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Abstract

Empirical implications of economic theory are often characterized by a solution to fixed
point problem. The major practical obstacle of estimating structural models with fixed
point constraint lies in the computational burden. This paper considers a computationally
attractive sequential estimation procedure for a class of extremum estimators with fixed point
constraint. A sequential algorithm based on the pseudo-likelihood function is proposed by
Aguirregabiria and Mira (2002, 2007) to develop an alternative estimator to the two-step
estimator of Hotz and Miller (1993) and they show that the limit of the sequential estimators
is more efficient than the two-step estimator if the convergence is achieved. To date, however,
its convergence property has not been well understood. We analyze the conditions under
which the convergence is achieved in the nested pseudo-likelihood algorithm and show that
its convergence rate crucially depends on the contraction property of the operator defining
the pseudo-likelihood function. We also show that the similar results hold in the context of
the sequential algorithm based on GMM.

Keywords: contraction, fixed point, nested pseudo likelihood, nested generalized method of
moments, nested minimum distance.
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1 Introduction

Implications of economic theory are often characterized by fixed point problems. Upon estimat-
ing such models, researchers typically consider a class of extremum estimators with fixed point
constraint:

max
θ∈Θ

Qn(P ) (1)

s.t. P = Ψ(P, θ),

where Qn(P ) = n−1
∑n

i=1 lnP (Zi) for maximum likelihood estimator (MLE, hereafter) while
Qn(P ) = −

[
n−1

∑n
i=1 g(Zi, P )

]′
Ŵ

[
n−1

∑n
i=1 g(Zi, P )

]
for the generalized method of moments

estimator (GMM, hereafter) with the moment condition E[g(Zi, P
0)] = 0 evaluated at the true

probability P 0. We also consider classical minimum distance estimator (CMD, hereafter) with
Qn(P ) = −[P̂0−P ]′Ŵ [P̂0−P ] where P̂0 is the initial consistent estimator of P 0. Here, {Zi}n

i=1

is the sample data drawn from P 0.
The fixed point constraint P = Ψ(P, θ) in (1) summarizes the set of structural restrictions

of the model that is parametrized with a finite vector θ ∈ Θ. When the model is correctly
specified, the probability distribution obtained as the fixed point of the operator Ψ evaluated
at the true parameter θ0 generates the sample data. The examples of operator Ψ(·, θ) include
the Bellman’s operator and policy iteration operator for dynamic programming models (e.g.,
Rust (1987), Hotz and Miller (1993)), an operator defined by best response functions for games
(e.g., Pakes, Ostrovsky and Berry (2005), Pesendorfer and Schmidt-Dengler (2006)), and an
operator to define the fixed point problem for recursive competitive equilibrium in dynamic
macroeconomic models (e.g., Prescott and Mehra (1980), Aiyagari (1994)).

In principle, we may estimate the parameter θ in (1) by repeatedly solving the fixed point
Pθ of P = Ψ(P, θ) at each parameter value to maximize the objective function with respect to θ.
The major practical obstacle of applying such an estimation procedure lies in the computational
burden because solving the fixed point problem for a given parameter can be very costly.

To reduce the computational burden, Hotz and Miller (1993) developed a simpler two-step
estimator that does not require solving the fixed point problem for each trial value of the param-
eters in the context of single agent dynamic programming model. A number of recent papers in
empirical industrial organization build on the idea of Hotz and Miller (1993) to develop two-step
estimators for models with multiple agents (cf., Bajari, Benkard, and Levin, 2005; Pakes, Os-
trovsky, and Berry, 2005; Pesendorfer and Schmidt-Dengler, 2006; Bajari, Chernozhukov, and
Hong, 2006). These two-step estimators may suffer from substantial finite sample bias, how-
ever, when the choice probabilities are poorly estimated in the first step. One of the important
econometric issues in this literature is to develop an estimation method that is computational
simple and has good finite sample properties.
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This paper studies a sequential estimation procedure obtained by reformulating (1) in terms
of a sequence of semiparametric extremum estimators when an initial consistent estimator P̂0 is
available:

Step 1: Given P̂j−1, update θ by

θ̂j = arg max
θ∈Θ

Qn(Ψ(P̂j−1, θ)). (2)

Step 2: Update P̂j−1 using the obtained estimate θ̂j :

P̂j = Ψ(P̂j−1, θ̂j). (3)

Iterate Steps 1-2 until j = k.

This algorithm is first proposed by Aguirregabiria and Mira (2002, AM02 hereafter) as a
recursive extension of the two-step method developed by Hotz and Miller (1993) in the con-
text of single agent dynamic programming model. Using the (pseudo-)likelihood function in
the objective function, their algorithm is called the nested pseudo likelihood (NPL) algorithm.
Aguirregabiria and Mira (2007, AM07 hereafter) apply the similar idea in the context of dy-
namic discrete games. Their analysis shows that the NPL estimator—defined as the limit of the
sequence generated by the NPL algorithm—is more efficient than the two-step estimators if the
convergence is achieved.

While AM07 have obtained convergence in their simulations and illustrate that the NPL esti-
mator performs very well relative to the two-step estimator, they neither provide the conditions
under which the NPL algorithm converges nor analyze how fast the convergence occurs. On
the other hand, the simulation results of Pesendorfer and Schmidt-Dengler (2006) provide some
evidence that the NPL algorithm may not necessarily converge. To date, we do not know under
which circumstances the NPL algorithm is applicable to obtain the more efficient estimator than
the two-step estimators.

This paper analyzes the conditions under which the sequential algorithm of iterating (2) and
(3) achieves convergence and derives the convergence rate of a sequence of estimators gener-
ated by the sequential algorithm. In the contest of single agent dynamic programming model,
Kasahara and Shimotsu (2006, KS06 hereafter) derive the rate at which the sequence of the esti-
mators generated from the NPL algorithm approaches the MLE. We extend the results of KS06
to a general class of structural models that are formulated as fixed point problem, including a
model of dynamic games.

There are, however, important differences between a single agent model and a model of
dynamic games. As AM02 and AM07 show, the NPL algorithm achieves the MLE in a single
agent dynamic model while the limit of the sequences generated by the NPL algorithm in a model
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of dynamic games is asymptotically less efficient than the MLE. This difference reflects the fact
that the shape of the pseudo-likelihood function is very similar to that of the true likelihood
function in a single agent model while it is less so in a model of dynamic games. Furthermore, as
KS06 show, one of the key properties that assures the fast convergence rate of the NPL algorithm
in a single agent dynamic model is the (asymptotic) orthogonality between the parameter θ and
the nuisance parameter P in the pseudo-likelihood function but this orthogonality condition is
often violated in a model of dynamic games.

The key to understanding the convergence properties of the NPL algorithm, or more generally
the sequential estimators of iterating (2) and (3), is a contraction property of the operator Ψ
defining the fixed point problem. Intuitively, the faster the operator achieves contraction, the
closer the the value obtained after one iteration is to the fixed point, and therefore a curvature
of the pesudo-likelihood function gets closer to that of the true likelihood function. Moreover,
the higher contraction rate of the operator Ψ implies that the initial value of P has less influence
on the value obtained after one contraction and, thus, the degree of orthogonality between θ

and P in the pseudo-likelihood function is higher.
Our main result is that the convergence of the NPL algorithm is achieved if the largest

eigenvalue of the Jacobian matrix ∂Ψ(P, θ)/∂P evaluated at the fixed point Pθ is less than one
in absolute value. This is because the local contraction property of the operator Ψ is determined
by the eigenvalues of the derivative of Ψ with respect to P . The closer the largest eigenvalue of
∂Ψ(Pθ, θ)/∂P to zero, the faster the convergence rate of the NPL algorithm. When the operator
Ψ has the “zero Jacobian property” that ∂Ψ(Pθ, θ)/∂P = 0, it is possible to achieve a superlinear
convergence rate as shown in KS06.

We show that the similar results hold in the context of the sequential algorithm based on
GMM. The convergence of the sequential GMM algorithm also requires that all the eigenvalues
of ∂Ψ(Pθ, θ)/∂P are less than one in absolute value. The limit of the sequential GMM estimators
may be more efficient than two-step estimator and it can be asymptotically equivalent to the
efficient GMM estimator that is based on a full solution of fixed point problem.

