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Abstract

For the purpose of testing the spherical uniformity based on i.i.d. directional
data (unit vectors) zi, i = 1, . . . , n, Anderson and Stephens (1972) proposed testing
procedures based on the statistics Smax = maxu S(u) and Smin = minu S(u), where
u is a unit vector and nS(u) is the sum of square of u′zi’s. In this paper we also
consider another test statistic Srange = Smax − Smin. We provide formulas for the
P -values of Smax, Smin, Srange by approximating tail probabilities of the limiting
null distributions by means of the tube method, an integral-geometric approach
for evaluating tail probability of the maximum of a Gaussian random field. Monte
Carlo simulations for examining the accuracy of the approximation and for the
power comparison of the statistics are given.

Key words: directional data, integral geometry, maximum of a Gaussian field, mul-
tivariate symmetric normal distribution, test for spherical uniformity, Weyl’s tube
formula.

1 Introduction

Assume that q-dimensional i.i.d. directional data (unit column vectors) zi, i = 1, . . . , n,

are observed. Consider the hypothesis that zi has the uniform distribution on the unit

sphere Sq−1 in Rq. For testing this null hypothesis of spherical uniformity, Anderson and

Stephens (1972) proposed testing procedures with critical regions

Smax = max
u∈Sq−1

S(u) > c or Smin = min
u∈Sq−1

S(u) < c′,
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where

nS(u) =
n∑
i=1

(u′zi)2, u ∈ Sq−1,

is the sum of square of the components of zi’s with respect to the direction u. Obviously

the test statistics Smax and Smin are the largest and smallest eigenvalues λ1(Q) and λq(Q)

of a q × q matrix Q = (1/n)
∑n

i=1 ziz
′
i, respectively. Under the null hypothesis the matrix

Q has expectation (1/q)Iq, and the eigenvalues of Q far away from the value 1/q indicates

departure from the null hypothesis. Anderson and Stephens (1972) considered two types

of alternatives, the bimodal and equatorial alternatives, where the data zi’s are concen-

trated or deconcentrated with respect to a particular axis, and proposed the test statistics

Smax and Smin. In this paper we propose another test procedure with a critical region

Srange = max
u,v∈Sq−1

(S(u) − S(v)) = Smax − Smin > c
′′,

which is expected to detect different types of alternatives than the original Anderson-

Stephens statistics. In the succeeding section, we will examine the power performances of

the Anderson-Stephens statistics and their modification Srange. The motivation for Srange

shall be made clearer there.

In order to give critical points for Smax, Smin and Srange, we consider the limiting

distributions when the sample size n goes to infinity. The limiting null distribution of

any subset of the eigenvalues of
√
n(Q− (1/q)Iq) is given by the corresponding marginal

distribution of the joint density (2) in page 617 of Anderson and Stephens (1972) (see

also Section 2.3 of Watson (1983)). The density given there is easily shown to be the joint

density of the eigenvalues of √
2

q(q + 2)

(
A− tr(A)

q
Iq

)
,

where A = (aij) is a q×q symmetric random matrix whose diagonal elements aii and upper

off-diagonal elements aij (i < j) are independently distributed as aii ∼ N(0, 1), the stan-

dard normal distribution, and aij ∼ N(0, 1/2), respectively. The distribution of A is some-

times called (q×q) multivariate symmetric normal distribution (e.g., Siotani et al. (1985),

page 159). The lemma below follows immediately from this fact.

Lemma 1.1 As n→ ∞, the null distributions of both of
√
n(Smax−1/q) and −√

n(Smin−
1/q) converge to the distribution of

√
2(q − 1)/q2(q + 2)T1, where

T1 = λ1(B) with B =

√
q

q − 1

(
A− tr(A)

q
Iq

)
. (1)

The null distribution of
√
n(Smax−Smin) converges to the distribution of (2/

√
q(q + 2)) T2,

where

T2 =
1√
2
(λ1(A) − λq(A)). (2)
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The purpose of this paper is to provide approximate formulas for upper tail probabili-

ties P (T1 ≥ x) and P (T2 ≥ x) in the form of valid asymptotic expansions as x→ ∞. The

obtained formulas are shown to be sufficiently accurate for calculating P -values. In order

to derive the formulas, we take the tube method, an integral-geometric approach origi-

nating from Hotelling (1939) and Weyl (1939). Sun (1993) showed that an approximate

tail probability formula for the maximum of a Gaussian random field with a constant

variance can be obtained via the tube formula of Hotelling (1939) and Weyl (1939). The

upper and lower bounds for the approximate formula by the tube method are given by

Kuriki and Takemura (1998). Applications of the tube method to multivariate analysis

are found in Sun (1991), Park and Sun (1998), and Kuriki and Takemura (1998). See

also Knowles and Siegmund (1989), Naiman (1990), and the references therein.

The outline of this paper is as follows. In Section 2, we first explain that the statistics

T1 = λ1(B) and T2 = (λ1(A) − λq(A))/
√

2 can be reduced to canonical forms which can

be dealt with by the tube method, and give the tail probability formulas for the statistics

in Theorems 2.1 and 2.2. Furthermore we present numerical examples for confirming

the accuracy of the obtained formulas and for power comparisons of the test statistics.

Proofs of the theorems are given in Section 3. A summary of the tube method from

Kuriki and Takemura (1998) is given in Appendix A.1. The rest of the Appendix is

devoted to some mathematical details which are required in the proof of Theorem 2.2.

In particular we explicitly evaluate the moment E[det(A)2] of a multivariate symmetric

normal matrix A (see Lemma A.4), which might be of some independent interest.

2 Main results

2.1 Tail probabilities of the statistics

Let Sym(q) denote the vector space of q×q real symmetric matrices endowed with the inner

product 〈X, Y 〉 = tr(XY ), X, Y ∈ Sym(q). Sym(q) can be identified with Rq(q+1)/2 with

the usual Euclidean norm by identifying an element X = (xij) ∈ Sym(q), xij = zii (i = j),

zij/
√

2 (i < j), zji/
√

2 (i > j), with (z11, . . . , zqq, z12, z13, . . . , zq−1,q) ∈ Rq(q+1)/2. Note

that the q × q multivariate symmetric normal distribution corresponds to the q(q + 1)/2-

dimensional multivariate standard normal distribution Nq(q+1)/2(0, Iq(q+1)/2).

Consider two submanifolds of Sym(q),

M1 =
{√

q

q − 1
(uu′ − (1/q)Iq) | u ∈ Sq−1

}

and

M2 =
{

1√
2
(uu′ − vv′) | u, v ∈ Sq−1, u′v = 0

}
.

It is easy to see that the manifolds M1 and M2 are submanifolds of the unit sphere in

Sym(q),

Sq(q+1)/2−1 = {X ∈ Sym(q) | tr(X2) = 1}.
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Also we can see that

T1 = λ1(B) = max
U∈M1

tr(UA)

and

T2 =
1√
2
(λ1(A) − λp(A)) = max

U∈M2

tr(UA),

where A is a q× q matrix distributed as the multivariate symmetric normal distribution,

and B is a symmetric q×q random matrix defined in (1). Now T1 and T2 are expressed in

canonical forms and the upper probabilities P (T1 ≥ x) and P (T2 ≥ x) can be evaluated

by the tube method in the form of valid asymptotic expansions as x → ∞ (see (27) of

Appendix A.1).

