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Abstract

We pose and estimate a bivariate shock to the production function that under compe-
tition in factor markets simultaneously accounts for movements in the Solow residual and
in the factor shares of production. We show how confronting agents in a standard RBC
economy with these shocks entail a much smaller response (about 33%) of hours relative
to the standard modelization of the shocks that identifies the Solow residual with a univari-
ate shock. Our findings raise a flag against the optimism embedded in the literature that
states that productivity shocks are responsible for most of the cyclical behavior of output
and hours.
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1 Introduction

The structural interpretation of the Solow residual as productivity shocks is the hallmark of the

real business cycle (RBC) research program. Not without controversy, productivity-driven business

cycle models have been regarded by RBC modelers as successful in accounting for a broad set

of business cycle phenomena, in particular, the cyclical volatility of output and hours and their

co-movement. An ingredient common to (almost all) RBC models is the assumption that the

functional distribution of income is constant at all frequencies. Implicit there is the premise of

unimportant implications for the business cycle of the fluctuations that we observe in the factor

shares of income (which move within a range of 5-6%, U.S. 1954.I-2004.IV). In this paper, we

investigate whether the interaction of the Solow residual and the movements in the factor shares

matters for business cycle. We find that it does, and so much that it dampens the explanatory

power of the Solow residual to one third in terms of the volatility of hours, two thirds in terms of

the volatility of output, and the correlation of hours with output drops to one fifth. Our results

hold independently of the Frischian elasticity of labor supply.

Most RBC models (with few exceptions that we will discuss below) ignore the fluctuations

in factor shares of income. The theoretical constancy of the factor shares at all frequencies

in these models results from assuming a Cobb-Douglas technology with constant coefficients

and maintaining the connection between factor prices and their respective marginal productivity.

However, although the shares of GNP accruing to each factor do not show a secular trend,

they do have sizeable high frequency movements. Over the period 1954.I-2004.IV, the labor

share of income is around 53% as volatile as output, 81% as volatile as the Solow residual, it is

countercyclical (a correlation of -.24) and highly persistent (first order autocorrelation of .78)1.

The consequences of these cyclical movements in the labor share for the business cycle are yet

to be explored.

To do so we pose a bivariate shock to a Cobb-Douglas production function that, when factors

markets behave competitively, it can reproduce the joint cyclical movements of the Solow residual

and the labor share of income. Moreover, we do it in such a way that we preserve the Solow

residual as the main driving force of the business cycle and treat innovations in the functional

shares as purely redistributive in nature, that is, without productivity level effects.

Prescott (1986) stated that 75% of the fluctuations in output can be accounted for by a

1For these figures we use HP-filtered quarterly series of logged labor share and real output. Section 2.1
describes in detail the cyclical properties of alternative definitions of labor share.
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stochastic neoclassical growth model feeded solely with productivity shocks2. Such figure rapidly

arose (and continues to arise) a wide set of criticisms. These were originally concerned on the

technological nature of the Solow residual while the more recent quarrel focuses on the sign of

the response of hours to productivity innovations and it discussed on methodological grounds3.

Differently, in our paper we follow the original advocates of RBC experiments: We test the

explanatory power of the productivity shocks by introducing a redistributive shock through the

labor share that we estimate from the data together with the Solow residual, solve for the

extended calibrated stochastic neoclassical growth model with this bivariate shock, and evaluate

the predictions of this bivariate shock model with respect to the standard univariate RBC model

that identifies the Solow residual with a univariate shock.

We obtain that our small departure from the standard RBC model implies striking differences

in the cyclical behavior of the real allocations. In our bivariate shock economy the volatility

of hours drops to 13.5% of the data (32.8% of the standard univariate model), the volatility

of output drops to 56.6% of the data (69.5% of the standard univariate model), and the co-

movement of output with hours also falls to .21 while it is .98 in the univariate model and .88 in

the data. We find that the response of hours and output to productivity shocks is substantially

mitigated by a wealth effect that neither wages nor intertemporal substitution effects are able to

offset. While the labor share is constant in the univariate model, the bivariate model reproduces

the cyclical properties of the labor share and in particular it accounts for the phase-shift of the

labor share with output that we observe in the data. Also, our bivariate shock modelization

under Hansen-Rogerson preferences attains similar results: The volatility of hours and output

drops with respect to its univariate counterpart to one third and about one half respectively, and

the correlation between output and hours drops from .98 in the univariate model to .33 in the

bivariate model.

Few papers place the cyclicality of the factor shares in the RBC lexicon. A first set of these

papers builds on the cyclical allocation of risk and optimal labor contracts. Gomme and Green-

wood (1995) studies a complete markets economy with workers and entrepreneurs that insure

against business cycle income losses through the structure of the firm. They use two different

financial arrangements that yield the same real allocations: first, workers’ Arrow securities are

directly included in the wage bill, and second, workers buy bonds issued by the entrepreneurs

and only the insurance component net of workers’ savings is added to the wage bill. Either

2For the sample 1954.I-2004.IV we obtain that such a model accounts for 81% of the standard deviation
of output.

3See the ongoing discussion in Gali and Rabanal (2004) and Chari, Kehoe, and McGrattan (2005)
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wedge counterbalances the procyclical marginal product of labor and generates countercyclical

labor share of income4. Importantly, in this model the labor choice is not affected by movements

in the labor share. Boldrin and Horvath (1995) uses contract theory in a model with workers

and entrepreneurs where workers are not allowed to self-insure through savings and are more risk

averse than entrepreneurs. The optimal contract trades a provision of insurance from entrepre-

neurs to workers for a more flexible labor supply. They find a negative correlation of the labor

share with the GNP5. Notice that shutting the worker’s ability to smooth consumption alters not

only factors prices but also the equilibrium allocations. In particular, they find that hours tend

to move more (by a factor of 1.08) in their model than in its complete markets counterpart.

Donaldson, Danthine, and Siconolfi (2005) analyzes stylized financial business cycle facts with a

risk-sharing model where risk averse workers can not trade financial assets and shareholders are

risk-neutral. They introduce a distribution of risk calibrated to generate the cyclical variation of

the factor shares observed in the data. However, the model rests silent about the allocation of

hours because agents in this model supply labor inelastically.

Models with occasionally binding capacity constraints can also treat the cyclical fluctuations

of the labor share. Hansen and Prescott (2005) introduces variable capacity utilization in an RBC

model to study asymmetries generated by binding capacity constraints. In this model small plants

face decreasing returns to scale and operate if they satisfy a minimum labor input requirement6.

Aggregate output is then determined by labor, capital and ’location’ capital (which, in equilibrium,

is the number of operative plants - all using the same input mix). At full capacity the labor share

of income is lower than when some plants remain idle because in the latter case the ’location’

capital is not a scarce factor and does not earn income. Since the capacity constraint binds in

expansions, the model obtains a countercyclical labor share of income (of -.51). The changes

in the cyclical behavior of the real variables is minor with respect to the standard model, in

particular, hours are 90% that of the standard (Hansen-Rogerson) RBC.

A third strand of the literature that can deliver cyclical variations in the factor shares is that

with an explicit role for markups. With increasing returns to scale, a fixed number of firms in

monopolistic competition, and a constant markup, Hornstein (1993) obtains a labor share that is

4The former yields a labor share that is highly negatively correlated with output, while the latter attains
a correlation more in the line with the data but with a persistence of the labor share very close to zero. Also,
in both cases the volatility of the labor share exceeds that of their observed data by a factor of 1.6 and 2
respectively. See Tables 1 and 2 in Gomme and Greenwood (1995).

5This correlation is 2.75 times higher and the volatility .49 lower than what they observe in the data.
6With decreasing returns to scale increases in output are generated by new operating firms if the maximum

capacity has not been reached. The labor requirement sets an upper bound for the number of operative plants.
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half as volatile as what observed in the data and perfectly and negatively correlated with output.

Noteworthy is that in his model the volatility of hours drops to 27% that of the standard RBC

model, see his Table 2 column 3. This due to a positive overhead cost7 that creates a negative

relation between employment and productivity near the steady state (see his expression (24)).

Ambler and Cardia (1998) allows for the (not simultaneous) entry and exit of firms and obtain a

labor share that co-moves with output similarly to the data while its volatility is 28% that of the

data8.

Our paper is related to Young (2004) which introduces a sole univariate process for the

coefficients in the Cobb-Douglas production function and abstracts from productivity shocks in

an otherwise standard RBC model9. He obtains a countercyclical labor share of -.99. The cyclical

behavior of the real variables in his model is, however, sensitive to the capital-labor ratio (and in

turn to the definition of the labor share). As we discuss below, whenever the capital-labor ratio

is not equal to one shocks to the labor share introduce level effects whose magnitude depends

on the units in which the labor input is defined10. Consequently, if we recover a structural Solow

residual from the model series of output, capital and labor in Young (2004) the properties of this

residual do not correspond to the measure of the Solow residual obtained from the data.

We begin in Section 2 by describing how we construct the shocks. In Section 3 we estimate

these shocks. Section 4 feeds the standard RBC model with the bivariate shock to derive our

results and discuss our findings. Section 5 concludes. In the Appendix we lay out in detail the

construction of the labor share and explore the sensitivity of our results to alternative definitions

of the labor share, preferences, and estimation procedures.

7This overhead cost is a common feature of these models and sets the long-run pure profits to zero.
8To deliver cyclical movements of the labor share these models of imperfect competition require the

equilibrium profits not to be zero in the short-run. This is achieved in Hornstein (1993) by completely
preventing the entry and exit of firms and in Ambler and Cardia (1998) by building entries and exits that
do not occur simultaneously.

9This formalizes a broad idea of biased technical change. Notice that here the elasticity of substitution
between capital and labor remains one at all periods.

10We find that when the shocks to the labor share are purely redistributive - do not alter the scale, the
cyclical properties of the real variables in an economy that is feeded only with univariate shocks to the labor
share are far off those in the standard RBC model. For example, the output volatility generated is about
14% that of the data (independently of the average labor share), and more importantly, the labor share
turns highly procyclical (a correlation with output of .99).
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2 The Specification of the Shocks

We start by describing the properties of the Solow residual and its structural interpretation as

a shock in Section 2.1. We then describe the properties of labor share in Section 2.2. Finally,

we turn to our specification of a joint process that yields both a residual and labor share as a

bivariate process in Section 2.3.

2.1 The Standard Specification: Solow residuals as shocks

2.1.1 Obtaining the Solow residual from the data

The Solow residual that we denote S0
t is computed from time series of real output Yt, real capital

Kt, and labor Nt
11, and from a specification of a relative input share parameter that we denote

by ζ as (see Kydland and Prescott (1993) or King and Rebelo (1999))

ln S0
t = ln Yt − ζ ln Kt − (1− ζ) ln Nt (1)

But S0
t has trend and we want a trendless object. Consider now a detrending procedure that uses

the following linear regression

ln Xt = χx + gxt + x̃t. (2)

where Xt is any economic variable, and where χx and gx are the parameters and x̃t are the

residuals.

Applying such detrending procedure to the Solow residual we obtain a series s̃0
t that is the

(detrended) Solow residual that we are interested in.

Alternatively, and for reasons that will be clear later, the Solow residual can be calculated in

two steps.

1. Use the detrending procedure described in (2) to obtain {ỹt, k̃t, ñt}.12

11Real output is obtained from NIPA-BEA Table 1.7.6. The construction of the real capital and labor
input series is explained in Appendix A.