The reminder of the paper is organized as follows. Section 2 presents preliminary analysis
on contraction properties of operator Ψ. Section 3 shows the results on the sequential NPL
algorithm. Section 4 extends our analysis to the sequential GMM estimator. Section 5 discusses
the sequential CMD estimator.

2 Preliminary

This section provides various analytical results on the (local) contraction properties of operator
Ψ. These results are used to analyze the convergence properties of the sequential extremum
estimators in later sections.
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2.1 Finite-dimensional Case

Consider the case that Zi takes a L possible values, Zi ∈ Z = {z1, z2, ..., zL}, so that P is a
finite L-dimensional vector. Expanding Ψ(P, θ) around the fixed point, Pθ, gives

Ψ(P, θ)− Pθ =
∂Ψ(P, θ)
∂P ′

|P=Pθ
(P − Pθ) +O(||P − Pθ||2).

The first-order convergence property of Ψ(P, θ) depends on the matrix ∂Ψ(P,θ)
∂P ′ |P=Pθ

. When
∂Ψ(Pθ,θ)

∂P ′ = 0, the operator achieves a quadratic contraction. When ∂Ψ(P,θ)
∂P ′ |P=Pθ

6= 0, the con-
traction property of Ψ(·, θ) is determined by the largest eigenvalue of the matrix ∂Ψ(P,θ)

∂P ′ |P=Pθ
.

Denote the eigenvalues of ∂Ψ(Pθ,θ)
∂P ′ by λj(θ) for j = 1, 2, ..., L. Let Λ(θ) be a diagonal ma-

trix with diag{Λ(θ)} = (λ1(θ), ..., λL(θ))′. Let M(θ) be the modal matrix of ∂Ψ(Pθ,θ)
∂P ′ , of

which j-th column is the eigenvector corresponds to the eigenvalue λj(θ). Then we have
∂Ψ(Pθ,θ)

∂P ′ = M(θ)Λ(θ)M(θ)−1. If we define a q-stage operator of Ψ by

Ψq(P, θ) = Ψ(Ψ(...(Ψ︸ ︷︷ ︸
q times

(P, θ), θ), ...)),

then we have ∂Ψq(Pθ,θ)
∂P ′ =

(
∂Ψ(Pθ,θ)

∂P ′

)q
= M(θ)Λq(θ)M(θ)−1 and it follows that

Ψq(P, θ)− Pθ = M(θ)Λq(θ)M(θ)−1(P − Pθ) +O(||P − Pθ||2).

When P is in neighborhood of Pθ, the higher order terms are negligible and the local convergence
property of a q-stage operator is given by:

||M(θ)−1(Ψq(P, θ)− Pθ)|| ≤ (λmax(θ))q||M(θ)−1(P − Pθ)||,

where λmax(θ) = max{|λ1(θ)|, ..., |λL(θ)|} is the largest eigenvalue of Λ(θ) in absolute value. A
contraction requires the value of λmax(θ) to be strictly less than one.

2.2 Infinite Dimensional Case

When Zi is continuously distributed, P is infinite dimensional. Let the space of the probability
distributions P belongs to be BP . Given the value of θ, the operator Ψ(·, θ) is a mapping
from BP to itself. The derivative of Ψ need to be defined as Fréchet (F-) derivatives. For a
map g : X → Y , where X and Y are Banach spaces, g is F-differentiable iff there exists a
linear and continuous map T such that g(x + h) − g(x) = Th + o(||h||) as h → 0 for all h in
neighborhood of zero. If it exists, T is called F-derivative of g at x. The operator norm is defined
as ||g|| = sup||x||≤1 ||g(x)||. Consequently, ||g(x)|| ≤ ||g||||x|| for all x ∈ X. See Zeidler (1986) for
further details.
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Proposition 1 Suppose that an operator Ψ is a contraction with modulus λ such that, for any
θ ∈ Θ and P ∈ BP : ||Pθ −Ψ(P, θ)|| ≤ λ||Pθ − P ||. Then,

||DP Ψ(Pθ, θ)h|| ≤ λ,

||DθPθk −DθΨ(P, θ)|P=Pθ
k|| ≤ λ||DθPθk||

for all h ∈ BP and k ∈ Θ.

One important implication is that

||DP Ψq(Pθ, θ)h|| ≤ λq,

||DθPθk −DθΨq(P, θ)|P=Pθ
k|| ≤ λq||DθPθk||,

for all h ∈ BP and k ∈ Θ, since Ψq(·, θ) is a contraction with modulus λq if Ψ(·, θ) is a contraction
with modulus λ.

2.3 Superlinear Contraction

In some cases, the operator Ψ has a superlinear contraction property. The following proposition
states that a super linear contraction property implies “zero Jacobian property” of pseudo-
likelihood function.

Proposition 2 Suppose that there exists some ε > 0 such that

Pθ −Ψ(P, θ) = O(||Pθ − P ||1+ε),

for θ ∈ Θ and P in neighborhood of Pθ. Then,

DθΨ(P, θ)|P=Pθ
= DθPθ,

DP Ψ(Pθ, θ) = 0.

Furthermore,

DPθΨ2(Pθ, θ) = 0.

As AM02 discuss, the condition that DP Ψ(Pθ, θ) = 0 implies that θ and P are asymptotically
orthogonal in the pseudo likelihood function. The condition that DPθΨ2(Pθ, θ) = 0 implies that
θ and P are orthogonal in any sample size. As shown in KS06, the orthogonality between θ and
P is the key to understanding the convergence property of the NPL algorithm.
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3 Maximum Likelihood Estimator

The maximum likelihood estimator solves the following constrained maximization problem:

max
θ∈Θ

1
n

n∑
i=1

lnP (ai|xi) s.t. P = Ψ(P, θ).

Denote the fixed point Pθ = Ψ(Pθ, θ). Let the maximum likelihood estimator be

θ̂ = arg max
θ∈Θ

1
n

n∑
i=1

lnPθ(ai|xi),

while let the two-step maximum pseudo-likelihood estimator be

θ̃q
1 = arg max

θ∈Θ

1
n

n∑
i=1

lnΨq(P̂0, θ)(ai|xi).

Let’s collect notations first.

ψq(P, θ) = lnΨq(P, θ), ψ
q(P, θ) =

1
n

n∑
i=1

lnΨq(P, θ)(ai|xi),

Ψθ = (∂/∂θ′)Ψ(P 0, θ0), ΨP = (∂/∂P ′)Ψ(P 0, θ0),

ψ
q
θ(P, θ) =

1
n

n∑
i=1

(∂/∂θ) ln Ψq(P, θ)(ai|xi), ψ
q
P (P, θ) =

1
n

n∑
i=1

(∂/∂P ) ln Ψq(P, θ)(ai|xi),

ψ
q
θP (P, θ) =

1
n

n∑
i=1

(∂2/∂θ∂P ′) ln Ψq(P, θ)(ai|xi), ψ
q
θθ(P, θ) =

1
n

n∑
i=1

(∂2/∂θ∂θ′) ln Ψq(P, θ)(ai|xi),

and

Ωq
θθ = E[(∂/∂θ) ln Ψq(P 0, θ0)(a|x)(∂/∂θ′) ln Ψq(P 0, θ0)(a|x)]

= −E[(∂2/∂θ∂θ′) ln Ψq(P 0, θ0)(a|x)],

Ωq
θP = E[(∂/∂θ) ln Ψq(P 0, θ0)(a|x)(∂/∂P ′) ln Ψq(P 0, θ0)(a|x)]

= −E[(∂2/∂θ∂P ′) ln Ψq(P 0, θ0)(a|x)].

Note that the information matrix equality holds for lnΨq(P, θ), too, because Ψq(P 0, θ0)(a|x) is
also the true density of the data. In the case of q = 1, we simply denote ψ(P, θ) = ψ1(P, θ),
ψ(P, θ) = ψ

1(P, θ), etc.. We focus on the case where the support of (ai, xi) is finite, A ×X =
{a1, a2, ..., a|A|} × {x1, x2, . . . , x|X|}.