We summarize the main results of this paper as Theorems 2.1 and 2.2. The proofs of

the theorems are given in Section 3. The upper probability of the χ2 distribution with m

degrees of freedom is denoted by Ḡm(·).

Theorem 2.1 When q ≥ 3, the asymptotic expansion of the upper tail probability of

T1 = λ1(B) is given by

P (T1 ≥ x) =
q−1∑

e=0, e:even

wq−e Ḡq−e(x2) +O
(
Ḡq(q+1)/2−1

(
2q − 2

q − 2
x2
))
, x→ ∞, (3)

where

wq−e =
1

2

(
2q

q − 1

)(q−1)/2 (
− q + 1

2q

)e/2 Γ( q+1
2

)

Γ( q−e+1
2

) ( e
2
)!
. (4)

When q = 2,

P (T1 ≥ x) = Ḡ2(x
2), x ≥ 0.

Remark 2.1 When q is odd, it holds that 2
∑

i : odd wi = 1. This is a consequence of the

Gauss-Bonnet theorem and the fact that the Euler characteristic of the index set M1 for

q odd is 1. (See, e.g., Takemura and Kuriki (1999), Corollary 3.1.)

Theorem 2.2 When q ≥ 3, the asymptotic expansion of the upper tail probability of

T2 = (λ1(A) − λq(A))/
√

2 is given by

P (T2 ≥ x) =
2q−3∑

e=0, e:even

w2q−2−e Ḡ2q−2−e(x2) +O(Ḡq(q+1)/2−1(4x
2/3)), x→ ∞, (5)

where

w2q−2−e = 2q−2
(
− 1

2

)e/2( q
e/2

)
. (6)

When q = 2,

P (T2 ≥ x) = Ḡ2(x
2), x ≥ 0.

Remark 2.2 Upper and lower bounds for P (T1 ≥ x) and P (T2 ≥ x) can be given by

Theorem 3.1 of Kuriki and Takemura (1998).
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2.2 Numerical examples

2.2.1 Null distributions with finite/infinite sample sizes

Consider the statistics T1, T2 in (1), (2) for q = 3. The approximation for T1 by Theorem

2.1 is

P (T1 ≥ x) ∼ 3

2
Ḡ3(x

2) − Ḡ1(x
2),

whereas the exact probability given in page 617 of Anderson and Stephens (1972) is

P (T1 ≥ x) =
3

2
Ḡ3(x

2) − Ḡ1(x
2) +

1

2
Ḡ1(4x

2), x ≥ 0. (7)

Note that the difference Ḡ1(4x
2)/2 is within the order of O(Ḡ5(4x

2)) given in Theorem

2.1.

The approximation for T2 by Theorem 2.2 is

P (T2 ≥ x) ∼ 2Ḡ4(x
2) − 3Ḡ2(x

2),

whereas the exact probability can be evaluated as

P (T2 ≥ x) = 2Ḡ4(x
2) − 3Ḡ2(x

2)

−
∫ ∞

x
(y3 − 3y)Ḡ1(y

2/3) e−y
2/2 dy +

9

8
Ḡ3(4x

2/3), x ≥ 0. (8)

In Figures 2.1 (or 2.2) and 2.3, the approximate and the exact tail probabilities of T1

and T2 are are plotted. We see that the asymptotic expansion by the tube method give

very satisfactory approximation to the limiting distribution.

Moreover, in order to examine the convergence speed as the sample size n goes to

infinity, we plot the upper probability curves for
√

45n/4 (Smax − 1/3), −
√

45n/4 (Smin −
1/3) and

√
15n/4Srange estimated by Monte Carlo simulations with 50,000 replications

in Figures 2.1–2.3. In each figure we see that the curve for n = 100 is close to that for

n = ∞, and the curve for n = 1000 is almost indistinguishable from that for n = ∞.

2.2.2 Asymptotic power comparisons

In order to characterize the three statistics Smax, Smin and Srange, we compare their asymp-

totic powers. We assume that n i.i.d. directional data zi are obtained by normalizing the

n Gaussian random vectors, i.e.,

zi = xi/‖xi‖, xi ∼ Nq(0,Σ), i = 1, . . . , n,

and consider the null hypothesis Σ = kIq for some k > 0 against a contiguous alternative

hypothesis

Σ = k
(
Iq +

√
2(q + 2)

qn
∆
)

for some k > 0,
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where ∆ is a q× q symmetric matrix. Under this local alternative, the limiting powers of

Smax, Smin and Srange are given by

P∆(T1 ≥ c1(α)), P−∆(T1 ≥ c1(α)) and P∆(T2 ≥ c2(α)),

where P∆(·) means that the symmetric random matrix A = (aij) in T1 and T2 is distributed

as the multivariate symmetric normal distribution with the expectation E[A] = ∆ = (δij),

that is, the diagonal elements and the upper off-diagonal elements aii and aij (i < j) are

independently distributed as aii ∼ N(δii, 1) and aij ∼ N(δij , 1/2). c1(α) and c2(α) are

100α% critical points of T1 and T2.

The results for q = 3 are summarized in Table 2.1. Without loss of generality we

restrict our attention to the case where ∆ is diagonal and tr(∆) = 0. We consider three

cases, where ∆ is proportional to ∆1 = diag(2,−1,−1)/
√

6 (bimodal alternative), −∆1

(equatorial alternative), and ∆2 = diag(1, 0,−1)/
√

2. The critical points are obtained by

the exact tail probability formulas (7) and (8). However in this table we omit the case

∆ = −∆1 since the asymptotic powers of Smax, Smin, Srange for ∆ = −∆1 are equivalent

to those of Smin, Smax, Srange for ∆ = ∆1, respectively. Note also that when ∆ = ∆2, Smax

and Smin give the same asymptotic powers.

From Table 2.1 we see that the power performance of the statistic Smax (or Smin) is

superior when ∆ = ∆1 (or −∆1), where one eigenvalue of ∆ is outstandingly large (or

small, resp.). The performance of the statistic Srange is superior when ∆ = ∆2, where

there exist positive and negative eigenvalues of ∆ with large absolute values. Also Srange

has moderate local powers even for ∆ = ∆1 and −∆1.

3 Proofs by the tube method

We give proofs of Theorems 2.1 and 2.2 in Sections 3.1 and 3.2, respectively. Each proof

consists of three parts. First, the geometric quantities of the index set such as the volume

element and the second fundamental form are determined. Second, the coefficients wd+1−e
in the tube formula are derived. Finally, the critical radius θc of the index set which

determines the remainder term of the asymptotic expansion is obtained.

3.1 The proof of Theorem 2.1

3.1.1 Geometry of the manifold M1

Let t = (t1, . . . , tq−1)′ be a local coordinate system of Sq−1 so that h ∈ Sq−1 has a

representation h = h(t). Then φ ∈M1 is written as

φ = φ(t) =

√
q

q − 1
(h(t)h(t)′ − (1/q)Iq).
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The dimension of M1 is d = dim(M1) = q − 1. Note that M1 is degenerate in the sense

that M1 is contained in a subspace

{X ∈ Sym(q) | tr(X) = 1}. (9)

Indeed (9) is shown to be the linear hull of M1 of dimension p′ = q(q + 1)/2 − 1.

