p)1 S irrespective of her opponent’smonitoring ability p, T P .

The following theorem states that the Folk Theorem holds for every p1 P* with the
above redtrictions of limited knowledge.

Theorem 8: For every feasible and individually rational payoff vector vi R?, every
(d™)¥_, satisfying !Tif@rgdm =1, and every e>0, there exists (r ™)*_ such that for

every pl P" andeverylargeenough m, r™(p) isaNash equilibriumin G(d™), and
v- (ee)<limv(d”,r"(p)) <v+(ee).

Proof: Fix (d™)¥%_, abitrarily, which satisfies limd™ = 1. From the compactness of P,

me ¥
thereexit €>0, €>0, Y, P ® 2% and Y:P" ® 2" foreach i =12 suchtha
e>e,
andforeach i =12 andevery p 1 P',
e= Qrwlodw = gp(w|d)dw,

wTY] (p) wiY;"(p)
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5= gpwlc/d)dw = gp(wld/c,)dw.
wiTY{ (p) wi Y (p)

Foreach i =12 adevery p, 1 P', We set the associated sets W and W," introduced in
Step 1 of the proof of Theorem 3 equivadentto Y, (p,) and Y, (p,), respectively. Hence,
we can choose (1 (T))+.,, (T™)%., ad (v’“,\_/"‘,()Z‘“,>_<i”‘)i:l,2)§f1:l introduced in Step 1 of
the proof of Theorem 3 independently of p. T P*. We denote §™" and s™” ingead of
5" and s, respectively, which are the strategies specified in Step 1 of the Proof of Theorem
3. Wespecify (F");., and (Lim)fn:l by

F(p)=5"" ad r"(p)=s"" fordl p1F.
Step 1 in the proof of Theorem 3 impliesthat for every p1 P and every large enough m,
(F(P) T2 (R.)), (F(P), 1 (P,)), (r(p) T5(p2) and (r (py).r;'(p,) aedll
Nash equilibria, approximately sustaining (1,1), (1,0), (0,1) and (0,0), respectively.

From the compactness of P, there exis " >0, e >0,and Y, P ' ® 2" for

each i =1,2 suchthat

g >¢,
andforeach i =12 andevery p 1 P,
e = dpwld/c)dw,

wl Y (p)

€ = Op(wd)dw,.
wiY (p)

Forevery i =12 adevery p 1 P’, we set the associated st F introduced in Step 2 of
the proof of Theorem 3 equivdent to Y ."(p,). Hence, we can choose (r"(M))},., ad
(M™)¥_, introduced in Step 2 of the proof of Theorem 3 independently of p, T P". We
denote §-™P1 and §*™Plingtead of §-™ and §*™, respectively, which are the Strategies
specified in Step 2 of the proof of Theorem 3. We specify (r=™)%_ and (r [*™)%_, by

rEm(p) = "% and rPM(p) =20 fordl p 1 R
Step 2 of the proof of Theorem 3 implies that for every p1 P* and every large enough m,
both (r*™(p,),r™(p,)) and (ri*™(p),ri*™(p,)) are Nash equilibria, approximately
udtaining zM and Z1?, respectively.

Fix a pogtive red number e > 0, apostiveinteger K, and K feasble and individudly
rational payoff vectors v, ..., v"} | arbitrarily. Suppose that for every k1 {1,...,K}, there
exigs (r *“™)*_ such tha for every p1 P and every large enough m, r™(p) is a
Nach equilibriumin G(d™), and
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V{k} _ (e’e) < |i®rQV(dm, r{k,m}(p)) <V{k} +(e’e).

¥

We spedify (r™)¢, sdidying that for every il {13, every p 1 P, and every
kT{1..., K},
r(p () =r*™(p)(h),
andforevery t3 K+1,
rh(p (K =r %™ (p )(h)
if t=KT+kand (3 (t)W(t)) =(a(Kt +k),w (Kt +K))
fordl t =1...,t.

1
Note that for every p1 P", r™(p) is a Nash equilibrium in G((d™)¥) for every large
enough m=122,...,and

k-1

v, ri ()

k-1
K

N a (dm
limv((@d™)<,r "(p)) = lim-=

(d")

Qo=

=
1

1

K K
o] o

| ["ZlT- (e,e),kle+(e,e)] .

K
[o}

3 vid
Hence, we have proved that kle issugtainable.

Since the st of payoff vectors satisfying the conditions in Theorem 3 is compact, we have
proved that every feasible and individualy rationd payoff vector satisfies the conditions of
Theorem 3.