In AM07, ∇P Ψ denotes (∂/∂P ′)Ψ(P 0, θ0), which corresponds to our ΨP . Similarly, ∇θΨ
in AM07 corresponds to our Ψθ. Define fx(xl) = Pr(x = xl) and let fx be a |A||X| × 1
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vector of Pr(x = xl) whose elements are arranged conformably with Pθ0(aj |xl). Let ∆P =
diag(P 0)−1diag(fx). With these notations, we may write Ωq

θθ = Ψq′

θ ∆P Ψq
θ and Ωq

θP = Ψq′

θ ∆P Ψq
P .

3.1 Two-step estimator

Let P 0 be the true set of probabilities. Consider the following regularity conditions.

Assumption 1. (a) Θ is compact. (b) Ψq(P, θ) is three times continuously F-differentiable. (c)
Ψq(P, θ)(a|x) > 0 for any (a, x) and any {P, θ} ∈ BP×Θ. (d) (ai, xi) for i = 1, 2, . . . , N, are
independently and identically distributed, and dF (x) > 0 for any x in the support of xi,
where F (x) is the distribution function of xi. (e) There is a unique θ0 ∈int(Θ) such that,
for any (a, x) ∈ A×X, Pθ0(a|x) = P 0(a|x). For any θ 6= θ0, Prθ0({(a, x) : Ψq(P 0, θ0)(a|x) 6=
P 0(a|x)}) > 0. (g) Eθ0 sup(P,θ) ||DsΨq(P, θ)(a|x)||2 <∞ for s = 1, . . . , 4.

Under Assumption 1, the two-step maximum pseudo-likelihood estimator is consistent and,
when a root-n consistent estimator of P 0 is available, it is asymptotically normal.

Proposition 3 Assume Assumption 1 holds and P̂0 →p P
0. Then θ̃q

1 →p θ
0.

Proposition 4 Assume Assumption 1 holds and
√
n(P̂0−P 0) →d N(0,Σ). Then,

√
n(θ̃q

1−θ0) →
N(0, V q), where V q = (Ωq

θθ)
−1 + (Ωq

θθ)
−1Ωq

θP Σ(Ωq
θP )

′
(Ωq

θθ)
−1.

Remark 1 When Ψq
P = 0, the limiting distribution of the two-step estimator is the same as

that of the MLE even under the weaker assumption that P̂0 − P 0 = Op(n−b) with b > 1/4. See
Proposition 4 of AM02 and Proposition 2 of KS06.

3.2 Sequential Pseudo Maximum Likelihood Estimator

In this section, we analyze the asymptotic properties of the sequential pseudo maximum like-
lihood estimator that is defined as follows: assuming that an initial consistent estimator P̃0 is
available,

Step 1: Given P̃j−1, update θ by θ̃j = arg maxθ∈Θ ψ(P̃j−1, θ).

Step 2: Update P using the obtained estimate θ̃j by P̃j = Ψ(P̃j−1, θ̃j).

Iterate Steps 1-2 until j = k.

AM02 and AM07 propose the nested pseudo likelihood (NPL) estimator θ̃ that is defined by
the following properties:

θ̃ = arg max
θ∈Θ

1
n

n∑
i=1

lnΨ(P̃ , θ)(ai|xi), and P̃ = Ψ(P̃ , θ̃).
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The following proposition is from AM07 and states that θ̃ is root-n consistent asymptotically
and more efficient than a two-step estimator if all the eigenvalues of ΨP are between 0 and 1.

Proposition 5 Assume Assumption 1 holds. Then,
√
n(θ̃− θ0) → N(0, VNPL), where VNPL =

[Ωθθ+ΩθP (I−ΨP )−1Ψθ]−1Ωθθ{[Ωθθ+ΩθP (I−ΨP )−1Ψθ]−1}′. Furthermore, if all the eigenvalues
of ΨP are less than one in absolute value, then V 1 − VNPL is positive definite.

As noted by AM07, the NPL estimator can be obtained as a limit of iterating steps 1 and 2
if the iterations converge. In their simulation study, AM07 report that the iterations always
converged. However, the convergence property of this algorithm has not been fully understood.

We show that its convergence property crucially depends on the eigenvalues of ΨP . When
all the eigenvalues of ΨP are smaller than 1 in absolute value, iterating steps 1 and 2 converges.

First, we state the regularity conditions.

Assumption B Assumption 1 holds, and in addition

ψθP (P 0, θ0) = −ΩθP +Op(n−1/2),

ψθθ(P
0, θ0) = −Ωθθ +Op(n−1/2),

ψθ(P
0, θ0) = Op(n−1/2),

E sup
θ,P

||DθP lnΨ(P, θ)|| < ∞, E sup
θ,P

||D3 lnΨ(P, θ)|| <∞,

sup
θ,P

||D2Ψ(P, θ)|| = O(1),

ψθθ(P, θ) is invertible for all (P, θ).

All the assumptions but the last two are fairly weak. ψθθ(P, θ) should be invertible in many
cases because ψθθ(P, θ) is an average of n matrices. If we assume P̃0 is consistent, then the last
assumption can be replaced by the invertibility of Ωθθ. The following lemma shows the bound
of θ̃j − θ̃ and P̃j − P̃ .

Lemma 1 Suppose Assumption B holds. Then, for j = 1, . . . , k,

θ̃j − θ̃ = Op(||P̃j−1 − P̃ ||),

P̃j − P̃ =
[
I −Ψθ(Ψ′

θ∆P Ψθ)−1Ψ′
θ∆P

]
ΨP (P̃j−1 − P̃ ) +Op(n−1/2||P̃j−1 − P̃ ||) +Op(||P̃j−1 − P̃ ||2).

Remark 2 Ψθ(Ψ′
θ∆P Ψθ)−1Ψ′

θ∆P is a generalized least squares projection matrix from a regres-
sion of an element of BP onto the space spanned by Ψθ, where the “error variance matrix” is
∆−1

P .

Remark 3 The eigenvalues of I − Ψθ(Ψ′
θ∆P Ψθ)−1Ψ′

θ∆P are either zero or one. Hence, the
convergence property of P̃j is determined by the eigenvalues of ΨP . If all the eigenvalues of ΨP
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are smaller than 1 in absolute value, an iteration moves P̃j toward P̃ . It follows from induction
that

P̃k−P̃ =
{[
I −Ψθ(Ψ′

θ∆P Ψθ)−1Ψ′
θ∆P

]
ΨP

}k (P̃0−P̃ )+O(Ψk−1
P )(Op(n−1/2||P̃0−P̃ ||)+Op(||P̃0−P̃ ||2)),

and P̃k, θ̃k converges to P̃ , θ̃ as k →∞. On the other hand, if some eigenvalues of ΨP are larger
than 1, then an iteration moves some elements of P̃j further away from P̃ . In this case, it is not
clear whether the iterations eventually converge.

Remark 4 Even if the initial estimate, P̃0, is not root-n consistent, iterations reduce the effect
of the initial estimate on θ̃j , provided all the eigenvalues of ΨP are smaller than 1 in absolute
value.

Remark 5 If all the eigenvalues of ΨP are smaller than 1 in absolute value and we choose
k →∞ so that log n = o(k), then P̃k − P̃ = op(n−1/2) and the effect of P̃0 on P̃ vanishes in the
limit. This is useful when some elements of x are continuously distributed and root-n consistent
P̃0 is not available.

Remark 6 When the operator Ψ has a superlinear contraction property, we have ΨP = 0 (c.f.,
Proposition 2). In such a case, the convergence rate is faster than linear:

P̃j − P̃ = Op(n−1/2||P̃j−1 − P̃ ||) +Op(||P̃j−1 − P̃ ||2).

Remark 7 If at least one element of xi is continuously distributed, one can prove the higher-
order improvement by bootstrap as in KS06.

We can also construct a q–version of the sequential estimator.

Step 1: Given P̃ q
j−1, update θ by θ̃q

j = arg maxθ∈Θ ψ
q(P̃ q

j−1, θ).