Derivative with respect to ti is denoted by the subscript i. For example, hi = ∂h/∂ti,

φi = ∂φ/∂ti, φij = ∂2φ/∂ti∂tj . The tangent space Tφ(M1) of M1 in Sym(q) at φ = φ(t) is

spanned by

φi =

√
q

q − 1
(hih

′ + hh′i), i = 1, . . . , q − 1. (10)

Note that h′ih = 0 since h′h = 1. The metric tensor at φ is

gij = φ′iφj =
2q

q − 1
h′ihj , i, j = 1, . . . , q − 1. (11)

Let dh and dφ denote the volume elements of Sq−1 and M1, respectively. Since dh =

det(h′ihj)
1/2∏q−1

i=1 dt
i,

dφ = det(gij)
1/2

q−1∏
i=1

dti =
(

2q

q − 1

)(q−1)/2

dh.

Noting that the multiplicity of the map h �→ φ =
√
q/(q − 1)(hh′ − (1/q)Iq) is 2, we have

the following.

Lemma 3.1 The total volume of M1 is

Vol(M1) =
(

2q

q − 1

)(q−1)/2

Ωq × 1

2
=
(

2q

q − 1

)(q−1)/2 πq/2

Γ(q/2)
,

where

Ωq =
2πq/2

Γ(q/2)

is the volume of the unit sphere Sq−1.

Let H be a q× (q− 1) matrix such that (h,H) is orthogonal. Then φ ∈Mq is written

as

φ = (h H )

(√ q−1
q

0

0 − 1√
q(q−1)

Iq−1

)(
h′

H ′

)
.

The basis (10) of the tangent space Tφ(M1) is written as

φi =

√
q

q − 1
( h H )

(
0 h′iH
H ′hi 0

)(
h′

H ′

)
, i = 1, . . . , q − 1.
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Therefore, it is easy to verify that the orthogonal complement space (span{φ}⊕Tφ(M1))
⊥

in Sym(q) is spanned by

ν = ( h H )

(
1

q−1
tr(A) 0

0 A

)(
h′

H ′

)
, A ∈ Sym(q − 1). (12)

Note that

tr(ν2) =
1

(q − 1)2
tr(A)2 + tr(A2). (13)

The inner product of ν and a second derivative

φij =

√
q

q − 1
(hijh

′ + hh′ij + hih
′
j + hjh

′
i)

of φ is

tr(νφij) =

√
q

q − 1

(
2h′ijh

1

q − 1
tr(A) + 2h′iHAH

′hj
)

= 2

√
q

q − 1
h′iH

(
A− 1

q − 1
tr(A)Iq−1

)
H ′hj .

Recalling that the metric is given by (11), we have the following lemma.

Lemma 3.2 In an appropriate coordinate system, the second fundamental form of M1 at

φ with respect to the direction ν in (12) can be written as

H(φ, ν) = −
√
q − 1

q

(
A− 1

q − 1
tr(A)Iq−1

)
. (14)

3.1.2 The coefficients in the tube formula

We now proceed to evaluation of the coefficients wq−e in (4). For fixed φ ∈ M1 we first

evaluate the expectation

E[treH(φ,N)] (15)

in (30) of Appendix A.1, where N ∈ Sym(q) has the standard normal distribution in the

linear subspace (span{φ} ⊕ Tφ(M1))
⊥.

Let 1q−1 or 1 be a (q − 1) × 1 vector consisting of 1. Assume that A in (12) is a

symmetric normal random matrix whose upper off-diagonal elements aij (i < j) are inde-

pendently distributed as N(0, 1/2) and the vector of diagonal elements (a11, . . . , aq−1,q−1)
′

is distributed as Nq−1(0, Iq−1 − (1/q(q − 1))11′), independently of aij (i < j). Then it is

easily shown that tr(ν2) in (13) has the χ2 distribution with (q−1)q/2 degrees of freedom.

This implies that the distribution of (12) is the multivariate standard normal distribution

in the space (span{φ} ⊕ Tφ(M1))
⊥. On the other hand, the second fundamental form in

(14) is rewritten as

H = H(φ, ν) = −
√
q − 1

q
(diag(b̄) + Ā),
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where Ā = (āij) with āij = 0 (i = j), aij (i �= j), and

b̄ = (b̄1, . . . , b̄q−1)
′ = (Iq−1 − (q − 1)−111′)(a11, . . . , aq−1,q−1)

′.

Note that b̄ ∼ Nq−1(0, Iq−1 − (q − 1)−111′).

Lemma 3.3

E[treH ] =



(
q − 1

e

)(
− q + 1

2q

)e/2
(e− 1)!! for e even,

0 for e odd,

where (e− 1)!! = (e− 1)(e− 3) · · ·3 · 1.
Proof. Note first that the generalized trace treH of H can be written as

treH =
∑
|I|=e

detH [I],

where H [I] with I = {1 ≤ i1 < · · · < ie ≤ q − 1} denotes the e × e submatrix of H

formed by deleting all but columns and rows of H numbered i1, . . . , ie (Muirhead (1982),

Appendix A7). Therefore

E[treH ] =

(
q − 1

e

)
E[detHe], (16)

where He = diag(b̄1, . . . , b̄e) + Āe with diag(b̄1, . . . , b̄e)
′ ∼ Ne(0, Ie − (q − 1)−11e1

′
e), Āe =

(āij) such that āii = 0, āij = āji ∼ N(0, 1/2), i < j. Moreover

E[detHe] = E[det(diag(b̄1, . . . , b̄e) + Āe)] =
e∑

f=0

(
e

f

)
E [̄b1 · · · b̄f ]E[det Āe−f ]. (17)

Since E [̄bi] = 0,

E [̄b1 · · · b̄f ] =
∑

cov(b̄i1 , b̄i2) · · · cov(b̄if−1
, b̄if )

for f even, where the summation is taken over the set of all pairings {(i1, i2), . . . , (if−1, if)}
of {1, . . . , f}. Therefore

E [̄b1 · · · b̄f ] =
{

cov(b̄1, b̄2)
f/2(f − 1)!! = (−1/(q − 1))f/2(f − 1)!! for f even,

0 for e odd.
(18)

Also by expanding the determinant and taking the termwise expectation, we have

E[det Āe−f ] =

{
(−1/2)(e−f)/2 (e− f − 1)!! for e− f even,

0 for e− f odd.
(19)

Combining (16)–(19), we have proven the lemma.

As we have just seen, the expectation (15) does not depend on φ. Therefore the

integration in (30) with respect to dφ overM1 is reduced to multiplication by the constant

Vol(M1). Then from (30) the coefficient of the tube formula (29) for M1 is

wq−e =
Γ( q−e

2
)

2e/2+1 πq/2
Vol(M1) · E[treH ],

which is reduced to (4) in Theorem 2.1.

9



3.1.3 Critical radius of the manifold M1

We obtain the critical radius θc of the manifold M1, which determines the order of the

remainder term in (3).