12Over the 1954-2004 period, the growth rate of real output and capital are very similar, in that order,
3.29% and 3.12% annually.
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2. Then the Solow residual s0
t is defined to be

s0
t = ỹt − ζ k̃t − (1− ζ) ñt (3)

To see the equivalence between the two definitions note that substituting out the residuals of the

economics variables in (3) we get

s0
t = (ln Yt − χy − t gy)− ζ (ln Kt − χk − t gk)− (1− ζ) (ln Nt − χn − t gn) (4)

= ln Yt − ζ ln Kt − (1− ζ) ln Nt − (χy − ζχk − (1− ζ)χn)−

t(gy − ζgk − (1− ζ)gn) (5)

= ln S0
t − [χy − ζχk − (1− ζ)χn]− t[gy − ζgk − (1− ζ)gn] (6)

But s0
t is a linear function of residuals so it has mean zero and no trend which implies that

[χy − ζχk − (1 − ζ)χn] and [gy − ζgk − (1 − ζ)gn] are indeed the mean and the trend of ln St

so s0
t = s̃0

t .

2.1.2 Giving a structural interpretation to the Solow residual

In the standard RBC model we can also calculate a Solow residual from the model. The nice

property is that with Cobb-Douglas technology and provided that we use the right share parameter,

the Solow residual is the shock to productity. To see this, consider the following Cobb-Douglas

technology with constant coefficients and multiplicative shocks to productivity,

Yt = ez0
t A Kθ

t

[
(1 + λ)t µ Nt

]1−θ
= ez0

t A Kθ
t

[
(1 + λ)t (1 + η)t µ ht

]1−θ
(7)

where z0
t represents a shock that follows a univariate process, and λ is the rate of labor-augmenting

(Harrod-neutral) technological change. The labor input, Nt, is the product of the number of

agents in the economy, Lt, and the fraction of time that agents devote to market activities,

0 ≤ ht ≤ 1. Population grows deterministically according to Lt = (1 + η)t. Parameters A and µ

are just units parameters (it will be clear later why we are posing two different unit parameters).

Note that in the balanced growth path, output Yt and capital Kt, grow at rate (approximately)

γ ≈ λ+η, and that if preferences are CRRA, the model economy generates paths for capital and

output that can be written as Kt = (1+λ)t(1+η)t kt and Yt = (1+λ)t(1+η)t yt where both kt

and yt are stationary. Denote by lower-case-hat log deviations of the variables, i.e. x̂t = log( xt

X∗ )
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and with a star the steady state value of the variable, then we obtain

Yt = (1 + λ)t(1 + η)t y∗ ebyt , (8)

Kt = (1 + λ)t(1 + η)t k∗ e
bkt , (9)

Nt = (1 + η)t h∗ e
bht (10)

We can rewrite the production function (7) as

(1 + λ)t(1 + η)t y∗ ebyt = ez0
t A [(1 + λ)t(1 + η)t k∗ e

bkt ]θ [(1 + λ)t(1 + η)t µ h∗ e
bht ]1−θ, (11)

cancelling trend terms

y∗ ebyt = ez0
t A

(
k∗ e

bkt

)θ (
µ h∗ e

bht

)1−θ

(12)

and taking logs of (12) and rearranging yields

z0
t = ŷt − θk̂t − (1− θ)ĥt + ln

y∗

Ak∗θ (µh∗)θ
= ŷt − θk̂t − (1− θ)ĥt (13)

where the second equality follows directly from the fact that the denominator of the third term

is steady-state output.

If we use model generated data variables to construct a Solow residual with share parameter

θ, we obtain in the first step (abstracting from sampling error) that

χy = ln y∗ gy ≈ λ + η ỹt = ŷt (14)

χk = ln k∗ gk ≈ λ + η k̃t = k̂t (15)

χn = ln n∗ gn = η ñt = ĥt (16)

The second step yields

s0
t = ŷt − θ k̂t − (1− θ) ĥt (17)

but this expression is exactly z0
t , by equation (13). Which means that we can interpret the Solow

residual generated by the data as the multiplicative shock to the production function.
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Figure 1: The Labor Share, U.S. 1954.I-2004.IV

The Cobb-Douglas technology so defined implies under competitive factor markets that factor

shares are constant at all frequencies.13 But are they? We now turn to explore this issue.

2.2 The behavior of labor share

The ratio of all payments to labor relative to output is labor share. Its exact value depends on

the details of the definition of output and its partition into payments to labor and payments

to capital. Perhaps, the more standard definition of labor share, which is the one that we take

as the baseline, is that proposed by Cooley and Prescott (1995) that assumes that the ratio

of ambiguous labor income to ambiguous income is the same as the ratio of unambiguous labor

income to unambiguous income. Another definitions that we explore expand the capital stock and

capital services to include durables and add also government afterwards, while a fourth definition

sets labor share equal to the ratio of compensation of employees (CE) to gross national product

(GNP), which renders all ambiguous income to capital.14

The baseline definition of labor share for the period 1954.I-2004.IV is plotted in Figure 1.

It oscillates between a minimum value about 0.66 and a maximum slightly above 0.71 with

13See that W N
Y =

∂F
∂N N

Y = 1− θ.
14A detailed analysis on the construction of labor share of income data series is given in Appendix A.
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Figure 2: Demeaned Labor Share, U.S. 1954.I-2004.IV

no discernible trend. The other definitions, while differing on their average have very similar

properties as can be seen in Figure 2 that plots their deviations with respect to the mean.

2.2.1 The cyclical behavior of labor share

From the point of view of the study of business cycles, what matters is not whether labor share

moves but whether it does so in any systematic way with respect to the main macroeconomic

aggregates. Table 1 displays some business cycle statistics (all variables are logged and hp-

filtered): the standard deviations of output, the Solow residual and labor share are in the first

column, these figures relative to output in the second column, the correlations of the Solow

residual and labor share with output in the third column, the correlations of the labor share

with the Solow residual in the fourth column and the first autocorrelations in the fifth column.

We see that labor share’s volatility is a little bit less than half of that of output, that is, labor

share fluctuates almost as much as the Solow residual, it is quite persistent, and, perhaps more

importantly it is negatively correlated with output albeit not much15. Also, the cyclical behavior

of the labor share and Solow residual is mildly negatively related.

15These figures are somewhat different from Hansen and Prescott (2005) because they do not log the labor
share before filtering it. As in Gomme and Greenwood (1995) and Young (2004), we log the labor share and
obtain similar statistics.
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σx σx/σGNP ρ(x, GNP ) ρ(x, s0) ρ(xt, xt−1)
GNP 1.59 1.00 1.00 .74 .85
Solow Residual: s0 .85 .53 .74 1.00 .71
Baseline Labor Share .68 .43 -.24 -.47 .78
... with Durables .71 .45 -.21 -.44 .77
... and Government .84 .52 -.26 -.43 .78
CE/GNP .81 .50 -.23 -.61 .71

Table 1: Standard deviation and correlation with output of Labor Share, U.S. 1954.I-2004.IV.

Cross-correlation of GNPt with
xt−5 xt−4 xt−3 xt−2 xt−1 xt xt+1 xt+2 xt+3 xt+4 xt+5

Baseline Labor Share -.20 -.26 -.32 -.34 -.33 -.24 .03 .25 .40 .47 .44
... with Durables -.21 -.26 -.32 -.33 -.20 -.21 .07 .28 .41 .47 .42
... and Government -.20 -.25 -.31 -.34 -.33 -.26 .03 .27 .42 .48 .44
CE/GNP -.24 -.30 -.35 -.38 -.31 -.23 .09 .31 .47 .49 .46

Table 2: Phase-Shift of the Labor Share, U.S. 1954.I-2004.IV

Perhaps more important is the phase shift of these variables reported in Table 2. There is a

clear pattern. Before the peak of an expansion, labor share is below average with the negative

correlation being largest two periods before the peak of output. Subsequently, labor share starts

to increase quite above its mean with its maximum value peaking one year after output peaked.

In fewer words, labor share lags output by one year or so.

To explore the issue of whether this behavior of labor share has any implication for our

understanding of business cycles, we specify a very simply real business cycle model that has

a moving labor share. In such a model labor share is posed to be exogenous and stochastic.

Given its specific cyclical properties, the process for productivity and for labor share cannot

be independent. We now turn to describe how such a model can allow us to give structural

interpretations as shocks to objects that can be constructed directly from the data in a very

similar fashion to that specified in the previous section.

2.3 A bivariate process that determines factor shares and the Solow residual

We want to pose a stochastic process that simultaneously yields the movements in the labor share

and in the Solow residual. Using time series of real output Yt, real capital Kt, and labor Nt, and
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a measure of the labor income WtNt, we can construct a labor share data series `t, and in turn,

a residual that is as closely related as possible to the Solow residual as defined in Section 2.1. As

discussed above, the data definition of the labor share is a measure of the labor income divided

by output, `t = WtNt

Yt
, and the deviations of the labor share from its mean are

˜̀
t = `t − ` (18)

with ` =
∑

t
`t

T
.

We now compute a residual as we did in Section 2.1, with one difference: that we use now

the time-varying relative input share `t instead of a constant share parameter. We define the

residual s1
t as

s1
t (`t) = ỹt − (1− `t) k̃t − `t ñt (19)

where as before ỹt, k̃t and ñt are the corresponding residuals of a fitted linear trend to the logged

original series of output, capital and labor.16

We now pose a production function with stochastic factor shares which is otherwise the

standard Cobb-Douglas technology,

Yt = ez1
t A K

θ−z2
t

t

[
(1 + λ)t (1 + η)t µ ht

]1−θ+z2
t (20)

where z1
t and z2

t are the two elements of a bivariate stochastic process and we refer to them as

the productivity and the redistributive shock respectfully. We use again parameters A and µ to

determine the units of effective labor and to normalize output to one. However, unlike in the

previous specification, µ plays now an important role.

Under competitive markets, labor share of income in the model is given by

lst =
WtNt

Yt

=
∂Yt

∂Nt
Nt

Yt

= (1− θ) + z2
t (21)

But this implies that with the choice θ = ` the deviation from mean labor share in the data is

the redistributive shock in the model: ˜̀t = z2
t .

16Interestingly, although the Solow residual is almost invariably constructed with a constant relative input
share parameter, this is not the case in Solow (1957) which uses a time series for the factor shares of income,
as we do in our specification (19).
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We now turn to the model counterpart of the residual (19). Divide both sides of (20) by

(1 + λ)t(1 + η)t which yields

y∗ ebyt = ez1
t A

(
k∗ e

bkt

)θ−z2
t
(
µ h∗ e

bht

)1−θ+z2
t

, (22)

and taking logs we have

z1
t = ŷt − (θ − z2

t )k̂t − (1− θ + z2
t )ĥt + z2

t ln

(
K∗

µh∗

)
(23)

where we have used y∗ = Ak∗θ (µh∗)θ.

Using the equivalences in (14), note now that

z1
t = s1

t + z2
t ln

(
k∗

µh∗

)
(24)

which means that the units matter: If the units in the model are chosen so that the ratio of

capital to effective labor is one then the residual s1
t coincides with the shock. This is what we

do.

Another way of seeing the role of the choice of units is that if k∗ 6= µh∗ then shocks to factor

shares also have implications for productivity. We want to distinguish pure redistributive shocks,

that we associate to z2
t from productivity shocks that we associate to z1

t and the suitable choice

of units allows us to do so.

In addition, it turns out that the two residuals that we compute, s0
t and s1

t are extremely

similar as can be in Figure 3. This can also be seen by noting that we can write an expression

that links the two residuals s0
t and s1

t as follows,

s1
t = s0

t + ̂̀t(k̂t − ĥt)

and that the last term, ̂̀t(k̂t − ĥt), is very small.