Step 2: Update P using the obtained estimate θ̃q
j by P̃ q

j = Ψ(P̃ q
j−1, θ̃

q
j ).

Iterate Steps 1-2 until j = k.

Note that the derivative of the q–stage mapping Ψq(Pθ, θ) take the following form:

(∂/∂θ′)Ψq(Pθ, θ) = (I + ΨP + · · ·Ψq−1
P )Ψθ = (I −Ψq

P )(1−ΨP )−1Ψθ,

(∂/∂P ′)Ψq(Pθ, θ) = Ψq
P .

If the eigenvalues of ΨP are positive, iterating this mapping increases the curvature of the like-
lihood function. If they are all between 0 and 1, then (∂/∂θ′)Ψq(P, θ) approaches to (∂/∂θ′)Pθ.
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Corollary 1 Suppose Assumption B holds with Ψq(P, θ) replacing Ψ(P, θ). Then, for j =
1, . . . , k,

θ̃q
j − θ̃q = Op(||P̃ q

j−1 − P̃ q||),

P̃ q
j − P̃ q =

[
I −Ψq

θ((Ψ
q
θ)
′∆P Ψq

θ)
−1(Ψq

θ)
′∆P

]
Ψq

P (P̃ q
j−1 − P̃ q)

+Op(n−1/2||P̃ q
j−1 − P̃ q||) +Op(||P̃ q

j−1 − P̃ q||2).

Note that using Ψq in place of Ψ accerelates the convergence of the sequential estimator when
all the eigenvalues of ΨP are smaller than one in absolute value.

3.3 Non-optimality of the NPL estimator

Define ψ(P, θ) = log Ψ(P, θ). The model we consider implies the following conditional moment
restriction

E
[
∇θψ(P 0, θ0)(a|x)

∣∣x] = 0. (4)

Let A(x) be a k × k nonsingular matrix of functions of x, and consider the following GMM
estimator

θ̃ = arg min
θ

∥∥∥∥∥ 1
n

n∑
i=1

A(xi)∇θψ(P̃ , θ)(ai|xi)

∥∥∥∥∥
2

s.t. P̃ = Ψ(P̃ , θ̃).

This estimator resembles the NPL estimator in that P̃ is set to satisfy the NPL fixed point
condition. The efficient GMM estimator is obtained by choosing A(x) to minimize the variance
of θ̃. As shown in the following proposition, the limiting variance of the efficient GMM estimator
is different from that of the NPL estimator, and the NPL estimator may not be optimal within
a class of the estimators that are based on the conditional moment restriction (4) and impose
the NPL fixed point condition.

Proposition 6 The optimal instrument is

Ā(x) = E
[
∇θθψ(P 0, θ0)(a|x) +∇θPψ(P 0, θ0)(a|x)(I −ΨP )−1Ψθ|x

]′
×E

[
∇θψ(P 0, θ0)(a|x)∇θψ(P 0, θ0)(a|x)′|x

]−1

and the limiting variance of the efficient GMM estimator is

V̄ =
{
E

[
Ā(x)E

[
∇θψ(P 0, θ0)(a|x)∇θψ(P 0, θ0)(a|x)′|x

]−1
Ā(x)′

]}−1
,

which is different from the limiting variance of the NPL estimator

VNPL =
{
E[Ā(x)]E[∇θψ(P 0, θ0)(a|x)∇θψ(P 0, θ0)(a|x)′]E[Ā(x)]′

}−1
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if ΨP 6= 0. When ΨP = 0, both V̄ and VNPL are equal to the asymptotic variance of the
maximum likelihood estimator.

4 Generalized Method of Moments Estimator

The generalized method of moments estimator is defined by

θ̂GMM = arg max
θ∈Θ

−ḡ(P )′Ŵ ḡ(P ) s.t. P = Ψ(P, θ),

where Ŵ →p W positive semi-definite and

ḡ(P ) = n−1
n∑

i=1

g(ai, xi;P ),

with g(·;P ) = (g1(·;P ), g2(·;P ), ..., gL(·;P ))′ is a moment vector function representing Lmoment
conditions. Specifically, we consider

gl(ai, xi;P ) = ρl(xi)

{
hl(ai)−

∑
a∈A

hl(a)P (a|xi)

}
,

which satisfies E[gl(ai, xi;P 0)] = E[ρl(xi)E[hl(ai)− E(hl(a)|xi)|xi]] = 0 for l = 1, 2, ..., L.
Let’s collect notations first.

Ḡθ(Ψq(P, θ)) = (∂/∂θ′)ḡ(Ψq(P, θ)), ḠP (Ψq(P, θ)) = (∂/∂P ′)ḡ(Ψq(P, θ)),

Gq
θ = E[(∂/∂θ′)g(ai, xi; Ψq(P 0, θ0))], Gq

P = E[(∂/∂P ′)g(ai, xi; Ψq(P 0, θ0))].

Define fx as before so that its elements are arranged comformably with P 0(j|xl) while let f̂x be
a frequency estimator of fx. Denote ∆x = diag(fx) and ∆̂x = diag(f̂x). Let γl(a, x) = ρ(x)h(a)
and γl represent a vector of |A||X| length. Finally, let Γ = (γ′1, γ

′
2, ..., γ

′
L)′ be a L by |A||X|

matrix.
With those notations, we may write Ḡθ(Ψq(P, θ)) = −Γ∆̂x(∂/∂θ′)Ψq(P, θ), ḠP (Ψq(P, θ)) =

−Γ∆̂x(∂/∂P ′)Ψq(P, θ), Gq
θ = −Γ∆x(I −Ψq

P )(I −ΨP )−1Ψθ and Gq
P = −Γ∆xΨq

P . In the case of
q = 1, we write Gθ = G1

θ, GP = G1
P , etc..

4.1 Two-step Estimator

Given an initial consistent estimator P̂0, a two-step GMM estimator based on the operator Ψq

is defined by

θ̃q = arg max
θ∈Θ

−ḡ(Ψq(P̂0, θ))′Ŵ ḡ(Ψq(P̂0, θ)).

12



Let r(ai, xi) be a vector of length |A||X| whose elements are arranged comformably with
P 0(a|x) and be equal to zero except for the element of (a, x) = (ai, xi) which takes a value of
one. With this notation, we can write P̂0 = n−1

∑n
i=1 r(ai, xi).

The asymptotic distribution of θ̃ is given by

√
n(θ̃ − θ0) →d N(0, V ),

where
V = (G′θWGθ)−1G′θWSW ′Gθ(G′θW

′Gθ)−1

with S = E[(g(ai, xi;P 0) + GP (r(ai, xi) − P 0))(g(ai, xi;P 0) + GP (r(ai, xi) − P 0))′]. Using an
optimal weighting matrix W ∗ = S−1, the limiting variance is given by V = (G′θS

−1Gθ)−1.
If we use Ψq(P, θ) in place of Ψ(P, θ), we have

√
n(θ̃q − θ0) →d N(0, V q) where

V q = ((Gq
θ)
′WGq

θ)
−1(Gq

θ)
′WSqW ′Gq

θ((G
q
θ)
′W ′Gq

θ)
−1

with Sq = E[(g(ai, xi;P 0) +Gq
P (r(ai, xi)− P 0))(g(ai, xi;P 0) +Gq

P (r(ai, xi)− P 0))′].
When all the eigenvalues of ΨP are between 0 and 1, the GMM estimator θ̂GMM is obtained

as the limit of θ̃q as q → ∞ and, therefore, the limiting variance of θ̂GMM is given by V∞ =
((G∞θ )′WG∞θ )−1(G∞θ )′WΩW ′G∞θ ((G∞θ )′W ′G∞θ )−1. Using a weighting matrix W = Ω−1 leads
to the efficient GMM estimator with the asymptotic variance ((G∞θ )′Ω−1G∞θ )−1.

4.2 Sequential GMM Estimator

Given an initial estimator P̃0,

Step 1: Given P̃j−1, update θ by θ̃j = arg maxθ −ḡ(Ψ(P̃j−1, θ))′Ŵ ḡ(Ψ(P̃j−1, θ)).