Let φ =
√
q/(q − 1)(hh′ − (1/q)Iq) be a point of M1. φi, i = 1, . . . , q− 1, in (10) form

a basis of Tφ(M1). The orthogonal projection of φ̃ ∈M1 onto span{φ} ⊕ Tφ(M1) is given

by

Pφ(φ̃) = φ tr(φφ̃) +
q−1∑
i,j=1

φig
ijtr(φjφ̃),

where gij is the (i, j)-th element of the inverse of the metric (gij) in (11). For φ̃ =√
q/(q − 1)(h̃h̃′ − (1/q)Iq) �= φ, we have tr(φφ̃) = (q/(q − 1))(h̃′h − 1/q), tr(φiφ̃) =

(2q/(q − 1))(h̃′h)(h̃′hi), and

tr(φ̃Pφ(φ̃)) = tr(φφ̃)2 +
q−1∑
i=1

tr(φiφ̃)g
ijtr(φjφ̃)

=
(
q

q − 1

)2(
(h̃′h)2 − 1

q

)2

+
(

2q

q − 1

)
(h̃′h)2h̃′HH ′h̃

=
(
q

q − 1

)2(
− q − 2

q
x4 +

2(q − 2)

q
x2 +

1

q2

)
,

where x = h̃′h. By virtue of Lemma A.1,

cot2 θc = sup
φ̃,φ∈M1

1 − tr(φ̃Pφ(φ̃))

(1 − tr(φ̃φ))2

= sup
x �=±1

1 − ( q
q−1

)2(− q−2
q
x4 + 2(q−2)

q
x2 + 1

q2
)

(1 − q
q−1

(x2 − 1
q
))2

= sup
x �=±1

q(q−2)
(q−1)2

(1 − x2)2

( q
q−1

)2(1 − x2)2
=
q − 2

q
.

Lemma 3.4 The critical radius θc of M1 is

θc =




tan−1

√
q

q − 2
for q ≥ 3,

π/2 for q = 2.

3.2 The proof of Theorem 2.2

3.2.1 Geometry of the manifold M2

The index set M2 is written as

M2 =
{

1√
2
HEH ′ | H ∈ V2,q

}
, E =

(
1 0

0 −1

)
,
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where

V2,q = {H : q × 2 | H ′H = I2}
is a Stiefel manifold. The dimension of the index set is

d = dim(M2) = dim(V2,q) = 2q − 3.

Since tr(HEH ′) = 0, M2 is also a subset of the linear subspace (9). It is easily shown

that (9) is the linear hull of M2 of dimension p′ = q(q + 1)/2 − 1.

In the following we use d and 2q− 3 interchangeably. We introduce a local coordinate

system t = (t1, . . . , td) for the sake of convenience of calculation. Each element ofH ∈ V2,q,

φ ∈M2 can be written as H = H(t), φ = φ(t). As in Section 3.1, derivative with respect

to ti is denoted by the subscript i, e.g., Hi = ∂H/∂ti, φij = ∂2φ/∂ti∂tj .

The tangent space Tφ(M2) at φ = φ(t) is spanned by

φi =
1√
2
(HiEH

′ +HEH ′
i), i = 1, . . . , d.

The metric tensor of M2 is given by

gij = tr(φiφj) = tr(EH ′HiEH
′Hj) + tr(H ′

iHj), i, j = 1, . . . , d. (20)

Let H̄ be a q × (q − 2) matrix such that (H, H̄) is orthogonal. Define a 2 × 2 matrix Bi

and a (q − 2) × 2 matrix Ci = (ci1, ci2) by

Hi = (H H̄ )

(
Bi

Ci

)
or

(
Bi

Ci

)
=

(
H ′

H̄ ′

)
Hi. (21)

Since Bi is skew symmetric we put Bi = biJ , where J =

(
0 1

−1 0

)
. The metric (20) is

rewritten as

gij = tr(EBiEBj) + tr(B′
iBj) + tr(C ′

iCj)

= 4bibj + c′i1cj1 + c′i2cj2, i, j = 1, . . . , d. (22)

On the other hand, regarding V2,q as a submanifold of Rq×2 (the set of q × 2 real

matrices) endowed with the inner product tr(X ′Y ), X, Y ∈ Rq×2, we obtain the (pull-

back) metric of V2,q as

ḡij = tr(H ′
iHj) = 2bibj + c′i1cj1 + c′i2cj2. (23)

Let dφ and dH be denote the volume elements ofM2 and V2,q, respectively. By comparing

(22) and (23), we see that det(gij) = 2 det(ḡij) and hence dφ =
√

2 dH . Noting that the

multiplicity of the map H �→ φ = HEH ′/
√

2 is 4, we have the following lemma.

Lemma 3.5 The total volume of M2 is given by

Vol(M2) =
√

2 Vol(V2,q) × 1

4
=

2q−1πq−1

Γ(q − 1)
.
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Proof. The volume element of V2,q defined by the pull-back metric is dH =
√

2 ∧2
i=1

∧q
j=i+1h

′
jdhi, where H = (h1, h2) and H̄ = (h3, . . . , hq) (Takemura and Kuriki (1996)).

The total volume of V2,q is evaluated as

Vol(V2,q) =
√

2
∫
V2,q

2∧
i=1

q∧
j=i+1

h′jdhi =
25/2πq−1/2

Γ( q
2
) Γ( q−1

2
)

=
2q+1/2πq−1

Γ(q − 1)

(e.g., Muirhead (1982)). The proof is completed.

It is easy to see that the orthogonal complement (span{φ}⊕ Tφ(M2))
⊥ in Sym(q) is a

linear space of dimension (q − 1)(q − 2)/2 + 1 spanned by

ν =
a√
2
HH ′ + H̄AH̄ ′, a ∈ R, A = (aij) ∈ Sym(q − 2). (24)

The second derivative of φ is

φij =
1√
2
(HijEH

′ +HEH ′
ij +HiEH

′
j +HjEH

′
i).

Since H ′Hi +H ′
iH = 0 and H ′Hij +H ′

ijH +H ′
iHj +H ′

jHi = 0, the inner product of φij
and ν in (24) is

tr(νφij) = a {−tr(HiEH
′
j) + tr(H ′HiEH

′
jH)} +

√
2 tr(H̄ ′HiEH

′
jH̄A)

= −a tr(CiEC
′
j) +

√
2 tr(CiEC

′
jA)

= (
√

2bi, c
′
i1, c

′
i2)




0 0 0

0 −aIq−2 +
√

2A 0

0 0 aIq−2 −
√

2A





√

2bj
cj1
cj2


 .

On the other hand, since the metric gij is

gij = (
√

2bi, c
′
i1, c

′
i2)



√

2bj
cj1
cj2


 ,

we have the following.

Lemma 3.6 In an appropriate coordinate system, the second fundamental form of M2 at

φ with respect to the direction ν in (24) is written as

H(φ, ν) =




0 0 0

0 aIq−2 −
√

2A 0

0 0 −aIq−2 +
√

2A


 .
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3.2.2 The coefficients in the tube formula

The squared norm of ν in (24) is tr(ν2) = a2 +tr(A2). This implies that if A ∈ Sym(q−1)

is distributed as the multivariate symmetric normal distribution, and a is distributed as

N(0, 1) independently of A, then ν in (24) is distributed as the multivariate standard

normal distribution in the space (span{φ}⊕Tφ(M2))
⊥. The proof of the following lemma

is given in Appendix A.3.

Lemma 3.7

E[treH(φ, ν)] =


 (−1)e/2

(q − 2)! q!

(q − 2 − e/2)! (q − e/2)! (e/2)!
for e even,

0 for e odd.

As in the case of M1, E[treH(φ, ν)] is independent of φ. The integration in (30) with

respect to dφ over M2 reduces to multiplication by the constant Vol(M2). Then by (30)

the coefficient of the tube formula (29) for M2 is given by

w2q−2−e =
Γ(q − 1 − e/2)

2e/2+1 πq−1
Vol(M2) · E[treH ],

which reduces to (6) in Theorem 2.2.