We now turn to estimate a parametrization to represent the univariate process z0
t and another

one for the bivariate process {z1
t , z

2
t }.
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Figure 3: The two sets of productivity residuals s0
t and s1

t , U.S. 1954.I-2004.IV

3 Estimation of a process for the shocks

We start discussing a univariate process for the Solow residual in Section 3.1 and then we move

to a bivariate process for the Solow residual and labor share in Section 3.2.

3.1 A univariate process for the Solow residual

While a univariate representation of the Solow residual z0
t is one of the most widely used processes,

there are very few actual estimations of it, and most authors just use Prescott (1986) calculations.

We assume the Solow residual follows an AR(1) process with normally distributed innovations.

For the whole sample 1954.I-2004.IV the full maximum-likelihood estimation delivers,17

z0
t = .954 z0

t−1 + ε0
t , ε0

t ∼ N (0, .00668)

(.020) (.000)

Notice that the volatility of the innovations is lower than the value of .00763 originally estimated

in Prescott (1986) or the value of .007 used in Cooley and Prescott (1995). This is due to the

17The OLS estimation yields a (biased) regressor coefficient of .947 and a standard deviation of .00667.
Despite the high persistence of the process we do not find substantial differences between these estimates
and the full maximum likelihood estimates in terms of the equilibrium fluctuations in the RBC model.
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sample period. There has been a reduction in volatility recently.18

3.2 A bivariate process for the Solow residual and labor share

We now pose a statistical model to find an underlying stochastic process that generates the joint

distribution of z1
t and z2

t described in Section 2 using the residuals obtained. In particular, we

aim at capturing the volatility and persistence of each series and their observed contemporane-

ous correlation. We assume the processes to be weakly covariance stationary so that classical

estimation and inference procedures apply.

For estimation purposes we specify a vector autoregression model or VAR(n). Thus, we

express each variable z1
t and z2

t as a linear combination of n-lags of itself and n-lags of the other

variable.

Lags Akaike’s Schwartz’s Bayesian Hannan and Quinn
1 -16.207* -16.167* -16.108*
2 -16.204 -16.137 -16.039
3 -16.197 -16.104 -15.966
4 -16.190 -16.070 -15.893

Table 3: Lag Selection Order Criteria

Information criteria reported in Table 3 suggest that the correct specification is a VAR(1),

which we write compactly as

zt = Γ zt−1 + εt, εt ∼ N (0, Σ) (25)

where zt = (z1
t , z

2
t )
′ and Γ is a 2-by-2 square matrix with generic element γij. The innovations

εt = (ε1
t , ε

2
t )
′ are serially uncorrelated and follow a bivariate Gaussian distribution with uncon-

ditional mean zero and a symmetric positive definite variance-covariance matrix Σ. Thus, this

especification has seven parameters: the four coefficient regressors in Γ, and the variances and

covariance in Σ.

The endogenous variables z1
t and z2

t share the same set of regressors. Thus, we can sepa-

rately apply the OLS method to each VAR equation and yield consistent and efficient estimates.

18For instance, using a similar sample (1955.III-2003.II), Arias, Hansen, and Ohanian (2006) obtains an
autocorrelation coefficient of 0.95 and a volatility of the innovations of .0065.
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Also, with normally distributed innovations, the OLS estimates are equivalent to the conditional

maximum likelihood estimates. Using the whole quarterly 1954.I-2004.IV sample, the estimated

parameters associated with the baseline labor share are

Γ̂ =


.946 .001

(.023) (.042)

.050 .930

(.010) (.019)

 , Σ̂ =

(
.006682 −.1045E − 04

−.1045E − 04 .003042

)

This generates a negative contemporaneous correlation between innovations εt of -.51. Notice

that all parameters except γ12 are statistically significant. If we restrict the model with γ12 = 0,

we obtain a set of constrained estimates similar to those originally unconstrained because the

original estimate γ12 is already close to zero. We will use the unrestricted statistical model to

feed our economic model. 19

To get a better idea of dynamics of the VAR system we use impulse response functions and

forecast error variance decompositions. First, we check that the estimated VAR is stable with

eigenvalues .951 and .925 so that we can have a moving average representation of it. Second,

since our innovations εt are contemporaneously correlated, we transform εt to a set of uncorrelated

components ut according to εt = Ω ut, where Ω is an invertible square matrix with generic element

ωij, such that

Σ̂ =
1

n

∑
t

εtε
′

t = Ω

(
1

n

∑
t

utu
′

t

)
Ω
′
= ΩΩ′ (26)

and we have normalized ut to have unit variance. Notice that while Σ̂ has three parameters,

the matrix Ω has four: there are many such matrices. We further impose the constraint that u2
t

have a contemporaneous effect on z2
t but not on z1

t , that is, we set Ω to be a lower triangular

matrix20.This choice follows from the fact that we aim to treat z2
t as purely redistributive shocks

19In Appendix B we explore the behavior of the model economy when we use the constrained estimates,
and we obtain that the findings of the paper reported in Section 4 remain unchanged.

20Because Σ̂ is positive definite symmetric, it has a unique representation of the form Σ̂ = ADA′ where A is
a lower triangular matrix with diagonal elements equal to one and D is a diagonal matrix. A particularization
of this is to set Ω = AD1/2, as we do, which is the Cholesky factorization.
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Figure 4: Impulse response functions to Orthogonalized Productivity Innovations ε1.

with no influence on productivity21. Our factorization of Σ̂ results in(
ε1
t

ε2
t

)
=

(
ω11 ω12

ω12 ω22

)(
u1

t

u2
t

)
=

(
.00668 .0

−.00156 .00260

)(
u1

t

u2
t

)

where ω11 = σε1 , ω21 = E[ε2
t |ε1

t ], and ω22 is the standard error of the regression of ε2
t on ε1

t .

In Figure 4 we observe the consequences for z1
t and z2

t within a band of one standard error

if u1
t were to increase by one at t = 0 and be set to zero afterwards . We find that z1

t reacts

promptly and positively to this perturbation in its own innovations and that it dies slowly out

afterwards, very similarly (if not exactly) as the univariate process z0
t does in response to a one-

time one-standard-deviation of ε0
t . More interestingly, we find that the labor share of income

immediately drops at t = 0 by -.156%, from where it raises to be above average after the fifth

quarter, reaching a maximum in after 5 years and approaching monotonically to its unconditional

mean afterwards.

21Our VAR system allows for the reverse ordering. That is, we can alternatively implement an identification
scheme that lets the contemporaneous innovations to the factor shares of income affect productivity while
not the opposite. In this case factor share innovations are not purely redistributive. We explore the resulting
dynamics under either identification assumption and find similar responses of the endogenous variables in
our economic model, see Appendix C. In any case, note that the equilibrium business cycle moments of the
economic model (the total effects), which is what we are interested in, remain exactly the same.
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Figure 5: Impulse response functions to Orthogonalized Redistributive Innovations ε2.

We learn the time-path of z1
t and z2

t derived from a one-time shock u2
0 = 1 in Figure 5. This

perturbation results in a labor share above average that monotonically decreases from a maximum

attained at t = 0. The assumptions made on the purely redistributive nature of z2
t and u2

t make

the response of z1
t to redistributive innovations negligible.

Finally, we decompose the variance of z1
t and z2

t and find with a long-run horizon that the

fluctuations in z1
t are 100% due to its own innovations, u1

t , while 64.6% of the variation in z2
t is

due to innovations in u1
t and 36.4% to its own innovations u2

t .

4 The implications of the specification of the shocks for output and

employment fluctuations

In this section we explore the implications of the two alternative specifications of shocks to the

production function for the behavior of standard RBC models. Since it is well known that the

answer to how important are productivity shocks in generating business cycle fluctuations depends

on the labor elasticity, we explore two different sets of preferences with different values for this

elasticity. We start specifying the model economies in Section 4.1

17



4.1 The Model Economies

The economy is populated by a large number of identical infinitely-lived households with the

following preferences

E0

{
∞∑

t=0

βt Lt u(ct, 1− ht)

}
(27)

where ct is per capita consumption and ht denotes the proportion of time devoted to work.

Population grows at rate η, Lt = (1 + η)t. Agents discount future with a factor β, and E0 is

the expectations operator conditioned by the initial information. We choose standard momentary

utility functions u(., .) that imply balanced growth paths. One parametrization that fulfills this

requirement is the log-log utility function used in Cooley and Prescott (1995).

U(ct, 1− ht) = (1− α) log (ct) + α log (1− ht) (28)

This specification has a Frisch labor elasticity of 2.2 given that we set the fraction of substitutable

time working to .31.

The other utility function that we use is the Rogerson (1988) log-linear utility function popu-

larized by Hansen (1985) where the linearity in leisure arises from nondivisibilities and the use of

lotteries and it generates a very high aggregate labor elasticity (in fact, its Frisch labor elasticity

is infinity).

U(ct, 1− ht) = log (ct) + κ (1− ht) (29)

This is a closed economy where output Yt, is used either for consumption or for investment It.

The aggregate stock of capital Kt evolves according to

Kt+1 = (1− δ)Kt + It = (1− δ)Kt + Yt − Ct (30)

where δ is the geometric depreciation rate.

The production function is as described in Section 2 Cobb-Douglas with labor augmenting

technical progress where we consider model economies with univariate shocks z0
t and model

economies with bivariate shocks z1
t and z2

t . The specification that we posed to obtain the Solow
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residual and pose it as a univariate process with both productivity and population growth was

Yt = ez0
t A Kθ

t

[
(1 + λ)t (1 + η)t µ ht

]1−θ
(31)

In this model economy the units are irrelevant. Still for consistency across models we choose the

so that steady state output is one and the ratio of steady state capital k∗ to steady state effective

labor µh∗ is also set to one.

The production that we posed to model the bivariate process with productivity and redistrib-

utive shocks is

Yt = ez1
t AK

θ−z2
t

t

[
(1 + λ)t(1 + η)t µ ht

]1−θ+z2
t (32)

As we saw in Section 2.3 the units matter for this specification. We set again A and µ so that

both steady state output and the capital to effective labor ratio are one. In this fashion, z2
t do

not have implications for productivity as they are pure redistributive shocks.

We can stationarize the model economies by taking into account population and technological

growth. As before, we use small case letters to denote detrended variables and we use small-case

hat variables to denote detrended log deviations from steady state. With log-log utiliy, in the

transformed economy the planner’s problem is to solve22

max
{ct,kt+1,ht}∞t=0

E0

∞∑
t=0

βt (1 + η)t [(1− α) log (ct) + α log (1− ht)] (33)

subject to

ct + kt+1(1 + η)(1 + λ) = yt + (1− δ)kt (34)

and either

yt = ez0
t A kθ

t (µ ht)
1−θ (35)

22In our economies the welfare theorems hold so we can use the planner’s problem in lieu of solving for
the competitive equilibrium.
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θ δ β α A µ κ λ
Baseline Labor Share .321 .019 .988 .668 .108 29.86 2.92 .00367
... with Durables .375 .018 .983 .649 .104 31.08 2.69 .00364
... with Government .42 .014 .981 .632 .089 36.21 2.49 .00352
CE/GNP .43 .019 .976 .628 .108 29.86 2.45 .00367
Cooley-Prescott (1995) .40 .012 .987 .640 - - - .00387
Hansen (1985) .36 .025 .990 - - - 2.84 -

Table 4: Calibrated Parameters

or

yt = ez1
t A k

θ−z2
t

t (µ ht)
1−θ+z2

t (36)

The aggregate shocks, either z0
t or {z1

t , z
2
t } follow the processes described in Section 3.