Step 2: Update P using the obtained estimate θ̃j : P̃j = Ψ(P̃j−1, θ̃j).

Iterate Steps 1-2 until j = k.

We first consider an nested generalized method of moments estimator (NGMM) which sat-
isfies

θ̃ = arg max
θ∈Θ

−ḡ(Ψ(P̃ , θ))′Ŵ ḡ(Ψ(P̃ , θ)),

P̃ = Ψ(P̃ , θ̃).

Assumption C Assumption 1 holds, and in addition

ḡ(P 0) = Op(n−1/2), sup
θ,P

||D2Ψ(P, θ)|| <∞, ||Γ|| <∞,

rank((∂/∂θ′)Ψ(P, θ)) = k, for all P

13



Note that supθ,P ||D2Ψ(P, θ)|| <∞ and ||Γ|| <∞ imply that supθ,P ||DḠθ(Ψ(P, θ))|| <∞. The
rank condition on (∂/∂θ′)Ψ(P, θ) guarantees that (Ḡθ(P ))′Ŵ Ḡθ(P ) is invertible. The following
lemma provides the limiting distribution of the NGMM estimator.

Lemma 2 Suppose Assumption C holds. Then

√
n(θ̃ − θ0) →d N(0, (G′θWG∞θ )−1G′θWΩW ′Gθ((G∞θ )′W ′Gθ)−1),

Ω = E[g(ai, xi;P 0)g(ai, xi;P 0)′]. If W ∗ = (G−1
θ )′(G∞θ )′Ω−1 is positive semi-definite, the mini-

mized asymptotic variance is ((G∞θ )′Ω−1G∞θ )−1 by setting W = W ∗.

Remark 8 When all the eigenvalues of ΨP are less than one in absolute value, the asymptotic
variance of the efficient GMM estimator is also ((G∞θ )′Ω−1G∞θ )−1. Thus, the NGMM estimator
is more efficient than two-step estimator and can be asymptotically equivalent to the efficient
GMM estimator.

Remark 9 When ΨP = 0, the two-step GMM estimator with an optimal weighting matrix is
also asymptotically equivalent to the efficient GMM estimator.

The NGMM estimator can be obtained as the limit of the sequential GMM estimators upon
convergence. The convergence property of sequential GMM estimators is given by the following
lemma.

Lemma 3 Suppose Assumption C holds. Then, for j = 1, . . . , k,

θ̃j − θ̃ = Op(||P̃j−1 − P̃ ||),

P̃j − P̃ = [I + Ψθ(G′θŴGθ)−1G′θŴΓ∆x]ΨP (P̃j−1 − P̃ ) +Op(n−1/2||P̃j−1 − P̃ ||) +Op(||P̃j−1 − P̃ ||2).

Remark 10 Observe that −Ψθ(G′θŴGθ)−1G′θŴΓ∆x = Ψθ(Ψ′
θ∆

′
xΓ′ŴΓ∆xΨθ)−1Ψ′

θ∆
′
xΓ′ŴΓ∆x

is a projection matrix, and the sequential GMM estimator has the same convergence property as
the sequential ML estimator. Again, the eigenvalues of ΨP determine the convergence.

Remark 11 Analogous remarks to Remarks 3-6 apply here.

A q-stage version of the sequential GMM estimator is described as follows.

Step 1: Given P̃ q
j−1, update θ by θ̃q

j = arg maxθ −ḡ(Ψq(P̃j−1, θ))′Ŵ ḡ(Ψ(P̃ q
j−1, θ)).

Step 2: Update P using the obtained estimate θ̃q
j : P̃

q
j = Ψq(P̃ q

j−1, θ̃j).

Iterate Steps 1-2 until j = k.
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Let (P̃ q, θ̃q) = limk→∞(P̃ q
k , θ̃

q
k). We may show that

√
n(θ̃q − θ0) →d N(0, ((Gq

θ)
′WG∞θ )−1(Gq

θ)
′WΩW ′Gq

θ((G
∞
θ )′W ′Gq

θ)
−1),

where Ω = E[g(ai, xi;P 0)g(ai, xi;P 0)′]. Choosing W ∗ = ((Gq
θ)
−1)′(G∞θ )′Ω−1 as a weighting

matrix (if it is positive semi-definite) leads to the asymptotic variance ((G∞θ )′Ω−1G∞θ )−1.

Corollary 2 Suppose Assumption C holds with Ψq(P, θ) replacing Ψ(P, θ). Then, for j =
1, . . . , k,

θ̃q
j − θ̃q = Op(||P̃ q

j−1 − P̃ q||),

P̃ q
j − P̃ q = [I + Ψq

θ((G
q
θ)
′ŴGq

θ)
−1(Gq

θ)
′ŴΓ∆x]Ψq

P (P̃ q
j−1 − P̃ q)

+Op(n−1/2||P̃ q
j−1 − P̃ q||) +Op(||P̃ q

j−1 − P̃ q||2).

5 Classical Minimum Distance Estimator (or Asymptotic Least

Squares Estimator)

Let P̂0 be a frequency estimator of P 0 satisfying n1/2(P̂0 − P 0) →d N(0,Σ). For parameters P
and θ, define the difference between the empirical frequency and the value after q iterations of
the operator as

ḡq(θ, P ) = P̂0 −Ψq(P, θ).

Substitute P̂0 into ḡq(θ, P ), and consider estimating θ by

θ̃q = arg min
θ

ḡq(θ, P̂0)′Ŵ ḡq(θ, P̂0),

where Ŵ →p W is a positive definite weighting matrix. We call θ̃q the q–classical min-
imum distance (q–CMD) estimator. The asymptotic least square estimator of Pesendorfer
and Schmidt-Dengler (2006) corresponds to the case q = 1. Pesendorfer and Schmidt-Dengler
(2006, Propositions 4 and 5) show that the efficient least squares estimator, θ̃LS , that uses
W = (I −Ψ′

P )−1Σ−1(I −ΨP )−1 satisfies

√
n(θ̃LS − θ0) →d N(0, VLS), VLS = (Ψ′

θ(I −Ψ′
P )−1Σ−1(I −ΨP )−1Ψθ)−1.

We use the following assumptions:

Assumption D Assumption 1 holds, and in addition

ḡq(P 0) = Op(n−1/2), sup
θ,P

||D2Ψq(P, θ)|| <∞, rank((∂/∂θ′)Ψq(P, θ)) = k.
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Note that supθ,P ||D2Ψq(P, θ)|| < ∞ implies that supθ,P ||Dθθḡ
q(θ, P )|| < ∞. Let Ψ(q)

θ and
Ψ(q)

P denote DθΨq(P 0, θ0) and DP Ψq(P 0, θ0), respectively.
The following lemma shows the asymptotic distribution of the q–CMD estimator. It turns

out, when the optimal weighting matrix is used, θ̃q has the same efficiency as θ̃LS and there is
no efficiency improvement from using Ψq.

Lemma 4 Suppose Assumption D holds. Then

√
n(θ̃q−θ0) →d N(0, (Ψ(q)′

θ WΨ(q)
θ )−1(Ψ(q)′

θ W (I−Ψ(q)
P )Σ(I−Ψ(q)′

P )W ′Ψ(q)
θ )(Ψ(q)′

θ (I−Ψ(q)′
P )−1W ′Ψ(q)

θ )−1).

The asymptotic variance of θ̃q is minimized by choosing W = (I − Ψ(q)′
P )−1Σ−1(I − Ψ(q)

P )−1.
With this choice of W,

√
n(θ̃q − θ0) → N(0, (Ψ′

θ(I −Ψ′
P )−1Σ−1(I −ΨP )−1Ψθ)−1)),

and θ̃q has the same efficiency as θ̃LS .

An efficiency gain is achieved if one uses Ψq with q ≥ 2 while imposing an NPL fixed point
restriction on P . Consider the following nested minimum distance (NMD) estimator.

θ̃q
NMD = arg min

θ
ḡq(θ, P̃ )′Ŵ ḡq(θ, P̃ ) s.t. P̃ = Ψ(P̃ , θ̃).

The following lemma shows the asymptotic distribution of the NMD estimator.