3.2.3 Critical radius of the manifold M2

We obtain the critical radius θc of the manifold M2 by virtue of Lemma A.1.

Let φ = (1/
√

2)HEH ′ and φ̃ = (1/
√

2)H̃EH̃ ′ be different points of M2. The orthog-

onal projection of φ̃ ∈M2 onto Tφ(M2) is given by

Pφ(φ̃) = φ tr(φφ̃) +
d∑

i,j=1

φig
ijtr(φjφ̃), (25)

where gij is the (i, j)-th element of the inverse of the metric (gij) in (22). In the right

hand side of (25),

tr(φφ̃) =
1

2
tr(H̃EH̃ ′HEH ′) =

1

2
tr(RER′E),

where R = H̃ ′H is a 2 × 2 matrix. As in (21) define Bi = biJ and Ci = (ci1, ci2) so that

Hi = biHJ + H̄Ci. Then

tr(φiφ̃) = tr(EH ′H̃EH̃ ′Hi) = (2bi, c
′
i1, c

′
i2)



k

l1
l2


 ,

where

k =
1

2
tr(EH ′H̃EH̃ ′HJ) =

1

2
tr(ER′ERJ),
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and

L = (l1, l2) = H̄ ′H̃EH̃ ′HE = H̄ ′H̃ERE

is a (q − 2) × 2 matrix. Since

gij = (2bi, c
′
i1, c

′
i2)




2bj
cj1
cj2


 ,

we have
d∑

i,j=1

tr(φiφ̃)g
ijtr(φjφ̃) = k2 + l′1l1 + l′2l2 = k2 + tr(L′L)

=
1

4
tr(ER′ERJ)2 + tr(RR′) − tr(ERR′ERR′).

Summarizing the above we have

cot2 θc = sup
R

1 − 1
4
tr(RER′E)2 − 1

4
tr(ER′ERJ)2 − tr(RR′) + tr(ERR′ERR′)
(1 − 1

2
tr(RER′E))2

, (26)

where the supremum is taken over the set of 2 × 2 submatrices of any q × q orthogonal

matrix such that

R = H̃ ′H �=
(±1 0

0 ±1

)
.

In the case of q = 2,

R =

(
cos θ − sin θ

sin θ sin θ

)
or

(
cos θ sin θ

sin θ − sin θ

)
, 0 < θ < π.

Then tr(RER′E) = 2 cos(2θ), tr(ER′ERJ) = ±2 sin(2θ), and cot2 θc = supθ 0 = 0.

In the case q ≥ 3 put R = (rij)i,j=1,2. The argument of the supremum in (26) is

written as

1 +
1
2
(δ1 − δ2)2 + δ3

1
4
(δ1 + δ2)2

,

where

δ1 = 1 − r211 + r221, δ2 = 1 − r222 + r212, δ3 = −2(r212 + r221) + (r11r12 − r21r22)2.

Noting that |r11| ≤ 1, |r22| ≤ 1, we have |r11r12−r21r22| ≤ max(|r12 +r21|, |r12−r21|), and

hence δ3 ≤ −2(r212 + r221) + (r12 ± r21)2 = −(r12 ∓ r21)2 ≤ 0. Also noting that δ1, δ2 ≥ 0,

δ1 + δ2 > 0, we have

cot2 θc ≤ 1 + 2 sup
(
δ1 − δ2
δ1 + δ2

)2

≤ 3.

Conversely, consider R0 = diag(1, cos θ0), 0 < θ0 < π, as a 2 × 2 submatrix of a q × q
orthogonal matrix. Then δ1 = 0, δ2 = sin2 θ0, δ3 = 0, and hence cot2 θc ≥ 3. Therefore

cot2 θc = 3 for q ≥ 3.

Lemma 3.8 The critical radius θc of M2 is

θc =

{
π/6 for q ≥ 3,

π/2 for q = 2.
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Appendix

A.1 The tube method

We give here a brief summary of the tube method from Section 3 of Kuriki and Takemura

(1998).

Let M be a d-dimensional closed C2-submanifold in the unit sphere Sp−1 of Rp. Let

Z(u), u = (u1, . . . , up)
′ ∈M , be a random field with the index set M defined by

Z(u) = u′z =
p∑

i=1

uizi,

where z = (z1, . . . , zp)
′ is distributed according to the p-dimensional standard multivariate

normal distribution Np(0, Ip). This is the canonical form of the Gaussian random field

with a finite Karhunen-Loève expansion and a constant variance. The tube method is

used for the purpose of obtaining the asymptotic expansion of the upper tail probability

of the maximum

P (T ≥ x), T = max
u∈M

Z(u), (27)

as x goes to infinity.

The essential notions are the tube around M and the critical radius θc of M . The

distance between two points u, v ∈ Sp−1 is given by arccos(u′v), which is the length of

the part of the great circle joining u and v. For 0 < θ < π the tube of geodesic distance

θ around M on Sp−1 is defined by

Mθ =
{
v ∈ Sp−1 | max

u∈M
u′v > cos θ

}
.

For each u ∈ M let Tu(M) ∈ Rp denote the tangent space of M at u. Define a subset

Cθ(u) of Mθ by

Cθ(u) = {v ∈Mθ | u′v > cos θ} ∩ {u+ Tu(M)⊥},
where Tu(M)⊥ denotes the orthogonal complement of Tu(M) in Rp. Since M is closed it

holds obviously that

Mθ =
⋃
u∈M

Cθ(u). (28)

It is said that Mθ does not have self-overlap if (28) gives a partition of Mθ. The critical

radius θc ofM is defined to be the supremum of θ such thatMθ does not have self-overlap.

By the compactness and the smoothness of M , we can prove that the critical radius

θc is positive. Moreover, it can be evaluated by the the following lemma, which is the

extension of Proposition 4.3 of Johansen and Johnstone (1990) to multidimensional cases.

Lemma A.1 The critical radius θc of M is given by

cot2 θc = sup
u,v∈M

1 − u′Pvu
(1 − u′v)2

,

where Pv is the orthogonal projection onto the space span{v} ⊕ Tv(M).
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LetH(u, v) denote the second fundamental form ofM at u with respect to the direction

v ∈ (span{u} ⊕ Tu(M))⊥. Let trjH denote the j-th trace, i.e., the j-th elementary

symmetric function of the eigenvalues of H = H(u, v). Define tr0H = 1.

The volume of Mθ, θ ≤ θc, is obtained by the tube formula below. In the following

B̄m,n(·) denotes the upper tail probability of the beta distribution with parameter (m,n).

Lemma A.2 For 0 ≤ θ ≤ θc,

Vol(Mθ) = Ωp

d∑
e=0, e:even

wd+1−eB̄ 1
2
(d+1−e), 1

2
(p−d−1+e)(cos2 θ),

where

wd+1−e =
1

Ωd+1−eΩp−d−1+e

∫
M

[ ∫
(span{u}⊕Tu(M))⊥∩Sp−1

treH(u, v) dv
]
du. (29)

Using the coefficients wd+1−e in (29), the formula for the tail probability in (27) is

given as follows.

Theorem A.1

P (T ≥ x) =
d∑

e=0, e:even

wd+1−eḠd+1−e(x2) +O(Ḡp′((1 + tan2 θc)x
2)), x→ ∞,

p′ = dim(linM), where linM is the linear hull of M in Rp.