4.2 Calibration

Calibration is very simple in this model since there are only four parameters, θ, δ, β, and α, in

addition to the productivity growth rate λ and the population growth rate η, that we choose

according to the estimated trends gy and gh, respectively 3.29%23 and 1.79% in annual terms.

Denoting again with x∗ the steady state value of x (with the shocks set to zero–their unconditional

mean) we have a system of four equations that when solved yield the value of the four parameters

for four targets of the steady state values.

(1− θ)
y∗

c∗
=

α

1− α

h∗

1− h∗
(37)

(1 + λ) = β

[(
1− δ + θ

y∗
k∗

)]
(38)

δ =
i∗

k∗
− (1 + η)(1 + λ) + 1 (39)

1− θ = Labor Share∗ (40)

The targets that we choose are

1. The fraction of time devoted to market activities: h∗ = 0.31.
23The measure of output that includes durables grows at rate 3.28% annually, and we also add government

capital output grows at rate 3.23% annually.
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2. The steady-state consumption-output ratio: c∗/y∗ = 0.75.

3. The capital-output ratio in yearly terms k∗/y∗ = 2.31.24

4. Labor share = 0.679. 25

For the Hansen-Rogerson version of the model (with indivisible labor), the only equilibrium con-

dition that changes is (37) that is substituted with

(1− θ)
y∗

c∗
= κh∗ (41)

The implied value of the parameters is reported in Table 4. We report both the discount rate

and the depreciation rates in quarterly terms and we report for the sake of completion the values

of A and µ and the values used in the original sources.

4.3 Findings

We now turn to discuss the main finding of the paper, that posing the productivity shocks as

a bivariate process that affects factor shares implies a striking reduction in the volatility of the

cycle: Aggregate hours worked are less volatile by a factor of 3.

We start by looking at the business cycle properties of the the U.S. and of the standard

and the Hansen-Rogerson preferences RBC economies with both specifications of the shocks in

Section 4.3.1. Next, we discuss the reasons for the small cyclical fluctuations of aggregate hours

in the bivariate shocks economies in Section 4.3.2.

4.3.1 Business Cycle Properties of the Model Economies

Table 5 reports the business cycle statistics for the main economic variables and factor prices

1954.I-2004.IV in the U.S. and in the model economies with standard log-log preferences. The

first thing to note is that in the univariate model economy, productivity shocks account for 81.76%

of the standard deviation (66.84% of the variance) of output in the data. In the bivariate model

economy shocks account for 56.60% (32.03% of the variance).

24This is the target only for the baseline model economy; it only includes fixed private capital. When we
extend measured output with durables this ratio goes to 2.40, and adding government capital we get 2.81.

25This is the target only for the baseline model economy. When we extend measured output with durables
this share is 0.625, and 0.58 when we also consider the stock of government capital. It is 0.57 when we use
the narrowest definition of labor share that only includes compensation of employees as labor income.
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U.S. Data Univariate {z0} Bivariate {z1, z2}
σx ρ(y, x) ρ(xt−1, xt) σx ρ(y, x) ρ(xt−1, xt) σx ρ(y, x) ρ(xt−1, xt)

y 1.59 1.00 .85 1.30 1.00 .72 .90 1.00 .73
h 1.56 .88 .89 .64 .98 .71 .21 .29 .73
c 1.25 .87 .86 .44 .91 .80 .71 .91 .77
i 7.23 .91 .80 4.05 .99 .71 1.91 .88 .69
r .08 .74 .78 .05 .96 .71 .06 .68 .70
w .76 .08 .70 .69 .98 .75 .78 .87 .77
z0, z1 .85 .74 .70 .87 .99 .71 .87 .98 .71
ls .68 -.24 .78 - - - .63 -.27 .72

Notes: Data are obtained from NIPA-BEA: real GNP from Table (1.7.6) and real personal consumption
expenditures and real gross private domestic investment from Table (1.1.6). The series of hours uses CES
data, see Appendix A. The data series of factor prices are constructed as w = Labor Share ×Output/Hours
and r = (1−Labor Share)×Output/Capital . All variables have been logged (except the rate of return) and
hp-filtered.

Table 5: Cyclical Behavior of the U.S. Data 1954.I-2004.IV, and log-log Utility RBC Models
with Univariate and Bivariate Shocks

However, the most important statistic to measure the ability of the model to generate fluctu-

ations is the standard deviation of hours since output moves both because of hours and because

of the shocks. In this respect, the univariate model accounts for 41.02% of the standard deviation

of the data (16.83% of the variance). The striking finding is that the bivariate model accounts for

13.46% of the standard deviation of hours in the data (1.81% of the variance). The differential

behavior of hours in the bivariate economy also shows up in the correlation between hours and

output. While it is very high in the data (.88) and in the univariate shock economy (.98), it is

much lower in the bivariate shock economy (.29).

With respect to the other aggregate variables the behavior of consumption is quite surprising:

in the economy with bivariate shocks its standard deviation is higher than in the economy with

univariate shocks despite having a lower standard deviation of output, a feature that we discuss

below. Consequently, the univariate shock economy displays much higher volatility of investment

than the bivariate shock economy. Both factor prices are strongly correlated with output in the

univariate model economy and less so in the bivariate model economy. Finally, the behavior of

both residuals is very similar and they are very correlated with output (recall that the residuals

are virtually identical across economies, but output is not). While the univariate model economy

does not display movements in labor share, the bivariate economy does and like in the data they

are negatively correlated with output.

22



Cross-correlation of yt with
xt−5 xt−4 xt−3 xt−2 xt−1 xt xt+1 xt+2 xt+3 xt+4 xt+5

U.S. Data 1954.I-2004.IV
y -.04 .14 .37 .63 .85 1.00 .85 .63 .37 .14 -.04
h -.22 -.06 .15 .40 .67 .88 .91 .81 .63 .41 .21
c .14 .33 .51 .70 .84 .87 .71 .50 .26 .03 -.14
i .05 .20 .39 .60 .79 .91 .75 .51 .24 -.01 -.22
r .16 .31 .48 .63 .73 .74 .47 .17 -.09 -.29 -.40
w .18 .19 .19 .17 .10 .08 -.06 -.11 -.15 -.12 -.12
s0, s1 .25 .39 .54 .68 .73 .74 .39 .08 -.18 -.33 -.43
` -.20 -.26 -.32 -.34 -.33 -.24 .03 .25 .40 .47 .44

Univariate Model {z0
t }

y -.01 .11 .27 .46 .70 1.00 .70 .46 .27 .11 -.01
h .08 .20 .34 .52 .73 .98 .63 .35 .14 -.03 -.15
c -.21 -.09 .07 .29 .56 .91 .77 .63 .50 .37 .26
i .05 .17 .32 .50 .72 .99 .65 .39 .18 .02 -.10
r .12 .24 .37 .54 .73 .96 .58 .30 .08 -.09 -.20
w -.10 .02 .19 .40 .66 .98 .75 .55 .37 .23 .10
z0

t .01 .13 .28 .48 .71 1.00 .69 .44 .24 .08 -.04

Bivariate Model {z1
t , z

2
t }

y -.01 .12 .28 .47 .72 1.00 .72 .47 .28 .12 -.01
h -.13 -.09 -.03 .05 .16 .29 .29 .27 .24 .20 .16
c -.12 .00 .16 .36 .61 .91 .74 .57 .42 .28 .16
i .11 .22 .35 .50 .68 .88 .53 .26 .05 -.10 -.21
r .16 .25 .34 .44 .55 .68 .35 .10 -.07 -.20 -.28
w -.13 -.01 .14 .33 .58 .87 .71 .56 .41 .28 .17
z1

t .03 .16 .31 .50 .72 .98 .67 .41 .20 .04 -.08
ls -.19 -.22 -.24 -.26 -.27 -.27 -.05 .10 .20 .26 .29

Table 6: Phase-Shift of of the U.S. Data 1954.I-2004.IV, and log-log Utility RBC Models
with Univariate and Bivariate Shocks
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U.S. Data Univariate {z0} Bivariate {z1, z2}
σx ρ(y, x) ρ(xt−1, xt) σx ρ(y, x) ρ(xt−1, xt) σx ρ(y, x) ρ(xt−1, xt)

y 1.59 1.00 .85 1.74 1.00 .71 .92 1.00 .73
h 1.56 .88 .89 1.28 .98 .70 .41 .33 .72
c 1.25 .87 .86 .54 .88 .81 .74 .94 .77
i 7.23 .91 .80 5.58 .99 .70 1.74 .91 .69
r .08 .74 .78 .06 .95 .70 .06 .61 .70
w .76 .08 .70 .54 .88 .81 .74 .94 .77
z0, z1 .85 .74 .70 .87 .99 .71 .87 .94 .71
ls .68 -.24 .78 - - - .63 -.13 .72

Table 7: Cyclical Behavior of the U.S. Data 1954.I-2004.IV, and the Hansen-Rogerson RBC
Models with Univariate and Bivariate Shocks

Table 6 shows the phase-shift of the variables in the data and in both model economies. The

behavior of hours is quite different between the two economies: While in the univariate economy

hours are very procyclical and they have a slight lead in the cycle, in the bivariate economy

hours are quite flat and they lag the cycle. In both economies, consumption lags the cycle and

investment leads it, although not by much.

The behavior of rates of return is also quite different. In the univariate economy they are

quite strongly correlated with output, they lead the cycle and they do not become negative until

a year after output peaks. In the bivariate economy they are less correlated, the lead the cycle

and they become negative three quarters after output peaks. Wages are very correlated with

output in the univariate economy, and they lagged somewhat while in the bivariate economy they

are less correlated with output and they slightly lag the cycle. Overall, the behavior of wages is

more similar across the two economies than that of rates of return.

The Rogerson-Hansen Economies Table 7 reports the business cycle statistics for data and

the Hansen-Rogerson log-linear preferences with univariate and bivariate shocks. As it is well-

known, the higher elasticity of hours of this model generates a larger response to the shocks. The

economy with univariate shocks displays 82.05% of the standard deviation of hours observed in

the data and 109.43% of output (67.32% and 119.75% of the variance respectively). However

when we turn to the cyclicality of the bivariate model economy, the reduction is spectacular. The

standard deviation of hours is now 26.28% of that in the data (6.90% of the variance), that is, the

bivariate process generates a 32.03% of the standard deviation of the univariate process (10.26%

of the variance). As in the log-log economy, consumption is more volatile with the bivariate shock

24



than with the univariate shock, and investment less volatile.

We avoid the cumbersome reporting of all the features of the Hansen-Rogerson economy,

but the picture is clear. As it is well known, the higher elasticity of hours of these preferences

translate in a much higher volatility of hours worked. However, posing the productivity shocks in

the bivariate way that we are exploring in this paper dramatically dampens the volatility of hours

worked. It does so in a similar or more dramatic fashion than it does to the economy with a lower

elasticity of hours worked (the standard deviation of hours is less than a third than that of the

univariate shock) and for similar reasons that we will explore next.

4.3.2 Why do hours move so little in the bivariate economies?

The key question now is why does such a seemingly small departure from the standard model

generates such a large change in the behavior of aggregate hours.

We find it useful to decompose the exploration of what happens into three parts: first is how

the two sets of shocks yield different paths for hours; second, how wages and interest rates in the

bivariate and univariate economies vary and how they imply different allocations of hours; and

third, how robust the univariate economy is to the introduction of the bivariate factor prices.

Our discussion ends with the complementary analysis of consumption.

Hours response to productivity and redistributive innovations. Figure 6 shows the impulse

response of hours to innovations to all three shocks in percentage deviations from the steady state.