Lemma 5 Suppose Assumption D holds. Then

√
n(θ̃q

NMD−θ
0) →d N(0, (Ψ(q)′

θ W (I−ΨP )−1Ψ(q)
θ )−1(Ψ(q)′

θ WΣW ′Ψ(q)
θ )(Ψ(q)′

θ (I−Ψ′
P )−1W ′Ψ(q)

θ )−1).

The limiting variance of θ̃q
NMD is minimized by choosing W ∗ ≡ (I−Ψ

′
P )−1Σ−1 as the weighting

matrix, and then

√
n(θ̃q

NMD − θ0) →d N(0, VNMD), VNMD = (Ψ(q)′
θ (I −Ψ′

P )−1Σ−1(I −ΨP )−1Ψ(q)
θ )−1.

When q = 1, this limiting variance is identical to that of θ̃LS , and there is no efficiency gain
from imposing an NPL fixed point constraint. When q ≥ 2, the NMD estimator is more efficient
than θ̃LS if all the eigenvalues of ΨP are between 0 and 1. Recall Ψ(q)

θ = (I+ΨP + · · ·+Ψq−1
P )Ψθ.

Let Ω = (I −Ψ′
P )−1Σ−1(I −ΨP )−1, and write V −1

NMD and V −1
LS as

V −1
LS = Ψ′

θΩΨθ, V −1
NMD = Ψ′

θ(I + ΨP + · · ·+ Ψq−1
P )′Ω(I + ΨP + · · ·+ Ψq−1

P )Ψθ
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Thus

V −1
NMD − V −1

LS = Ψ′
θ(ΨP + · · ·+ Ψq−1

P )′Ω(ΨP + · · ·+ Ψq−1
P )Ψθ

+Ψ′
θ[(ΨP + · · ·+ Ψq−1

P )′Ω + Ω′(ΨP + · · ·+ Ψq−1
P )]Ψθ,

which is positive definite if all the eigenvalues of ΨP are between 0 and 1. Note, however, that
the positive definiteness of W ∗ requires the positive definiteness of (I − Ψ

′
P )−1. If this is not

the case, choosing W = W ∗ is not possible, and imposing an NPL fixed point constraint has a
detrimental effect on the efficiency of the NMD estimator.

Taking q →∞ in θ̃q gives the full-solution minimum distance estimator that minimizes the
distance between P̂0 and Pθ. Interestingly, even using the full fixed point solution does not
achieve an efficiency gain.

5.1 Sequential CMD estimator

We consider the sequential CMD estimator recursively as follows. Set P̃0 = P̂0, and

Step 1: Given P̃j−1, estimate θ by θ̃j = arg minθ ḡ(θ, P̃j−1)′Ŵ ḡ(θ, P̃j−1).

Step 2: Update P using the obtained estimate θ̃j by P̃j = Ψ(P̃j−1, θ̃j).

Iterate Steps 1-2 until j = k.

Lemma 6 Suppose Assumption D holds. Then, for j = 1, . . . , k,

θ̃j − θ̃ = Op(||P̃j−1 − P̃ ||),

P̃j − P̃ = [I −Ψθ(Ψ′
θŴΨθ)−1Ψ′

θŴ ]ΨP (P̃j−1 − P̃ ) +Op(n−1/2||P̃j−1 − P̃ ||) +Op(||P̃j−1 − P̃ ||2).

We may also consider a q-stage version of the sequential CMD estimator as follows.

Step 1: Given P̃j−1, estimate θ by θ̃q
j = arg minθ ḡ

q(θ, P̃j−1)′Ŵ ḡq(θ, P̃j−1).

Step 2: Update P using the obtained estimate θ̃q
j by P̃j = Ψq(P̃j−1, θ̃j).

Iterate Steps 1-2 until j = k.

Corollary 3 Suppose Assumption D holds. Then, for j = 1, . . . , k,

θ̃q
j − θ̃q = Op(||P̃j−1 − P̃ ||),

P̃j − P̃ = [I −Ψq
θ((Ψ

q
θ)
′ŴΨq

θ)
−1(Ψq

θ)
′Ŵ ]Ψq

P (P̃j−1 − P̃ ) +Op(n−1/2||P̃j−1 − P̃ ||) +Op(||P̃j−1 − P̃ ||2).
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6 Appendix

6.1 Proof of Proposition 1

For the first result, the definition of the F-derivative implies that, for any h ∈ BP , Ψ(Pθ +h, θ)−
Ψ(Pθ, θ) = DP Ψ(Pθ, θ)h+ o(||h||) as h→ 0. Hence

||DP Ψ(Pθ, θ)h|| ≤ λ||h||+ o(||h||).

Dividing both sides by ||h|| gives ||DP Ψ(Pθ, θ)(h/||h||)|| ≤ λ + o(||h||)/||h||, and letting h → 0
and using the definition of the operator norm gives the required result.1 For the second result,
observe that, for any k ∈ Θ,

||Pθ+k − Pθ −Ψ(Pθ, θ + k) + Ψ(Pθ, θ)||

≤ ||Ψ(Pθ+k, θ + k)−Ψ(Pθ, θ + k)|| ≤ λ||Pθ+k − Pθ||.

Therefore, ||DθPθk−DθΨ(Pθ, θ)k|| ≤ λ||DθPθk||+ o(||k||) as k → 0, and dividing both sides by
||k|| and letting k → 0 gives the stated result. �

6.2 Proof of Proposition 2

For any h ∈ BP , Ψ(Pθ + h, θ) − Ψ(Pθ, θ) = O(||h||1+ε) = o(||h||). Thus, DP Ψ(Pθ, θ) = 0. For
any k ∈ Θ, Ψ(Pθ, θ+k)−Ψ(Pθ, θ) = [Pθ+k−O(||Pθ+k−Pθ||1+ε)]−Pθ = DθPθk+o(||k||). Thus,
DθΨ(P, θ)|P=Pθ

= DθPθ. For any h ∈ BP

DPθΨ(Ψ(P, θ), θ)h = DPP Ψ(Ψ(P, θ), θ)DP Ψ(P, θ)h ·DθΨ(P, θ)

+DP Ψ(Ψ(P, θ), θ)DPθΨ(P, θ)h+DPθΨ(Ψ(P, θ), θ)DP Ψ(P, θ)h.

Therefore, if evaluated at the fixed point P = Pθ, we have DPθΨ2(Pθ, θ) = 0. �

6.3 Proof of Proposition 3

Assumption 1 (a), (b), and (d) with P̂0 →p P 0 imply that ψq(P̂0, θ) converges uniformly in
probability in θ to E(lnΨq(P 0, θ)) (c.f., Lemma 24.1 of Gourieroux and Monfort, 1989). Then,
the rest of the proof follows the proof of Theorem 2.1 of Newey and McFadden (1994). �

6.4 Proof of Propositions 4 and 5

See pp.49-52 of Aguirregabiria and Mira (2007). �

1If f(x) ≤ a + o(1) as x→ 0, then f(x) ≤ a. The proof is by contradiction (suppose f(x) > a, then . . . ).
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6.5 Proof of Lemma 1 and Corollary 1

We prove Lemma 1 first. Recall that θ̃j satisfies the first order condition

ψθ(P̃j−1, θ̃j) = 0. (5)

Expanding this around (P̃ , θ̃) and using ψθ(P̃ , θ̃) = 0 gives

0 = ψθP (P̄ , θ̄)(P̃j−1 − P̃ ) + ψθθ(P̄ , θ̄)(θ̃j − θ̃),

where (P̄ , θ̄) lie between (P̃j−1, θ̃j) and (P̃ , θ̃). Inverting ψθθ(P̄ , θ̄), we obtain

θ̃j − θ̃ = −ψθθ(P̄ , θ̄)
−1ψθP (P̄ , θ̄)(P̃j−1 − P̃ ) = Op(||P̃j−1 − P̃ ||), (6)

where the last equality follows from the last two assumptions of Assumption B.2

For the second result, expand the second-step updating equation P̃j = Ψ(P̃j−1, θ̃j) twice
around (P̃ , θ̃) and use Ψ(P̃ , θ̃) = P̃ , root-n consistency of (P̃ , θ̃), and (6), then it follows that

P̃j − P̃ = ΨP (P̃j−1 − P̃ ) + Ψθ(θ̃j − θ̃) +Op(n−1/2||P̃j−1 − P̃ ||) +Op(||P̃j−1 − P̃ ||2). (7)

Rewriting (6) by using ψθP (P̃ , θ̃) = −ΩθP + Op(||P̃j−1 − P̃ ||) + Op(n−1/2) and ψθθ(P̃ , θ̃) =
−Ωθθ +Op(||P̃j−1 − P̃ ||) +Op(n−1/2), we obtain

θ̃j − θ̃ = −Ω−1
θθ ΩθP (P̃j−1 − P̃ ) +Op(n−1/2||P̃j−1 − P̃ ||) +Op(||P̃j−1 − P̃ ||2).