Remark A.1 The integral in (29) with respect to dv can be evaluated by introducing a

random variable and taking its expectation. Let V ∈ Rp be distributed as Np(0, Ip − Pu),
where Pu is the p × p orthogonal projection matrix onto the (d + 1)-dimensional linear

subspace span{u} ⊕ Tu(M). Then (29) is written as

wd+1−e =
Γ(d+1−e

2
)

2e/2+1π(d+1)/2

∫
M
E[treH(u, V )] du. (30)

A.2 Some moments in the multivariate symmetric normal dis-

tribution

We provide some lemmas concerning the moments of the multivariate symmetric normal

distribution which are required in Appendix A.3 (the proof of Lemma 3.7).

Let A = (aij) ∈ Sym(p) be distributed according to the multivariate symmetric normal

distribution. Let U , V and W be mutually disjoint subsets of the index set {1, 2, . . . , p}
of A. Put u = |U |, v = |V | and w = |W |, the cardinalities of the sets. Let A[U ] denote

the symmetric submatrix consisting of the elements aij , i, j ∈ U .

Define

Q(u, v, w) = E[detA[U ∪W ] × detA[V ∪W ]], (31)
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and for y even define

R(y, w) =
(−2)y/2+w

w!

∑
u+v=y

(
y

u, v

)
Q(u, v, w). (32)

We first give recurrence formulas for Q(u, v, w) by combinatorial considerations.

Lemma A.3 Let (x)i = x(x− 1) · · · (x− i+ 1). Define (x)0 = 1 for all x ≥ 0.

Q(0, 0, 0) = Q(0, 0, 1) = 1,

Q(0, 0, w) = 2
w∑

t=1, t:odd

(w − 1)t−1

2t
Q(0, 0, w − t)

+3
w∑

t=2, t:even

(w − 1)t−1

2t
Q(0, 0, w − t), (33)

Q(u, v, w) = −
w∑

t=0, t:even

(u− 1) (w)t
2t+1

Q(u− 2, v, w − t)

+
w∑

t=1, t:odd

v (w)t
2t+1

Q(u− 1, v − 1, w − t) (34)

= −
w∑

t=0, t:even

(v − 1) (w)t
2t+1

Q(u, v − 2, w − t)

+
w∑

t=1, t:odd

u (w)t
2t+1

Q(u− 1, v − 1, w − t). (35)

Proof. By completely expanding the determinants

detA[U ∪W ] × detA[V ∪W ],

we have (u + w)! × (v + w)! terms. Each term has a zero or nonzero expectation. We

consider here the characterization of terms with nonzero expectation. For notational

convenience let B be the same matrix as A (i.e., A = B a.s.), and consider the expansion

of detA[U ∪W ] × detB[V ∪W ]. For any particular term in the expansion, we consider

a graph consisting of u + v + w vertices and (u + w)2 + (v + w)2 directed edges. We

identify the indices of U , V and W with the vertices. Therefore there are three kinds of

vertices corresponding to U , V and W . Also we consider two kinds of directed edges. If

the variable aij appears in the particular term, i and j are connected with a directed edge

in solid line “−→”. (We call i the initial vertex, and j the terminal vertex. i and j may

be identical.) Similarly if the variable bij appears in the term, i and j are connected by

a directed edge in dashed line “− →”. Note that

- Each vertex of W is an initial vertex of both of a directed edge in solid line and a

directed edge in dashed line, and is a terminal vertex of both of a directed edge in

solid line and a directed edge in dashed line simultaneously.
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- Each vertex of U is an initial vertex of a directed edge in solid line, and is a terminal

vertex of a directed edge in solid line simultaneously.

- Each vertex of V is an initial vertex of a directed edge in dashed line, and is a

terminal vertex of a directed edge in dashed line simultaneously.

Since the elements of A and B are zero-mean Gaussian random variables, the expec-

tation of a particular term is nonzero if and only if any pair of the indices (i, j) (i and

j may be identical) are connected by even numbers (may be 0) of edges. From now on

consider the case where the term has a nonzero expectation. In this case if the pair (i, j)

are connected, then one of the following holds.

- i and j are connected by a solid line and a dashed line (i = j, i �= j).
- i and j are connected by two solid lines (i �= j).
- i and j are connected by two dashed lines (i �= j).
- i and j are connected by two solid lines and two dashed lines (i �= j).
Each vertex of W has to be an initial or terminal vertex of four edges. On the other

hand, two edges are needed to connect the vertex to another vertex. Therefore, each

vertex of W has at most two adjacent vertices. Each vertex of U or V has to be an initial

or terminal vertex of two edges. But any vertices of U or V without adjacent vertex do

not appear in the terms with nonzero expectation. Therefore, each vertex of U or V has

just one adjacent vertex.

From the considerations above, we see that the graph associated with the term with

nonzero expectation consists of connected components (subgraphs) of the following eight

types.

1. A component consisting of a single vertex of W . The vertex is connected with itself

by a solid line and a dashed line.

2. A pair of two vertices of W . The two vertices are connected by two solid lines and

two dashed lines.

3. A loop consisting of t (≥ 3) vertices of W . Two adjacent vertices are connected

with a solid line and a dashed line. The directions of the two edges are the same.

4. A loop consisting of t (≥ 3) vertices of W . Two adjacent vertices are connected by

a solid line and a dashed line. The directions of the two edges are reverse.

5. A loop consisting of t (≥ 4, even) vertices ofW . Two adjacent vertices are connected

by two solid lines or two dashed lines.
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6. A chain consisting of two vertices of U as end points, and t (≥ 0, even) numbers of

vertices of W as intermediate points. Two adjacent vertices are connected by two

solid lines or two dashed lines.

7. A chain consisting of two vertices of V as end points, and t (≥ 0, even) numbers of

vertices of W as intermediate points. Two adjacent vertices are connected by two

solid lines or two dashed lines.

8. A chain consisting of a vertex of U and a vertex of V as end points, and t (≥ 1,

odd) numbers of vertices of W as intermediate points.

Now we proceed to the proof of (33). Fix an index i0 of W . We evaluate the contri-

bution of the case where the vertex i0 is contained in a particular type of the connected

subgraphs to Q(0, 0, w) = E[detA[W ] × detB[W ]]. The connected subgraph containing

the vertex i0 has to be of the types 1–5. In the following the sign of a cycle is denoted by

sgn(·).
- The case where i0 itself forms a connected graph (type 1). The contribution to

Q(0, 0, w) is

E[ai0i0bi0i0 ]Q(0, 0, w − 1) = Q(0, 0, w − 1).

- The case where the pair of i0 and the other index i1 ∈ W \ {i0} form a connected

graph (type 2). The contribution to Q(0, 0, w) is

sgn(i0 i1)
2
∑
i1 �=i0

E[ai0i1ai1i0bi0i1bi1i0 ]Q(0, 0, w − 2) =
3(w − 1)

22
Q(0, 0, w − 2).

- The case where i0, i1, . . . , it−1 (t ≥ 3) form a type 3 loop. There are (w−1)t−1 ways

to make a loop. Each loop has an expectation

sgn(i0 i1 · · · it−1)
2E[ai0i1ai1i2 · · ·ait−1i0bi0i1bi1i2 · · · bit−1i0 ] = 1/2t.

The contribution to Q(0, 0, w) is

(w − 1)t−1

2t
Q(0, 0, w − t) (t ≥ 3).