We see that a one standard deviation innovation to the only shock, e0, in the univariate model

increases hours by .48%. In addition, the response of hours dies out pretty rapidly. In the bivariate

shock economy the situation is quite different. There is barely any immediate response of hours

to a current innovation in the productivity shock, u1, and the response is delayed dramatically as

it increases for about 18 quarters (still not to a very high level, .09%) before coming up down. A

redistributive shock u2 towards labor increases hours initially by .16% (about a third of that of

the level of a productivity shock in the univariate economy), and it dies out quite slowly.

Table 8 displays a variance decomposition of the main variables by the source of the innovation.

We see that while for most variables most of the variance is due to the innovation to productivity

(98.9% for output and 95.6% for consumption), the variance of hours is due in equal measure

to both innovations. Innovations to the productivity shock also have important effects on wages,

93.2%, and less so on interest rates 72.3%. In addition, note that given the orthogonalization
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Figure 6: Hours impulse response functions to innovations to all shocks.

of the innovations that we chose, 63.6% of the variance of the redistributive shock is due to

productivity innovations.

y h c i r w z1 z2

u1 98.9 54.3 95.6 94.1 72.3 93.2 100.0 63.6
u2 1.1 45.6 4.5 5.9 27.7 6.8 .0 36.4

Table 8: Forecast Error Variance Decomposition (%)

We further investigate the contribution of each shock to the cyclical behavior of each series

computing a bivariate economy with productivity innovations alone and a bivariate economy with

redistributive innovations alone. In practice, we consider only productivity innovations in the

bivariate economy by setting ω22 = 0, while for a bivariate economy in which only redistributive

innovations are at play we set ω11 = ω21 = 0. The business cycle statistics of these economies

are reported in Table 9 and the corresponding phase-shifts in Table 10.
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Bivariate {u1, u2} Bivariate with u1
t alone Bivariate with u2

t alone
σx ρ(y, x) ρ(xt−1, xt) σx ρ(y, x) ρ(xt−1, xt) σx ρ(y, x) ρ(xt−1, xt)

y .90 1.00 .73 .89 1.00 .72 .14 1.00 .69
h .21 .29 .73 .06 .47 .95 .21 .99 .70
c .71 .91 .77 .63 .96 .78 .33 .99 .69
i 1.91 .88 .69 1.86 .95 .68 .43 -.99 .69
r .06 .68 .70 .06 .88 .69 .03 -.99 .69
w .78 .87 .77 .65 .94 .79 .42 .99 .70
z1 .87 .98 .71 .87 .99 .70 .00 .00 .95
ls .68 -.27 .72 .36 -.70 .74 .48 .99 .69

Table 9: Cyclical Behavior of log-log Utility RBC Models with the Bivariate Shock with
Both Innovations and Isolated Innovations.

When the bivariate economy is driven solely by productivity innovations we find that the

volatility of hours falls to .06% about one third that of the bivariate model that receives both

innovations (and one tenth of the univariate model), and the correlation of hours with output

is of .47. Note that with productivity innovations alone we still yield movements in the labor

share through ω21. We find that the labor share is less volatile than in the data, and it is highly

countercyclical, -.70. In this case, the negative impact on z2
t through ω21 is not counterbalanced by

positive redistributive innovations what strengthens the mechanisms that dampen the volatility of

hours. The volatility of the rest of the variables resembles the bivariate model, though they present

higher correlation with output. When only redistributive innovations are present in the bivariate

economy, the volatility all real allocations is largely dampened with respect to the bivariate model

with both innovations except that of hours and the labor share26, and all variables display a high

(either positive or negative) correlation with output. In this case, it is noteworthy that the labor

share turns highly procyclical.

Implications of wages and interest rates for the allocation of hours. Agents have the

same preferences in both the univariate and bivariate economies which means that if they do

different things it is due to the fact that they face different wages and interest rates.

Figures 7 and 8 respectively plot the impulse response functions of the real wages and the

interest rate (actually, tomorrow’s rate of return) to productivity innovations and redistributive

26Notice that the volatilities of bivariate economies with u1 alone and u2 alone do not add up to volatil-
ities in bivariate economy where both innovations are present. This is so because although u1 and u2 are
orthogonal, z1 and z2 are not.
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Cross-correlation of yt with
xt−5 xt−4 xt−3 xt−2 xt−1 xt xt+1 xt+2 xt+3 xt+4 xt+5

Bivariate Model {z1
t , z

2
t }

y -.01 .12 .28 .47 .72 1.00 .72 .47 .28 .12 -.01
h -.13 -.09 -.03 .05 .16 .29 .29 .27 .24 .20 .16
c -.12 .00 .16 .36 .61 .91 .74 .57 .42 .28 .16
i .11 .22 .35 .50 .68 .88 .53 .26 .05 -.10 -.21
r .16 .25 .34 .44 .55 .68 .35 .10 -.07 -.20 -.28
w -.13 -.01 .14 .33 .58 .87 .71 .56 .41 .28 .17
z1 .03 .16 .31 .50 .72 .98 .67 .41 .20 .04 -.08
ls -.19 -.22 -.24 -.26 -.27 -.27 -.05 .10 .20 .26 .29

Bivariate Model {z1
t , z

2
t } with u1

t alone
y .00 .13 .29 .48 .72 1.00 .72 .48 .29 .13 .00
h -.41 -.33 -.22 -.05 .18 .47 .62 .70 .71 .68 .61
c -.13 .00 .17 .37 .64 .96 .79 .62 .47 .34 .21
i .13 .25 .38 .54 .73 .95 .58 .29 .07 -.09 -.21
r .20 .31 .42 .56 .71 .89 .48 .17 -.06 -.21 -.32
w -.14 -.01 .15 .36 .62 .95 .79 .63 .49 .35 .23
z1 .05 .17 .32 .51 .73 .99 .68 .42 .22 .06 -.07
ls -.32 -.39 -.47 -.54 -.62 -.70 -.25 .07 .28 .43 .51

Bivariate Model {z1
t , z

2
t } with u2

t alone
y -.02 .09 .25 .45 .70 1.00 .70 .45 .25 .09 -.02
h -.06 .06 .22 .42 .68 .99 .72 .49 .30 .14 .02
c -.01 .11 .27 .46 .70 .99 .69 .44 .23 .07 -.04
i -.01 -.13 -.28 -.48 -.71 - .99 -.67 -.41 -.21 -.05 .07
r .02 -.10 -.26 -.46 -.70 - .99 -.69 -.44 -.24 -.08 .03
w -.02 .10 .26 .46 .70 .99 .69 .45 .25 .09 -.03
z1 -.51 -.50 -.45 -.36 -.21 .00 .30 .49 .60 .65 .64
ls -.04 .08 .24 .44 .69 .99 .70 .46 .27 .11 -.01

Table 10: Phase-Shift of Bivariate Economies
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Figure 7: Wage impulse response functions to innovations to all shocks.
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Figure 8: Rate of return impulse response functions to innovations to all shocks.
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innovations in percentage deviations from the steady state. What is important to notice is that

the response of wages to productivity innovations displays a clear hump-shaped pattern in the

bivariate economy, not so in the univariate economy. After a productivity innovation agents in

the bivariate economy face a large and continuous raise in wages for the following 9 quarters

from an initial deviation of .43% at t = 0 to .60% after two years and one quarter (that is, 1.4

times the original deviation). In the univariate economy, however, wages remain almost flat for

the first three years, they respond initially deviating by .51% and barely increase to .55% after

one year and a half. When wages respond to redistributive innovations they do so positively,

initially they deviate from the steady state by .33% and die out monotonically afterwards. The

rate of return increases initially in response to productivity innovations by .033% in the bivariate

economy and .03% in the univariate economy, but it declines more steeply in the former. This

way, while it falls below its steady state after 2 years in the bivariate economy, it does so one

year later in the univariate economy. In response to redistributive innovations the rate of return

remains always below its steady state, it drops to -.022% at prompt and increases monotonically

towards its long-run value afterwards.

These movements in the price of factors alter the relative reward of factor inputs (substitution

effects) and also alter the total resources of the agents (wealth effects). Furthermore, agents

consider the relative importance of present and future by looking at the whole time-path of factor

prices what introduces intertemporal substitution effects through the (inverse of the) rate of return

that they use to discount the future. To investigate these effects we find convenient to write out

the labor supply function explicitly in terms of present and future wages and interest rates. Then

we isolate the contribution of each of these effects by means of ’Slutsky decomposition’ of hours.

This involves a lump-sum transfer to agents at t = 0 in order to control for the wealth effects by

keeping the original equilibrium allocations just feasible at the new prices27.

To derive the labor supply function we first consolidate the budget constraint at t = 0,

∞∑
t=0

(1 + γ)tct∏t
s=1(1 + rs − δ)

+
∞∑

t=0

(1 + γ)twt(1− ht)∏t
s=1(1 + rs − δ)

=
∞∑

t=0

(1 + γ)twt∏t
s=1(1 + rs − δ)

+(1+r0−δ)k0 (42)

where we have used the transversality condition, limT→∞
kTQT

s=t(1+rs−δ)
= 0. The left hand side is

the present value of all future expenditures on consumption and leisure and the right hand side

is the present value of total resources (wealth) accumulated from period t = 0 onwards. Total

27Alternatively, King (1991) and King and Rebelo (1999) use a ’Hicksian decomposition’ that compensates
agents by placing them back to their original indifference curve.
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resources are composed by the sum of the human wealth, that is, the first term in RHS(42) which

we denote by HW0, and the initial capital income evaluated in units of t = 0 consumption. We

use the first order condition for labor to substitute out consumption ct in LHS(42), and then we

use the euler equation to rewrite the present value of expenditures as

1

α

∞∑
t=0

(1 + γ)twt(1− ht)∏t
s=1(1 + rs − δ)

=
1

α

∞∑
t=0

βt−1w0(1− h0) =
w0(1− h0)

α(1− β)
(43)

Now, we can plug (43) into (42) and rearrange to find the initial response of leisure for a given

forecast of wages and interest rates, w0(1−h0) = α (1−β) (HW0 + (1 + r0 − δ)k0), and using

the euler equation we can recursively find

(1 + γ)twt(1− ht)

βt
∏t

s=1(1 + rs − δ)
= α(1− β) (HW0 + (1 + r0 − δ)k0) (44)

That is, the present value of the expenditure on leisure at period t is a constant share of the

present value of total resources. This constant share is the marginal propensity to consume

leisure, α, and per period, 1− β.

If we log-linearize (44) around the steady state we find that the deviation of period-t hours

from the steady state can be decomposed as a linear combination of the deviations of period-t

wages, the present value of one unit of period-t consumption and the present value of total

resources28:

ĥt =

(
1− h∗

h∗

)[
ŵt +

̂(
1∏t

s=1(1 + rs − δ)

)
− ̂(HW0 + (1 + r0 − δ)k0)

]
(45)

where the constant 1−h∗

h∗
= 2.2 is the Frischian elasticity of labor supply. As we discuss next,

the identity (45) decomposes the overall response of hours to all innovations through wage

effects (intratemporal price-substitution effects), rate of return effects (intertemporal substitution

effects), and total resources effects (wealth effects).