Q.E.D.

8.2. Uniform Sustainability

We reconsider uniform sustainability discussed in Section 7. We denoteby P~ the set of
dl conditiona density functions p satisfying v > v'” . For each i =12, we define P~
as the st of dl conditiond dendty functions p, on player i's private Sgnd satisfying thet
p(wla)°® @p(wja)dw, for some pl P”. Note that players private signds are not

WjTV\/j

necessarily conditionaly independent. We assume that each player i only knows which
gement of P~ is the correct conditiond density function for her own private signd. We
assume that it is common knowledge that the correct conditional dendity function belongs to
P” . We dso assume that each player i has no idea on what is the degree of correlation
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between their private signas. A mapping assigning each dement of P~ arulefor player i is
denoted by b:F" ® S,. Let b° (b,b,) ad b(p)° (b(p).b,(p,). Player i
behaves according to the assigned rule b.(p, )T S, irrespective of her opponent’s monitoring
ability pjT PJ.**.

The following theorem sates that for every p1 P™, the Pareto-dominant uniformly
sugtainable payoff vector v!*! can be uniformly sustained by a rule profile with the above

restrictions of limited knowledge.

Theorem 9: For every (d™)?_, satisfying Li@rgdm =1 and every e>0, there exists
(b™)¥_, such that for every p1 P” and every large enough m, b™(p) is a uniform
equilibriumin G(d™), and for every q1 Q

v (e e)< limv(d",b"(p),q) < v + (g €).

Proof: Let (s™)¥_, betheinfinite sequence of rule profiles defined in the proof of Theorem 6,
whee we asume V- (ge)<v <v'<viP+(ge). We wil write
s ™ =(s;",s,M) ingead of s ™. Here, we mugt note thet, by definition, s" depends
onlyon p, foreach i =12.Hence, we can specify (b™)*_ by

b™(p)=s™ foreach i=12,dl m=12..,anddl pi P".
The proof of Theorem 6 implies that for every p1 P and every large enough m,
b™(p) =s™" isauniform equilibriumin G(d™), and for every gl Q,

v (e€)<limy(d”,s" q)=limv(d",b"(p),q)

<P +(ee).

Q.ED.
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9. Conclusion and Futur e Resear ch

The present paper investigated repeeted prisoner-dilemma games with discounting where
players are sufficiently patient. We provided the Folk Theorem in terms of Nash equilibrium
when players private Sgnds are conditiondly independent. We aso showed that the zero
likelihood ratio condition is necessary and sufficient for efficient uniform sustainability. These
results hold true even if players have limited knowledge on ther opponents private signd
structures.

We have the following problems to be solved in future research.

We have proved the Folk Theorem on the conditiond independence assumption by using
the review drategy equilibrium congruction. The use of the review dSrategy relies on the
conditiond independence assumption. Hence, whether the Folk Theorem holds even without
conditiona independence is an open question. In the study of repeated games with public
monitoring, Matsushima (1989) provided an idea of equilibrium congtruction of punishment
and reward on hyperplanes. Subsequently, by using this idea, together with that of sdf-
generation explored by Abreu, Pearce and Stacchetti (1990), Fudenberg, Levine and Maskin
(1994) provided the Folk Theorem in the public monitoring case. In order to discover the
Folk Theorem without the use of the review drategy, it would be a crucia step to apply the
idea of punishment and reward on hyperplanes to the private monitoring case.

The present paper considered only repeated prisoner-dilemma games. It is important to
clarify whether this paper can be extended to more generd games. For example, we can

extend Theorem 1 to a dass of games with more than two actions in the following way.
Suppose that a player i has an action dg¢ other than actions ¢, and d., and there exist

al [0]] and a¢l [0]] suchthat
u(c/dg9£au(c)+(1- a)u(c/d),
pj (WJ |C/ dg > apj (WJ |C) + (1' a)pj (WJ |C/ d|) )
u(d/dg£ae(d)+(1- ady(d/c),
and
pj (V—\7J |d / d|(D <a¢)j(vvj|d)+(1- aq)pj(vvj |d / C|),
where VV]- and VT/]. are the private sgndsfor the opponent defined in the proof of Theorem 1.
Since the choice of action d¢ is worse than a mixture of actions ¢, and d,, player i have
no incentive to choose action d¢ when her opponent plays the strategy constructed in the
proof of Theorem 1.
The study of private monitoring in generd repested games with more than two actions and
more than two players, and adso in genera stochastic games, should be expected to be started
in the near future.
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