- The case where i0, i1, . . . , it−1 (t ≥ 3) form a type 4 loop. There are (w−1)t−1 ways

to make a loop. Each loop has an expectation

sgn(i0 i1 · · · it−1) sgn(i0 it−1 · · · i1)
×E[ai0i1ai1i2 · · ·ait−1i0bi0it−1bit−1it−2 · · · bi1i0] = 1/2t.

The contribution to Q(0, 0, w) is

(w − 1)t−1

2t
Q(0, 0, w − t) (t ≥ 3).
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- The case where i0, i1, . . . , it−1 (t ≥ 4, even) form a type 5 loop. There are (w−1)t−1

ways to make a loop. Each loop has an expectation

sgn(i0 i1) sgn(i1 i2) · · · sgn(it−1 i0)

×E[ai0i1ai1i0bi1i2bi2i1 · · ·ait−2it−1ait−1it−2bit−1i0bi0it−1 ] = (−1/2)t.

The contribution to Q(0, 0, w) is

(w − 1)t−1

2t
Q(0, 0, w − t) (t ≥ 4, even).

Summing up the above five cases, we get (33).

Next we proceed to the proof of (34). Fix an element i0 of U . We evaluate the

contribution of the case where the vertex i0 is contained in a particular type of the

connected subgraphs to Q(u, v, w) = E[detA[U ∪W ] × detB[V ∪W ]]. The connected

subgraph containing the index i0 has to be of the types 6, 8.

- The case where i0, i1, . . . , it, it+1 (t ≥ 0, even) form a type 6 chain. There are

wt × (u− 1) ways to make a chain. Each chain has an expectation

sgn(i0 i1) · · · sgn(it it+1)E[ai0i1ai1i0bi1i2bi2i1 · · ·aitit+1ait+1it ] = (−1/2)t+1.

The contribution to Q(u, v, w) is

−(u− 1)wt

2t+1
Q(u− 2, v, w) (t ≥ 0, even).

- The case where i0, i1, . . . , it, it+1 (t ≥ 1, odd) form a type 8 chain. There are wt × v
ways to make a chain. Each chain has an expectation

sgn(i0 i1) · · · sgn(it it+1)E[ai0i1ai1i0bi1i2bi2i1 · · · bitit+1bit+1it ] = (−1/2)t+1.

The contribution to Q(0, 0, w) is

v wt

2t+1
Q(u− 1, v − 1, w) (t ≥ 1, odd).

Summing up the two cases above, we get (34). The proof of (35) is parallel to that of (34)

and omitted.

As a corollary to Lemma A.3, we obtain recurrence formulas for R(y, w) of (32).

Corollary A.1

R(0, 0) = 1, R(0, 1) = −2,

R(0, w) = − 2

w

w∑
t=1, t:odd

R(0, w − t) +
3

w

w∑
t=2, t:even

R(0, w − t), (36)

R(y, w) = 2(y − 1)
w∑
t=0

R(y − 2, w − t). (37)
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Proof. (36) follows from (33). (37) follows from

(u+ v)Q(u, v, w) = −
w∑

t=0, t:even

u(u− 1) (w)t
2t+1

Q(u− 2, v, w − t)

+2
w∑

t=1, t:odd

uv (w)t
2t+1

Q(u− 1, v − 1, w − t)

−
w∑

t=0, t:even

v(v − 1) (w)t
2t+1

Q(u, v − 2, w − t).

For positive integer m write

m!! =

{
m(m− 2) · · ·1 (m : odd),

m(m− 2) · · ·2 (m : even).

We also define 0!! = 1.

Lemma A.4 Let A be distributed according to the p× p multivariate symmetric normal

distribution. Then

E[det(A)2] = Q(0, 0, p) =




2−p
2

3
(p+ 2)!! p!! (p : odd),

2−p
2p+ 3

3
(p+ 1)!! (p− 1)!! (p : even),

or equivalently

R(0, p) =



−2

3

(p+ 2)!!

(p− 1)!!
(p : odd),

2p+ 3

3

(p+ 1)!!

p!!
=

1

3

(p+ 1)!!

(p− 2)!!
+

1

3

(p+ 3)!!

p!!
(p : even).

(38)

Proof. For nonnegative integer h and nonnegative even integer k, define

Shk =
(k + h)!!

k!!
.

Then it is easily shown that

Sh+2
k − Sh+2

k−2 = (h+ 2)Shk ,
k∑

t=0,t:even

Sht =
1

h + 2
Sh+2
k .

In order to prove the lemma, we only have to show that

R(0, p) =



−2

3
S3
p−1 (p : odd),

1

3
S3
p−2 +

1

3
S3
p (p : even),

21



satisfies the recurrence formula (36).

When p is even,

−2

p

p∑
t=1,t:odd

R(0, p− t) +
3

p

p∑
t=2,t:even

R(0, p− t)

=
4

3p

p∑
l=1,l:odd

S3
l−1 +

1

p

p−2∑
l=0,l:even

(S3
l−2 + S3

l )

=
4

15p
S5
p−2 +

1

5p
(S5

p−4 + S5
p−2)

=
1

3
S3
p−2 +

1

3
S3
p = R(0, p).

When p is odd,

−2

p

p∑
t=1,t:odd

R(0, p− t) +
3

p

p∑
t=2,t:even

R(0, p− t)

= − 2

3p

p∑
l=0,l:even

(S3
l−2 + S3

l ) −
2

p

p−2∑
l=1,l:odd

S3
l−1

= − 2

15p
(S5

p−3 + S5
p−1) −

2

5p
S5
p−3

= −2

3
S3
p−1 = R(0, p).

The proof is completed.

A.3 Proof of Lemma 3.7

Let A = Ap ∈ Sym(p) be a multivariate symmetric normal random matrix, and let a ∈ R
be a standard normal random variable independent of A. Let

H =

(
aIp −

√
2Ap 0

0 −aIp +
√

2Ap

)
.

Comparing the coefficients of x2p−e in

2p∑
e=0

x2p−etreH = det(xI2p +H) = det(x2Ip − (aIp −
√

2Ap)
2)

=
p∑

e=0

x2(p−e)(−1)etre(aIp −
√

2Ap)
2,

we have

E[treH ] =

{
(−1)e/2E[tre/2(aIp −

√
2Ap)

2] for e even,

0 for e odd.
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Let D(p, e) denote the expectation of the e × e (e ≤ p) principal minor of the matrix

(aIp −
√

2Ap)
2 consisting of the first e rows and the first e columns. Then

E[tre(aIp −
√

2Ap)
2] =

(
p

e

)
D(p, e).

Therefore, in order to prove Lemma 3.7, we have to show that

D(p, e) = (p+ 2)e = (p+ 2)!/(p+ 2 − e)! (0 ≤ e ≤ p). (39)

Let B be a e× (p− e) random matrix consisting of e× (p− e) i.i.d. standard normal

random variables. Then

D(p, e) = E
[
det(aIe −

√
2Ae, −B)

(
aIe −

√
2Ae

−B′

)]

= E[det((aIe −
√

2Ae)
2 +BB′)]. (40)

Note that

BB′ ∼We(p− e, Ie),
the e× e Wishart distribution with p− e degrees of freedom.

The determinant of the sum of two matrices C, D is expressed as

det(C +D) =
∑
J,K

± detC[J,K] detD[J̄ , K̄],

where J , K are subsets of the index set, and J̄ , K̄ are their complements. C[J,K] is the

submatrix of C consisting of the rows and columns of C labeled J and K, respectively.