Wage effect: To see how wages alone contribute to the response of hours we set the rate of

return to its steady state and allow only for movements in wages in the bivariate and univariate

economies. However, wages not only affect hours directly but also act through the amount

of total resources. One way to disentangle these two effects of wages is to add a ’Slutsky’

28Notice that ̂(1− ht) = −
(

h∗

1−h∗

)
ĥt.
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transfer compensation that constrains agents to purchase at most the original bundle with the

new wages. Since the original bundle is that of the steady state, the compensated wage effect

calls for a transfer compensation that sets the total resources equal to the steady state29:

T (wt, r
∗) =

T∑
t=0

(1 + γ)t(wt − w∗)

(1 + r∗ − δ)t

If we provide agents with this transfer at t = 0 the ’compensated wage effect’ on hours is given

solely by 1−h∗

h∗
ŵt as stated in (45), that is, the response of wages amplified by the elasticity of

labor supply, which we plot for all innovations in the top panel of Figure 9. We find that in the

bivariate economy the wage effect of productivity innovations generates an initial deviation of

hours from steady state of .96% which keeps raising until 1.32% in the 9th quarter and slowly

dies out to the the steady state afterwards. In the univariate economy the wage effect raises hours

initially more to 1.14% of the steady state value but remains practically flat to start decreasing

after having reached 1.21% in the 7th quarter. A distributive innovation raises hours to .74%

at prompt and dies monotonically out afterwards. Overall, the size of the wage effects in the

bivariate and univariate economies (with a maximum difference for productivity innovations of

.17% reached at t = 0, that is, 15% of the univariate initial deviation) suggest that the wage

effect can not account alone for the full drop in the volatility of hours in the bivariate economy.

Rate of Return Effect: Agents also care about when they consume and work. In doing so,

agents compare allocations at different periods by transforming them into the same units through

the market discount factor, which, if deviating from the steady state, introduces intertemporal

substitution effects. In addition, changes in the rate of return also alter the present value of the

human wealth and capital income at t = 0, for which we introduce a transfer compensation that

keeps total resources unchanged.

T (w∗, rt) =
T∑

t=0

(1 + γ)tw∗∏t
s=0(1 + rs − δ)

+ (1 + r0 − δ)k∗ −
T∑

t=0

(1 + γ)tw∗

(1 + r∗ − δ)t
− (1 + r∗ − δ)k∗

With this transfer, if we fix wages to the steady state, the compensated rate of return effect on

hours is given by 1−h∗

h∗
1̂Qt

s=1(1+rs−δ)
in (45). This effect is plotted in the center panel of Figure 9

for all innovations. We find that productivity innovations in the univariate and bivariate economy

initially cut the present value of future units of consumption (and therefore leisure) what reduces

29The horizon of the human wealth is set to T = 204, large enough to ensure the economy has come up
back to the steady state.
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Figure 9: Slutsky Decomposition of Hours: Wage, Rate of Return and Total Resources Effect
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the incentive to work at these early periods. The supply of hours remains below its steady state

value for the first 6 years in the bivariate economy and for the first 10 years in the univariate

economy. It is only after the first year that in the bivariate economy it becomes more expensive to

place future consumption into present than in the univariate economy, and therefore the incentive

to work due to the rate of return effect remains higher from then on in the bivariate economy

than in the univariate economy. The rate of return effect of a distributive innovation sets the

supply of hours above its steady state from t = 0 and onwards, this is so because the rate of

return falls below its steady state value at all periods in response to redistributive innovations

and therefore it puts up the price of one unit of consumption (and leisure) (measured in t = 0

units) above the steady state.

Importantly, notice that the intertemporal substitution effect sets the long-run supply of hours

above its steady state value. This is so because although the rate of return does converge to

the steady state, the market discount factor accumulates all past deviations of the rate of return.

For all our innovations, the response of the rate of return is such that the long-run present value

of one unit of consumption is higher than in the original steady state. Consequently, the rate of

return effect sets long-run hours above the steady state. What brings back the limit of hours to

the steady state value is the total resources effect that we discuss next.

Total Resources Effect: We compute the realized change in the total resources from the

steady state as,

T (wt, rt) =
T∑

t=0

(1 + γ)twt∏t
s=0(1 + rs − δ)

+ (1 + r0 − δ)k∗ −
T∑

t=0

(1 + γ)tw∗

(1 + r∗ − δ)t
− (1 + r∗ − δ)k∗

To measure the effect of this change alone on hours we hold constant wages and the rate

of return and add this transfer T (wt, rt) to the agents at t = 0. This is given by the term
1−h∗

h∗
̂(HW0 + (1 + r0 − δ)k0) in (45). We obtain that the present value of total resources that

agents have at their disposal raises for all innovations. Agents with log-log preferences optimally

deplete this extra amount of wealth on consumption and leisure and they do so in equal (present

value) terms per period and for all periods what generates constant deviations of hours from

steady state and that we depict in the bottom panel of Figure 9. What is important to notice

is the size of the wealth effect: under productivity innovations hours deviate in the bivariate

economy by -.95%, which is 1.44 times the deviation of hours generated by the wealth effect in

the univariate economy, -.66%. In addition, redistributive innovations generate an effect of total

resources on hours of -.57%.
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Figure 10: Hours choices for crossed factor prices that respond to productivity innovations.

Robustness of the univariate economy to the bivariate factor prices. To gain insight on

the reduction in the volatility of hours in the bivariate economy with respect to the univariate

economy we compute how the choice of hours changes when we introduce into the univariate

economy the factor prices that respond to productivity innovations in the bivariate economy. In

this case, we control for the total resources effect with a lump-sum transfer that sets as base for

comparison the univariate model.

The choice of hours for all combinations of wages and interest rates that respond to produc-

tivity innovations in both economies is depicted in Figure 10 as percentage deviations from the

steady state, and in Figure 11 as the difference between the bivariate and univariate responses

as percentage deviations from the univariate economy. The response of hours to productivity

innovations in the univariate economy is given by the univariate factor prices, {w(e0), r(e0)}, and

in the bivariate economy by the bivariate factor prices, {w(u1), r(u1)}.

To study the effect of wages we hold the interest rate time-path of the univariate economy,

we introduce the wages of the bivariate economy, {w(u1), r(e0)}, and we add a transfer such

that the present value of the total resources is equal to that of the univariate economy which we

denote by TR(w(e0), r(e0)). We find that the compensated initial response of hours dampens to

.30%, that is, the bivariate wages drop the initial response of hours to 63% of its original value

in the univariate economy. In this crossed economy {w(u1), r(e0)}, agents decide to postpone
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Figure 11: Crossed Slutsky Decomposition of Hours

the supply of labor because they anticipate a raise in wages for the next 9 quarters. It is after

the 5th quarter, exactly when w(u1) lies above w(e0), that the supply of hours is larger in this

economy than in the univariate economy, and hours fall below those in the univariate model after

eight years, as wages do. Without transfer we find very similar figures - that is, the change in

the path of wages has little effect in terms of human wealth.

We observe the impact of the bivariate rate of return on the hours of the univariate econ-

omy when we introduce the interest rate of the bivariate economy into the univariate economy

while we hold the univariate wages and univariate total resources, that is, {w(e0), r(u1)} with

TR(w(e0), r(e0)). This economy displays not much difference from the univariate model for the

first 5 quarters, after which the bivariate rate of return starts to generate a larger response of

hours than the univariate model. Moreover, the intertemporal substitution effects are such that

the deviations of hours remain above the steady state in the long run. Without the transfer the

rate of return effect is not net out from the wealth effect and hours drop initially to .19%.

If we endow the univariate economy with the total resources available in the bivariate economy

while we keep the univariate factor prices, that is, {w(e0), r(e0)} with TR(w(u1), r(u1)), we find

that the total resources effect alone generates a substantial drop, -.29%, in the supply of hours.

The sum of all these effects is what accounts for the little response of hours to productivity

innovations in the bivariate model. First, the bivariate economy shows a substantial rise in the
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present value of total resources available to the agents that mitigates the incentive to work by

-.29% at all periods with respect to the univariate economy (recall that the maximum univariate

deviation of hours is .48% at t = 0). This wealth effect dominates the wage and rate of return

effects in size during the first 6 years. Second, the wage effect presents a hump-shape pattern

that initially contributes to farther dampen the response of hour but that later on helps to bring

hours a little above the univariate model from the second year until the eighth year. Thirdly,

the rate of return effect barely contributes to alter the choice of hours during the first year,

but then this effect continuously raises hours above the univariate model until convergence to

a limit deviation of hours that offsets the wealth effect in the long-run. It is the combination

of the wage effect, first alone, and then together with the rate of return effect, what generates

the hump-shape dynamics of hours in the bivariate model. This way, while wages peak around

the third year, hours peaks after 8 years or so because although wages had already started to

decline in the 3rd year the present value of one unit of consumption still keeps raising enough to

counterbalance this decline in wages. However, the effect of total resources maintains the supply

of hours low at all periods, it is so that in the bivariate economy the peak of hours barely reaches

a .09% deviation from the steady state (less than one fifth of the peak attained in the univariate

model).

Consumption. Using the labor supply function and the log-linearization around the steady

state of the first order condition for labor we can derive the consumption function as

ĉt = −
̂(

1∏t
s=1(1 + rs − δ)

)
+ ̂(HW0 + (1 + r0 − δ) k0) (46)

Notice that wages enter the consumption function only through the present value of total re-

sources. The deviations in consumption are driven by the price of future consumption evaluated

in present units and the change in the present value of total resources. The top panel in Figure

12 displays the impulse response functions to all innovations, the center panel the rate of return

effect, and the bottom panel the total resources effect. Productivity innovations cut the price

of consumption in the bivariate and univariate economies very similarly during the first year.

However, although future units of consumption become more rapidly expensive in the bivariate

economy (which would favor a higher consumption in the univariate economy), the important

wealth effect in the bivariate economy more than offsets the previous intertemporal substitution

effect and sets consumption in the bivariate model above that of the univariate model. With

distributive innovations we find the wealth effect is reinforced by the rate of return effect but in
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Figure 12: Consumption impulse response functions and Slutksy Decomposition.
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a lesser magnitude that under productivity innovations.

In the Appendix, we report in some detail the results for alternative calibrations of labor share

as well as some additional information about the economy with Hansen-Rogerson preferences

and constrained estimation of the bivariate shock. These results confirm the findings already

discussed.

5 Conclusion

We pose and estimate a bivariate shock to the production function that under competition in

factor markets simultaneously accounts for movements in the Solow residual and in the factor

shares of production. We show how confronting agents in a standard RBC economy with these

shocks entail a much smaller response (about 40%) of hours relative to the standard modelization

of the shocks that identifies the Solow residual with a univariate shock. Our findings raise a

flag against the optimism embedded in the literature that states that productivity shocks are

responsible for most of the cyclical behavior of output and hours.

Our results cast serious doubt on the explanatory power of the Solow residual as an important

source of business cycle fluctuations.

References

Ambler, S., and E. Cardia (1998): “The Cyclical Behaviour of Wages and Profits under

Imperfect Competition,” The Canadian Journal of Economics, 31(1), 148–164.

Arias, A., G. D. Hansen, and L. E. Ohanian (2006): “Why Have Business Cycle Fluc-

tuations Become Less Volatile,” NBER Working Papers 12079.

Boldrin, M., and M. Horvath (1995): “Labor Contracts and Business Cycles,” Journal of

Political Economics, 103(5), 972–1004.

Chari, V. V., P. J. Kehoe, and E. R. McGrattan (2005): “A Critique of Structural

VARs Using Business Cycle Theory,” Staff Report 364, Federal Reserve Bank of Minneapolis.

Cooley, T. F., and E. C. Prescott (1995): “Economic Growth and Business Cycles,” in

Frontiers of Business Cycle Research, ed. by T. F. Cooley, chap. 1. Princeton University Press,

Princeton.

39



Donaldson, J. B., J.-P. Danthine, and P. Siconolfi (2005): “Distribution Risk and

Equity Returns,” FAME Research Paper No. 161.

Gali, J., and P. Rabanal (2004): “Technology Shocks and Aggregate Fluctuations: How

Well Does the RBC Model Fit Postwar U.S.Data,” NBER Working Papers 10636.