Substituting this into (7) in conjunction with Ω−1
θθ ΩθP = (Ψ′

θ∆P Ψθ)−1Ψ′
θ∆P ΨP gives

P̃j− P̃ =
[
I −Ψθ(Ψ′

θ∆P Ψθ)−1Ψ′
θ∆P

]
ΨP (P̃j−1− P̃ )+Op(n−1/2||P̃j−1− P̃ ||)+Op(||P̃j−1− P̃ ||2),

giving the stated result. For the corollary, first note that (∂/∂θ)Ψq(P 0, θ0)∆P (∂/∂θ′)Ψq(P 0, θ0) =
Ωq

θθ. Therefore, replacing Ψ(P, θ) with Ψq(P, θ) and repeating the argument proves the corollary.
�

6.6 Proof of Proposition 6

The consistency of the efficient GMM estimator follows from analogous argument to the proof
of the consistency of the NPL estimator. The condition associated with θ̃ is

1
n

n∑
i=1

A(xi)∇θψ(P̃ , θ̃)(ai|xi) = 0.

2If we assume P̃j−1 is consistent, the second equality follows from consistency of P̃ and P̃j−1.
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Expanding this around (P 0, θ0) gives, with (P̄ , θ̄) lying between (P 0, θ0) and (P̃ , θ̃),

0 =
1
n

n∑
i=1

A(xi)∇θψ(P 0, θ0)(ai|xi)

+
1
n

n∑
i=1

A(xi)∇θθψ(P̄ , θ̄)(ai|xi)(θ̃ − θ0) +
1
n

n∑
i=1

A(xi)∇θPψ(P̄ , θ̄)(ai|xi)(P̃ − P 0).

The NPL fixed point restriction implies

P̃ − P 0 = Ψ(P̃ , θ̃)−Ψ(P 0, θ0) = ∇P Ψ(P̄ , θ̄)(P̃ − P 0) +∇θΨ(P̄ , θ̄)(θ̃ − θ0),

thus
P̃ − P 0 = (I −∇P Ψ(P̄ , θ̄))−1∇θΨ(P̄ , θ̄)(θ̃ − θ0).

Consequently, the first order condition is, in conjunction with (P̄ , θ̄) →p (P 0, θ0),

0 =
1
n

n∑
i=1

A(xi)∇θψ(P 0, θ0)(ai|xi) + op(1)(θ̃ − θ0)

+
1
n

n∑
i=1

A(xi)
[
∇θθψ(P 0, θ0)(ai|xi) +∇θPψ(P 0, θ0)(ai|xi)(I −ΨP )−1Ψθ

]
(θ̃ − θ0).

It follows that

√
n(θ̃ − θ0) →d N(0, D(τ)−1E[m(z, τ)m(z, τ)′](D(τ)−1)′),

where τ = A(x), z = (a, x), and

D(τ) = E
[
A(x)

(
∇θθψ(P 0, θ0)(a|x) +∇θPψ(P 0, θ0)(a|x)(I −ΨP )−1Ψθ

)]
,

m(z, τ) = A(x)∇θψ(P 0, θ0)(a|x).

From Theorem 5.3 of Newey and McFadden (1994), the optimal instrument τ̄ satisfies D(τ) =
E[m(Z, τ)m(Z, τ̄)′] for all τ. Using an argument analogous to Newey and McFadden (1994, pp.
2168-2170), the optimal instrument τ̄ = Ā(x) is

Ā(x) = E
[
∇θθψ(P 0, θ0)(a|x) +∇θPψ(P 0, θ0)(a|x)(I −ΨP )−1Ψθ|x

]′
×E

[
∇θψ(P 0, θ0)(a|x)∇θψ(P 0, θ0)(a|x)′|x

]−1

With this instrument,

D(τ̄) = E
{
Ā(x)E

[
∇θψ(P 0, θ0)(a|x)∇θψ(P 0, θ0)(a|x)′|x

]−1
Ā(x)′

}
,
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and the asymptotic variance of the efficient GMM estimator is D(τ̄)−1, which is different from
the asymptotic variance of the NPL estimator. �

6.7 Proof of Lemma 2

The marginal conditions are given by

Ḡθ(Ψ(P̃ , θ̃))′Ŵ ḡ(Ψ(P̃ , θ̃)) = 0,

P̃ −Ψ(P̃ , θ̃) = 0.

Expanding ḡ(Ψ(P̃ , θ̃)) around (P 0, θ0) and using ||f̂x − fx|| = Op(n−1/2) give

G′θWḡ(Ψ(P 0, θ0)) +G′θWGθ(θ̃ − θ0) +G′θWGP (P̃ − P 0) = op(n−1/2),

(I −ΨP )(P̃ − P 0)−Ψθ(θ̃ − θ0) = op(n−1/2).

Eliminating (P̃ − P 0) from these equations and using G′θWGθ + G′θWGP (I − ΨP )−1Ψθ =
G′θWG∞θ , where G∞θ = (∂/∂θ′)ḡ(Pθ0) = −Γ∆x(I −ΨP )−1Ψθ, we have

√
n(θ̃ − θ0) →d N(0, (G′θWG∞θ )−1G′θWΩW ′Gθ((G∞θ )′W ′Gθ)−1),

where Ω = E[g(ai, xi;P 0)g(ai, xi;P 0)′]. From Theorem 5.3 of Newey and McFadden (1994),
the limiting variance is minimized by using a weighting matrix W ∗ = (G−1

θ )′(G∞θ )′Ω−1 if it is
positive semi-definite. �

6.8 Proof of Lemma 3 and Corollary 2

Recall that θ̃j satisfies the first order condition

Ḡθ(Ψ(P̃j−1, θ̃j))Ŵ ḡ(Ψ(P̃j−1, θ̃j)) = 0. (8)

Expanding ḡ(Ψ(P̃j−1, θ̃j)) around (P̃ , θ̃) in (8) and using Ḡ′θ(Ψ(P̃ , θ̃))Ŵ ḡ(Ψ(P̃ , θ̃)) = 0 gives

θ̃j − θ̃ = [Ḡ′θ(Ψ(P̃j−1, θ̃j))Ŵ Ḡθ(Ψ(P̄ , θ̄)) + op(1)]−1[Ḡ′θ(Ψ(P̃j−1, θ̃j))Ŵ ḠP (Ψ(P̄ , θ̄)) + op(1)](P̃j−1 − P̃ )

= Op(||P̃j−1 − P̃ ||), (9)

with (P̄ , θ̄) between (P̃j−1, θ̃j) and (P̃ , θ̃).
For the second result, first, using (9), we obtain the same approximation as (7):

P̃j − P̃ = ΨP (P̃j−1 − P̃ ) + Ψθ(θ̃j − θ̃) +Op(n−1/2||P̃j−1 − P̃ ||) +Op(||P̃j−1 − P̃ ||2) (10)

Expanding ḡ(Ψ(P̃j−1, θ̃j)) in (8) twice around (P̃ , θ̃) and using Ḡ′θ(Ψ(P̃j−1, θ̃j))Ŵ ḡ(Ψ(P̃ , θ̃)) =
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Op(n−1/2||θ̃j − θ̃||) +Op(n−1/2||P̃j−1 − P̃ ||),