For the matrix B in (40), we can show that

E[det((BB′)[J,K])] = 0 (J �= K).

This is because for a partition B′ = (B′
1, B

′
2, B

′
3), we see

E
[
det

(
B1

B2

)
(B′

1, B
′
3)
]

= E
[
det

(
B1B

′
1 B1B

′
3

B2B
′
1 B2B

′
3

)]

= E[det(B1B
′
1)E[det(B2(I − B′

1(B1B
′
1)

−1B1)B
′
3) | B1]] = 0

by, e.g., the Binet-Cauchy formula.

Therefore, (40) can be rewritten as follows.

D(p, e) =
e∑

f=0

(
e

f

)
D(e, f)E[detWe−f (p− e, Ie−f )]

=
e∑

f=max(0,2e−p)

(
e

f

)
D(e, f) (p− e)e−f (0 ≤ f ≤ e ≤ p). (41)

Here we use E[detWm(n, Im)] = (n)m. Note that (n)m = 0 (n < m).
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On the other hand, comparing the coefficients of xe in the identity

(1 + x)p+2 = (1 + x)e+2(1 + x)p−e,

and multiplying them by e!, we get

(p+ 2)e =
e∑

f=max(0,2e−p)

(
e

f

)
(e+ 2)f(p− e)e−f . (42)

If we can show that

D(p, p) = (p+ 2)p = (p+ 2)!/2 (43)

holds for any p, then (39) can be proved by mathematical induction on p by comparing

(41) and (42).

Now it remains to prove (43). In order to prove

D(p, p)

p!
=

(
p+ 2

2

)
= (−1)p

(−3

p

)
,

we will show that

GD(x) =
∞∑
p=0

xp
D(p, p)

p!
= (1 − x)−3.

Let Q, R be defined by (31), (32) in Appendix A.2. Then

D(p, p) = E[det(aIp −
√

2Ap)
2]

= E
[
det

(
aI2p +

(−√
2Ap 0

0 −√
2Ap

))]

=
∑

U,V,W

E[a(p−u−w)+(p−v−w)] (−
√

2)(u+w)+(v+w)Q(u, v, w)

=
∑

0≤u+v+w≤p (u+v:even)

(
p

u, v, w, p− u− v − w
)

(2p− 2w − u− v − 1)!!

×2(u+v)/2+w Q(u, v, w)

=
∑

0≤y+w≤p (y:even)

p! (2p− 2w − y − 1)!!

y! (p− y − w)!
(−1)y/2+wR(y, w). (44)

Multiply the right hand side of (44) by xp/p!, and take a summation with respect to p.

For y, w fixed, the coefficients of (1/y!) (−1)y/2+wR(y, w) in the summation is

∞∑
p=y+w

(2p− 2w − y − 1)!!

(p− y − w)!
xp = xy+w

∞∑
r=0

(2r + y − 1)!!

r!
xr (r = p− y − w)

= xy+w
∞∑
r=0

(y − 1)!!
2r+y−1

2
2r−y−3

2
· · · y+1

2

r!
(2x)r

= xy+w(y − 1)!!(1 − 2x)−(y+1)/2.
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Therefore

GD(x) =
∑

y,w≥0, y:even

xy+w(y − 1)!!(1 − 2x)−(y+1)/2 1

y!
(−1)y/2+w R(y, w)

=
∑

y≥0, y:even

xy(1 − 2x)−(y+1)/2 (−1)y/2

y!!
GR(−x; y), (45)

where we put

GR(z; y) =
∞∑
w=0

zwR(y, w),

a generating function of R(y, w) with respect to w. By virtue of the recurrence relation

(37),

GR(z; y) = 2(y − 1)
∞∑
w=0

zw
w∑
t=0

R(y − 2, w − t)

= 2(y − 1)
∑

0≤t≤w
ztzw−tR(y − 2, w − t)

= 2(y − 1)
∞∑
t=0

ztGR(z; y − 2)

= 2(y − 1)(1 − z)−1GR(z; y − 2).

Using this iteratively, we get

GR(z; y) = 2y/2(y − 1)!!(1 − z)−y/2GR(z; 0).

Also by (38),

GR(z; 0) =
∞∑
w=0

zwR(0, w)

=
∑

w:even

zw
(

1

3

(w + 1)!!

(w − 2)!!
+

1

3

(w + 3)!!

w!!

)
− ∑

w:odd

zw
2

3

(w + 2)!!

(w − 1)!!

= (z2 + 1 − 2z)
1

3

∑
w:even

zw
(w + 3)!!

w!!

= (z − 1)21

3

∑
w:even

(z2)w/21 · 3 ·
5
2

7
2
· · · w+3

2

(w/2)!

= (z − 1)2(1 − z2)−5/2 = (1 − z)−1/2(1 + z)−5/2.

Therefore

GR(z; y) = 2y/2(y − 1)!!(1 − z)−y/2(1 − z)−1/2(1 + z)−5/2

= 2y/2(y − 1)!!(1 − z)−(y+1)/2(1 + z)−5/2.

25



Substituting this into (45), we have

GD(x) = (1 − x)−5/2
∑
y:even

(y − 1)!!

y!!
(−2)y/2xy{(1 − 2x)(1 + x)}−(y+1)/2

= (1 − x)−5/2{(1 − 2x)(1 + x)}−1/2
∑
y:even

1
2

3
2
· · · y−1

2

(y/2)!

(
− 2x2

(1 − 2x)(1 + x)

)y/2

= (1 − x)−5/2{(1 − 2x)(1 + x)}−1/2
(
1 +

2x2

(1 − 2x)(1 + x)

)−1/2

= (1 − x)−3.

The proof of Lemma 3.7 is completed.
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Table 2.1. Asymptotic power comparisons.

(Monte Carlo simulations with 200,000 replications.)

∆
Smax Smin Srange Smax Smin Srange
α=0.05 α=0.05 α=0.05 α=0.01 α=0.01 α=0.01

∆0 0.050 0.050 0.050 0.010 0.010 0.010

1
4
∆1 0.053 0.053 0.053 0.011 0.011 0.011

1
2
∆1 0.061 0.060 0.062 0.013 0.013 0.013

∆1 0.101 0.083 0.098 0.028 0.020 0.026

2∆1 0.316 0.190 0.288 0.140 0.060 0.118

3∆1 0.668 0.379 0.612 0.438 0.157 0.368

4∆1 0.916 0.626 0.880 0.787 0.338 0.710

1
4
∆2 0.052 0.053 0.011 0.011

1
2
∆2 0.060 0.061 0.013 0.013

∆2 0.092 0.098 0.024 0.026

2∆2 0.255 0.289 0.100 0.120

3∆2 0.550 0.624 0.312 0.385

4∆2 0.826 0.890 0.629 0.734

∆0 = diag(0, 0, 0), ∆1 = diag(2,−1,−1)/
√

6

∆2 = diag(1, 0,−1)/
√

2
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Figure 2.1. Tail probabilities of Smax when q = 3.

(n = 10, 100, 1000,∞ and approximation by the tube method.)
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Figure 2.2. Tail probabilities of Smin when q = 3.

(n = 10, 100, 1000,∞ and approximation by the tube method.)
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Figure 2.3. Tail probabilities of Srange when q = 3.

(n = 10, 100, 1000,∞ and approximation by the tube method.)
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