Gomme, P., and J. Greenwood (1995): “On the Cyclical Allocation of Risk,” Journal of

Economic Dynamics and Control, 19, 91–124.

Hansen, G. D. (1985): “Indivisible Labor and the Business Cycle,” Journal of Monetary

Economics, 16, 309–327.

Hansen, G. D., and E. E. Prescott (2005): “Capacity Constraints, Asymmetries, and the

Business Cycle,” Review of Economis Dynamics, 2005(1), 850–865.

Hornstein, A. (1993): “Monopolistic Competition, Increasing Returns to Scale, and the Im-

portance of Productivity Changes,” Journal of Monetary Economics, 31, 299–316.

King, R. G. (1991): “Value and Capital in the Equilibrium of Business Cycle Program,” in

Value and Capital Fifty Years Later, ed. by L. McKenzie, and S. Zamagni.

King, R. G., and S. T. Rebelo (1999): “Resuscitating Real Business Cycles,” in Handbook

of Macroeconomics, ed. by J. B. Taylor, and M. Woodford, chap. 14.

Kydland, F. E., and E. C. Prescott (1993): “Cyclical Movements of the Labor Input

and Its Implicit Real Price,” Federal Reserve Bank of Cleveland Economic Review, 29, 12–23.

Prescott, E. C. (1986): “Theory Ahead of Business Cycle Research,” Federal Reserve Bank

of Minneapolis Quarterly Review, 10, 9–22.

Rogerson, R. (1988): “Indivisible Labor, Lotteries and Equilibrium,” Journal of Monetary

Economics, 21, 3–16.

Solow, R. M. (1957): “Technical Change and the Aggregate Production Function,” Review

of Economics and Statistics, 39(3), 312–320.

Young, A. T. (2004): “Labor’s Share Fluctuations, Biased Technical Change, and the Business

Cycle,” Review Economic Dynamics, 2004(7), 916–931.

40



Appendix A. Data Construction

Raw Data Series:

All raw data series were retrieved from the the Bureau of Economic Analysis (BEA; www.bea.gov)

and the Bureau of Labor Statistics (BLS; www.bls.gov) for the period 1954.I-2004.IV. To save

on notation we drop the period subindex in all series.

National Income Product Accounts (NIPA-BEA).

1. Table 1.7.5: Gross National Product (GNP), Consumption of Fixed Capital (DEP)30 ,

Statistical Discrepancy (SDis)31

2. Table 1.12: Compensation of Employees (CE), Proprietor’s Income (PI), Rental Income

(RI), Corporate Profits (CP), Net Interests (NI), Taxes on Production (Tax), Subsidies

(Sub), Business Current Transfer Payments (BCTP), Current Surplus of Government En-

terprises (GE).

3. Table 5.7.5: Private Inventories (Inv)

Fixed Asset Tables (FAT-BEA).

1. Tables 1.1 and 1.2: Private Fixed Assets (KP), Government Fixed Assets (KG), Consumer

Durable Goods (KD).

2. Tables 1.3: Depreciation of Private Fixed Assets (DepKP),Depreciation of Government

Fixed Assets (DepKG), Depreciation of Consumer Durable Goods (DepKD).

Current Establishment Survey32 (CES-BLS).

1. Employment (E) : Series ID CES0000000081

2. Average Weekly Hours (AWH): Series ID CES0500000082, Series ID EEU00500005

30This amounts for the difference between Gross National Product and Net National Product.
31The Statistical Discrepancy corrects the difference between Net National Product and National Income.
32The primary sources of employment and average weekly hours series are the Current Establishment

Survey (CES) and Current Population Survey (CPS) which have been in existence in some form since 1947.
Our choice of the CES data set is driven from comparison purposes with Cooley and Prescott (1995).

41



Constructed Data Series:

Labor Share. The labor share of income is defined as one minus capital income divided by output.

Several sources of income, mainly proprietor’s income, can not be unambiguously allocated to

labor or capital income. To deal with this we proceed similar to Cooley and Prescott (1995) by

assuming that the proportion of ambiguous capital income to ambiguous income is the same as

the proportion of unambiguous capital income to unambiguous income, and we compute these

series as follows33:

1. Unambiguous Capital Income (UCI) = RI + CP + NI + GE

2. Unambiguous Income (UI) = UCI + DEP + CE

3. Proportion of Unambiguous Capital Income to Unambiguous Income: θP = UCI+DEP
UI

Then we can use θP to compute the amount of ambiguous capital income in ambiguous

income,

4. Ambiguous Income (AI) = PI + Tax - Sub + BCTP + SDis

5. Ambiguous Capital Income (ACI) = θP× AI

Then, capital income (service flows of private fixed capital), YKP , is computed as the sum of

unambiguous capital income, depreciation, and ambiguous capital income, that is,

YKP = UCI + DEP + ACI (47)

which we use to construct our baseline labor share34 as

Labor Share = 1− UCI + DEP + ACI

GNP
= 1− YKP

GNP
= 1− θP (48)

To see the equivalence with Cooley and Prescott (1995) notice that

YKP = UCI + DEP + ACI = θP UI + θP AI = θP GNP (49)

33The labor share is a ratio and we use nominal series to compute it. Notice that unless the same price
index is applied to all nominal variables the use of real variables will not yield identical results.

34Our computation of the labor share differs from Cooley and Prescott (1995) in three regards: we add
GE to UCI and Tax - Sub + BCTP to AI, so that UI + AI = GNP; we do not include the stock of land
as private fixed assets; and we compute the depreciation rates of consumer durables and government stock
differently as we discuss below.
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Assuming that the return on capital is the same for fixed private capital, consumer durables and

government stock we can extend the measure of output, capital income and the labor share to

include service flows from consumer durables and government stock as follows:

First, we determine the return on capital, i, by solving the following equation that relates the

capital income to the capital stock35

YKP = i× (KP + Inv) + DEP (50)

Second, the depreciation rates of consumer durables and government stock are computed as36

δD =
DepKD

KD
δG =

DepKG

KG
(51)

This way, the flow of services from consumer durable goods and government capital can be

derived as

YKD = (i + δD)× KD YKG = (i + δG)× KG (52)

Finally, the labor share with durables that extends measured output and capital income with

flow services from consumer durables is

1− YKP + YKD

GNP + YKD

(53)

and the labor share with durables and government that also includes flow services of government

stock is

1− YKP + YKD + YKG

GNP + YKD + YKG

(54)

Our last measure of the labor share is defined as the compensation of employees divided by

GNP, that is, we consider as labor income the only source that we can unambiguously allocate

35We transform the annual capital stock and depreciation series provided by FAT-BEA to a quarterly
series by interpolation.

36Cooley and Prescott (1995) uses the perpetual inventory method and investment series to pin down δD

and δG. Instead, we use the depreciation series for consumer durables and government stock reported in
FAT-BEA, Table 1.3, and operate following (51). We find that our values for δD = .19 and δG = .04. are
similar to those reported in Cooley and Prescott (1995), respectively, .21 and .05 - here notice that we also
have a different sample period, theirs runs from 1954 to 1992.
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to labor and add all ambiguous income to capital income.

Aggregate Hours. We construct the series of aggregate hours by multiplying the series of

employment and average weekly hours 37 : Hours = E × AWH 38.

Real Capital. To construct the series of real capital we use the chain-type quantity index from

Table 1.2 in FAT-BEA and the current-cost net stock in year 2000 from Table 1.1 in FAT-BEA.

Appendix B. Sensitivity to the Labor Share Definition

We explore the sensitivity of our results to alternative definitions of labor share in model economies

with log-log preferences and Hansen-Rogerson preferences. We also present the results attained

under the constrained estimation of z1
t and z2

t where we restrict past deviations of the labor

share from affecting productivity, that is, we set γ12 = 0. The results herein confirm our findings

discussed in Section 4.3.

Univariate and Bivariate Estimation

To be consistent in our computations of the Solow residual under each definition of the labor

share we take the corresponding extended measures of (deflated) output, and extend the measure

of the real capital stock series accordingly. This way, when the labor share includes consumer

durables (and government stock) the real output and real capital series used to compute the

Solow residual are respectively defined as (deflated) GNP + YKD ( + YKG) and KP + KD ( +

KG). The series of the labor input remains the same in all computations. Table 11 reports the

univariate estimation of the Solow residual for the four definitions of the labor share and Table

12 the bivariate estimation39 of the modified Solow residual and the labor share.

Our estimations show a high persistence of the Solow residual and the labor share, larger

37The series of average weekly hours CES0500000082 is available from 1964.I onwards. For the period
before 1964 we retrieve the annual observations from the series EEU00500005 which we use as quarterly
observations. This way, we attribute all quarterly variation in hours before 1964 to employment.

38Alternatively, the Productivity and Costs program office at the BLS also provides a quarterly index of
aggregate hours since 1947, series ID PRS85006033, which is composed from CES and CPS data and has
cyclical properties that are very similar to those of our constructed series of hours in terms of correlation with
output (.88) but slightly more volatile (1.77). When we use PRS85006033 to construct the Solow residuals
s0

t and s1
t with our baseline labor share the volatility of hours obtained in the bivariate model is 34% that

of the univariate model.
39Although we do not report it here information criteria suggest the use of a VAR(1) for the bivariate

estimation under all definitions of the labor share, as in our baseline case.
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volatility of the productivity innovations when government stock is included, larger volatility of

the redistributive innovations in our narrowest definition of the labor share, a negative covariance

between the productivity and redistributive innovations which is largest under our narrowest

definition of the labor share, and negligible (statistically non-significant) marginal effects of z2
t−1

on z1
t under all labor share definitions. The IRFs depicted in Figures 13 and 14 show very similar

properties to our baseline labor share studied in Section 3.2.

Cyclical Behaviour

In Tables 13-15 we report the business cycle statistics of a RBC model with log-log preferences

when we extend the labor share to include durable goods, and government stock, and also when

we define the labor share as compensation of employees divided by GNP. With the baseline

labor share aggregate hours in the bivariate model are 32% less volatile than in its univariate

counterpart. When we include durable goods hours move 48% less in the bivariate model, and

when we include government 53% less. Averaging over these three definitions of the labor share

we yield a reduction of 44% in the volatility of hours. When we use CE/GNP the drop in σh is

59%. A decomposition exercise shows similar values for the contribution of each innovation to

the variance of the endogenous variables under all definitions of the labor share, see Table 16. At

the same time, in all bivariate models the correlation of hours with output decreases with respect

to the univariate case. This is best seen with the IRFs of output and hours in Figures 15 and 16.

While hours display a clear hump-shape response to u1, output does not.

Under Hansen-Rogerson preferences we find a very similar reduction in the volatility of hours.

With these preferences the bivariate model displays an average σh that is 47% less than its

standard univariate counterpart, see Tables 17-20.