ḠP (Ψ(P̃ , θ̃)) = GP +Op(n−1/2), Ḡθ(Ψ(P̃ , θ̃)) = Gθ +Op(n−1/2) (11)

and (9) gives

0 = Ḡ′θ(Ψ(P̃j−1, θ̃j))ŴGP (P̃j−1 − P̃ ) + Ḡ′θ(Ψ(P̃j−1, θ̃j))ŴGθ(θ̃j − θ̃)

+Op(n−1/2||P̃j−1 − P̃ ||) +Op(||P̃j−1 − P̃ ||2). (12)

Expanding Ψ(P̃j−1, θ̃j) around (P̃ , θ̃) and using (9) and (11) in (12), we have

θ̃j − θ̃ = −(G′θŴGθ)−1G′θŴGP (P̃j−1 − P̃ ) +Op(n−1/2||P̃j−1 − P̃ ||) +Op(||P̃j−1 − P̃ ||2),

Substituting this into (10) and noting that Gθ = −Γ∆xΨθ and GP = −Γ∆xΨP , we obtain

P̃j−P̃ = [I+Ψθ(G′θŴGθ)−1G′θŴΓ∆x]ΨP (P̃j−1−P̃ )+Op(n−1/2||P̃j−1−P̃ ||)+Op(||P̃j−1−P̃ ||2),

and the second result follows. Repeating the similar argument proves the corollary. �

6.9 Proof of Lemma 4

The consistency of θ̃q follows from a standard argument. The first order condition is

0 = (∂/∂θ)Ψq(P̂0, θ̃
q)′Ŵ ḡq(θ̃q, P̂0) = (Ψ(q)

θ + op(1))′Ŵ [P̂0 −Ψq(P̂0, θ̃
q)].

Expanding Ψq(P̂0, θ̃
q) on the right hand side around (P 0, θ0) gives

0 = (Ψ(q)
θ + op(1))′Ŵ (I −DP Ψq(P̄ , θ̄))(P̂0 − P 0) + (Ψ(q)

θ + op(1))′ŴDθΨq(P̄ , θ̄)(θ̃q − θ0),

where (P̄ , θ̄) lies between (P̂0, θ̃
q) and (P 0, θ0). Then the asymptotic distribution of n1/2(θ̃q−θ0)

follows from n1/2(P̃ − P 0) →d N(0,Σ) and Slutsky’s theorem. The choice of the optimal W
follows from Theorem 5.3 of Newey and McFadden (1994, p.2166), and the limiting variance of θ̃q

has the stated form because by (I−Ψ(q)
P )−1Ψ(q)

θ = (I−ΨP )−1Ψθ by Ψ(q)
θ = (I−Ψq

P )(I−ΨP )−1Ψθ

and Ψ(q)
P = Ψq

P . �

6.10 Proof of Lemma 5

For notational simplicity, we use θ̃ to denote θ̃q
NMD. First, we write P̃ − P 0 in terms of θ̃ − θ0.

Note that
Ψ(P̃ , θ̃) = Ψ(P 0, θ0) +DP Ψ(P̄ , θ̄)(P̃ − P 0) +DθΨ(P̄ , θ̄)(θ̃ − θ0),
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where (P̄ , θ̄) denotes a generic point between (P 0, θ0) and (P̃ , θ̃). In conjunction with P̃ =
Ψ(P̃ , θ̃) and P 0 = Ψ(P 0, θ0), it follows that

P̃ − P 0 = (I −DP Ψ(P̄ , θ̄))−1DθΨ(P̄ , θ̄)(θ̃ − θ0). (13)

We proceed to show the asymptotic distribution of θ̃. The consistency of θ̃ follows from AM.
The first order conditions

0 = (DθΨq(P̃ , θ̃))′Ŵ ḡq(θ̃, P̃ )

= (DθΨq(P̃ , θ̃))′Ŵ [P̂0 − P̃ ]

= (DθΨq(P̃ , θ̃))′Ŵ (P̂0 − P 0)− (DθΨq(P̃ , θ̃))′Ŵ (P̃ − P 0). (14)

Since DθΨq(P̃ , θ̃) →p Ψ(q)
θ , for the first term on the right of (14) we have

n1/2(D(q)
θ Ψ(P̃ , θ̃))′Ŵ (P̂0 − P 0) →d N(0,Ψ(q)′

θ WΣW ′Ψ(q)
θ ).

For the second term on the right of (14), using (13) gives

(DθΨq(P̃ , θ̃))′Ŵ (P̃ − P 0) = (Ψ(q)
θ + op(1))′Ŵ (I −ΨP + op(1))−1(Ψ(q)

θ + op(1))(θ̃ − θ0),

and the asymptotic distribution of n1/2(θ̃ − θ0) follows from n1/2(P̃ − P 0) →d N(0,Σ) and
Slutsky’s theorem. The choice of the optimal weighting matrix follows from Theorem 5.3 of
Newey and McFadden (1994, p.2166).3 �

6.11 Proof of Lemma 6 and Corollary 3

The proof closely follows the proof of the GMM estimator. First, note that (∂/∂θ′)ḡ(θ, P ) =
−DθΨ(P, θ) and (∂/∂θ′)ḡ(θ, P ) = −DP Ψ(P, θ).

Recall that θ̃j satisfies the first order condition

[DθΨ(P̃j−1, θ̃j)]′Ŵ ḡ(θ̃j , P̃j−1) = 0. (15)

Expanding ḡ(θ̃j , P̃j−1) around (P̃ , θ̃) gives, with (P̄ , θ̄) between (P̃j−1, θ̃j) and (P̃ , θ̃),

0 = (DθΨ(P̃ , θ̃))′Ŵ ḡ(θ̃, P̃ ) + [DθΨ(P̃j−1, θ̃j)−DθΨ(P̃ , θ̃)]′Ŵ ḡ(θ̃, P̃ )

+(DθΨ(P̃j−1, θ̃j))′ŴDP Ψ(P̄ , θ̄)(P̃j−1 − P̃ ) + (DθΨ(P̃j−1, θ̃j))′Ŵ [DθΨ(P̄ , θ̄)](θ̃j − θ̃). (16)

Since P̃j−1 − P̃ = op(1) and [DθΨ(P̃ , θ̃)]′Ŵ ḡ(θ̃, P̃ ) = 0 (by the first order condition of a nested

3D(τ) and m(Z, τ) in Newey and McFadden (1994) corresponds to our Ψ
(q)′
θ W (I−ΨP )−1Ψ

(q)
θ and Ψ

(q)′
θ W (P̂0−

P 0), respectively.
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CMD estimator), (16) gives

θ̃j − θ̃ = −[Ψ′
θWΨθ + op(1)]−1[Ψ′

θWΨP + op(1)](P̃j−1 − P̃ ) = Op(||P̃j−1 − P̃ ||). (17)

This proves the first result.
For the second result, first using the bound of θ̃j − θ̃, we obtain

P̃j − P̃ = ΨP (P̃j−1 − P̃ ) + Ψθ(θ̃j − θ̃) +Op(n−1/2||P̃j−1 − P̃ ||) +Op(||P̃j−1 − P̃ ||2). (18)

By expanding DθΨ(P̃j−1, θ̃j), DθΨ(P̄ , θ̄), and DP Ψ(P̄ , θ̄) in (16) around (P̃ , θ̃), and using

DθΨ(P̃ , θ̃) = Ψθ +Op(n−1/2), DP Ψ(P̃ , θ̃) = ΨP +Op(n−1/2),

we obtain a finer expression for (17):

θ̃j − θ̃ = −(Ψ′
θŴΨθ)−1Ψ′

θŴΨP (P̃j−1 − P̃ ) +Op(n−1/2||P̃j−1 − P̃ ||) +Op(||P̃j−1 − P̃ ||2).

Substituting this into (14), we obtain the second result:

P̃j − P̃ = [I −Ψθ(Ψ′
θŴΨθ)−1Ψ′

θŴ ]ΨP (P̃j−1 − P̃ ) +Op(n−1/2||P̃j−1 − P̃ ||) +Op(||P̃j−1 − P̃ ||2).

Repeating the similar argument proves the corollary. �
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