Constrained Estimation

The use of constrained estimation under γ12 = 0 (slightly) strengthens the distributive nature of

z2
t . The estimation results are reported in Table 21. Our findings do not differ from our previous

results, see Tables 22 and 23. With the baseline case the reduction in the volatility of hours

is 36%, with durable goods 43%, with government stock 42%, and with CE/GNP 54%. This

averages the decrease in the cyclical movements of hours to 44%.
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ρ σ

Baseline Labor Share .954 .00668
(.020) (.000)

... with Durables .951 .00667
(.022) (.000)

... and Government .937 .00726
(.019) (.000)

CE/GNP .951 .00685
(.021) (.000)

Table 11: Univariate Estimation of the Solow Residual, z0
t

γ11 γ12 γ21 γ22 σ1 σ2 σ12

Baseline Labor Share .946 .001 .050 .930 .00668 .00303 -.1045E-04
(.023) (.042) (.010) (.019)

... with Durables .941 -.012 .055 .930 .00665 .00287 -.1001E-04
(.024) (.043) (.010) (.019)

... and Government .927 -.041 .058 .953 .00723 .00313 -.139E-04
(.025) (.044) (.011) (.019)

CE/GNP .948 -.025 .051 .937 .00685 .00345 -.1696E-04
(.023) (.040) (.011) (.020)

Table 12: Bivariate Estimation of the Solow Residual, z1
t , and Labor Share Deviations, z2

t
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Figure 13: IRFs to productivity innovations u1, All Labor Share Definitions.
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Figure 14: IRFs to distributive innovations u2, All Labor Share Definitions.
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Univariate {z0} Bivariate {z1, z2}
σx ρ(y, x) ρ(xt−1, xt) σx ρ(y, x) ρ(xt−1, xt)

y 1.26 1.00 .72 .93 1.00 .73
h .62 .98 .71 .30 .38 .74
c .43 .89 .81 .67 .92 .79
i 3.94 .99 .71 2.01 .93 .71
r .05 .96 .71 .07 .70 .71
w .67 .98 .75 .77 .88 .79
y/h .67 .98 .75 .87 .95 .72
z0, z1 .87 .99 .71 .87 .97 .72
z2 - - - .41 -.22 .73

Table 13: Labor Share with Durables, and Log-Log Preferences

Univariate {z0} Bivariate {z1, z2}
σx ρ(y, x) ρ(xt−1, xt) σx ρ(y, x) ρ(xt−1, xt)

y 1.37 1.00 .72 1.05 1.00 .74
h .73 .98 .70 .39 .45 .76
c .39 .85 .83 .61 .91 .80
i 4.52 .99 .71 2.65 .95 .72
r .05 .97 .70 .07 .76 .72
w .67 .98 .74 .74 .84 .80
y/h .67 .98 .74 1.04 .93 .72
z0, z1 .94 .99 .71 .96 .96 .72
z2 - - - .45 -.31 .74

Table 14: Labor Share with Durables and Government, and Log-Log Preferences
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Univariate {z0} Bivariate {z1, z2}
σx ρ(y, x) ρ(xt−1, xt) σx ρ(y, x) ρ(xt−1, xt)

y 1.25 1.00 .72 .90 1.00 .75
h .61 .97 .71 .36 .03 .74
c .44 .88 .83 .60 .90 .82
i 3.89 .99 .71 2.12 .93 .72
r .06 .96 .71 .08 .75 .71
w .67 .98 .76 .68 .79 .82
y/h .67 .98 .76 .96 .92 .72
z0, z1 .89 .99 .71 .91 .96 .72
z2 - - - .48 -.40 .72

Table 15: Compensation of Employees divided by GNP, and Log-Log Preferences

y h c i r w y/h z1 z2

Baseline Labor Share u1 98.9 54.3 95.6 94.1 72.3 93.2 98.7 100.0 63.6
u2 1.1 45.6 4.5 5.9 27.7 6.8 1.3 .0 36.4

.... with Durables u1 98.8 64.1 97.3 99.4 79.5 95.0 97.3 99.6 67.8
u2 1.2 35.9 2.7 .6 20.5 5.0 2.7 .4 32.2

... and Government u1 98.1 62.3 96.2 98.5 81.2 93.3 92.0 97.7 63.1
u2 1.9 37.7 3.8 1.5 18.8 6.7 8.0 2.3 36.9

CE/GNP u1 98.7 59.5 97.5 99.0 85.2 95.3 96.1 99.0 68.8
u2 1.3 40.5 2.5 1.0 14.8 4.7 3.9 1.0 31.2

Table 16: Forecast Error Variance Decomposition (%), Log-Log Preferences
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Figure 15: IRFs of Output (% Deviations from Steady State), Log-Log Preferences and All
Labor Share Definitions.
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Figure 16: IRFs of Hours (% Deviations from Steady State), Log-Log Preferences and All
Labor Share Definitions.
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Univariate {z0} Bivariate {z1, z2}
σx ρ(y, x) ρ(xt−1, xt) σx ρ(y, x) ρ(xt−1, xt)

y 1.61 1.00 .72 .97 1.00 .75
h 1.19 .97 .70 .55 .45 .74
c .51 .87 .82 .70 .96 .78
i 5.17 .99 .70 1.94 .96 .72
r .07 .96 .70 .06 .64 .71
w .51 .87 .82 .70 .96 .78
y/h .51 .87 .82 .87 .82 .71
z0, z1 .87 .99 .71 .87 .92 .72
z2 - - - .41 -.06 .73

Table 17: Labor Share with Durables, and Hansen-Rogerson Preferences

Univariate {z0} Bivariate {z1, z2}
σx ρ(y, x) ρ(xt−1, xt) σx ρ(y, x) ρ(xt−1, xt)

y 1.74 1.00 .71 1.11 1.00 .75
h 1.38 .98 .70 .71 .53 .76
c .47 .83 .84 .65 .94 .80
i 5.85 .99 .70 2.69 .97 .73
r .07 .97 .70 .07 .72 .72
w .47 .83 .84 .65 .94 .80
y/h .47 .83 .84 .95 .77 .71
z0, z1 .94 .99 .71 .96 .91 .72
z2 - - - .45 -.16 .74

Table 18: Labor Share with Durables and Government, and Hansen-Rogerson Preferences
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Univariate {z0} Bivariate {z1, z2}
σx ρ(y, x) ρ(xt−1, xt) σx ρ(y, x) ρ(xt−1, xt)

y 1.53 1.00 .72 .89 1.00 .76
h 1.12 .97 .70 .67 .17 .73
c .51 .86 .83 .61 .96 .81
i 4.89 .99 .71 1.87 .96 .73
r .07 .96 .70 .08 .68 .72
w .51 .86 .83 .62 .95 .81
y/h .51 .86 .83 1.02 .76 .71
z0, z1 .89 .99 .71 .91 .88 .72
z2 - - - .48 -.22 .72

Table 19: Compensation of Employees divided by GNP, and Hansen-Rogerson Preferences

y h c i r w y/h z1 z2

Baseline Labor Share u1 96.2 52.0 95.2 99.5 76.3 95.2 98.3 100.0 66.7
u2 3.8 48.0 4.8 .5 23.7 4.8 1.7 .0 33.3

.... with Durables u1 96.2 60.0 96.2 83.4 96.2 96.1 99.6 99.6 67.8
u2 3.8 40.0 3.8 16.6 3.8 3.9 .4 .4 32.2

... and Government u1 95.9 59.5 95.7 96.6 85.4 95.7 89.1 97.7 63.1
u2 4.1 40.5 4.3 3.4 14.6 4.3 10.9 2.3 36.9

CE/GNP u1 96.8 57.1 96.8 97.3 87.8 96.8 95.0 99.0 68.9
u2 3.2 42.9 3.2 2.7 12.2 3.2 5.0 1.0 31.1

Table 20: Forecast Error Variance Decomposition (%), Hansen-Rogerson Preferences
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γ11 γ12 γ21 γ22 σ1 σ2 σ12

Baseline Labor Share .947 - .050 .930 .00666 .00302 -.10E-04
(.022) (.010) (.016)

... with Durables .939 - .055 .927 .00663 .00287 -.10E-04
(.023) (.011) (.016)

... and Government .926 - .058 .942 .00722 .00313 -.14E-04
(.025) (.011) (.015)

CE/GNP .946 - .052 .928 .00683 .00344 -.17E-04
(.023) (.011) (.014)

Table 21: Bivariate Constrained Estimation under γ12 = 0

Baseline with Durables and Government CE/GNP
σx ρ(y, x) σx ρ(y, x) σx ρ(y, x) σx ρ(y, x)

y .91 1.00 .92 1.00 .99 1.00 .87 1.00
h .23 .30 .27 .36 .31 .36 .33 -.02
c .72 .91 .67 .92 .63 .88 .60 .88
i 1.90 .88 1.98 .92 2.46 .93 2.09 .92
r .06 .67 .07 .70 .06 .78 .08 .76
w .79 .87 .76 .87 .74 .82 .67 .78
y/h .87 .97 .86 .95 .93 .95 .94 .94
z0, z1 .87 .98 .86 .98 .94 .98 .89 .96
z2 .42 -.25 .40 -.24 .44 -.35 .47 -.43

Table 22: Bivariate Shocks, Constrained Estimation and Log-Log Preferences
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y h c i r w y/h z1 z2

Baseline Labor Share u1 99.0 57.3 96.3 94.9 74.0 94.2 99.0 100.0 67.1
u2 1.0 42.7 3.7 5.1 26.0 5.8 1.0 .0 32.9

.... with Durables u1 98.7 63.2 96.6 99.0 79.2 94.3 98.7 100.0 68.2
u2 1.3 36.8 3.4 1.0 20.8 5.7 1.3 .0 31.8

... and Government u1 98.4 60.3 95.4 98.9 82.4 92.2 97.4 100.0 65.3
u2 1.6 39.7 4.6 1.1 17.6 7.8 2.6 .0 34.7

CE/GNP u1 98.8 58.1 97.2 99.3 85.9 94.7 98.5 100.0 69.0
u2 1.2 41.9 2.8 .7 14.1 5.3 1.5 .0 31.0

Table 23: Forecast Error Variance Decomposition (%), Constrained Estimation and Log-Log
Preferences
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Appendix C. Alternative Identification Scheme.

Our identification scheme treats innovations to factor shares as purely redistributive, that is,

without contemporaneous effects on productivity. Alternatively, we can reverse the order of the

VAR system to orthogonalize the innovations εt as(
ε2
t

ε1
t

)
=

(
.00304 .0

−.00349 .00577

)(
u2

t

u1
t

)

where σε2 = .00304, E[ε1
t |ε2

t ] = −.00349, and the standard error of the regression of ε1
t on ε2

t

is .00577. This orthogonalization has the identifying assumption that while innovations to the

factor shares have a contemporaneous effect on productivity, however, productivity innovations

do not alter the distribution of income at prompt.

The responses of z1
t and z2

t to productivity and labor share innovations are depicted in Figures

17 and 18. Under the alternative identification scheme, after a productivity innovation the labor

share does not react at prompt, but it starts to continuously raise at t = 1 and for the next

4 years or so, after which it slowly decreases dying out towards its steady state. In this case,

productivity responds to its own innovations similarly to our previous identification but in a lesser

magnitude. With the alternative identification, innovations to the labor share drop productivity

below its steady state at all periods, it drops at prompt and monotonically raises back to the

steady state. An innovation to the labor share with the alternative identification assumption

raises initially the labor share but it starts do decline immediately falling below its unconditional

mean after 3 years reaching a minimum 8 years after the impulse.

We find that the response of the hours and consumption to productivity innovations, and the

response of hours to innovations in the labor share are similar under both identification schemes

as depicted in Figures 19 and 20. While consumption raises initially to slowly move towards its

steady state in response to redistributive innovations, consumption drops below the steady state

following a U-shaped pattern when innovations to the labor share are not purely redistributive.

55



-0.002-0.00100.0010.0020.0030.0040.0050.0060.007

0 5 10 15 20 25 30 35 40 45

z 1z 1 Alternativez 2z 2 Alternative

Figure 17: IRFs to Orthogonalized Productivity Innovations, Alternative Identification.
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Figure 18: IRFs to Orthogonalized Labor Share Innovations, Alternative Identification.
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Figure 19: IRFs of Hours to All Innovations, Alternative Identification.Consumption(% Deviations from Steady State)
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Figure 20: IRFs of Consumption to All Innovations, Alternative Identification.
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