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1 Introduction

The extent to which market imperfections or institutional distortions amplify
business cycle fluctuations is controversial. Competitive real-business-cycle
models (for example, Kydland and Prescott 1982, Hansen 1985) imply that
these factors play a secondary role. Other types of model imply that market
imperfections can have a significant, adverse effect on welfare. In particu-
lar, Bernanke and Gertler (1989, 1995) analyze such a model of collateral
constraints on lending to firms.

One fact that Bernanke and Gertler (1995) adduce to argue that such
constraints actually exist is that aggregate shocks affect small firms more
dramatically than large firms in the U.S. economy.1 They remark that small
firms do not have access to equity and commercial-paper markets, hypothe-
size that small firms are excluded from these markets because they have less
collateral relative to their scale of operations than large firms have, and infer
that the experience of actual small firms corroborates the implication of their
model that collateral-constrained firms are particularly sensitive to shocks.
This argument is only as strong as the hypothesis that a binding collateral
constraint is the basis for exclusion from the market. An alternate hypoth-
esis reverses the causality: small firms are unable to attract capital or to

1Henceforth ‘shocks’ will denote aggregate shocks. In the simple model to be presented
here, heterogeneity will be nonstochastic. There will be no idiosyncratic shocks.
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borrow because they are intrinsically risky—particularly so, when there are
bad shocks—rather than being especially vulnerable to bad shocks because
investors and lenders do not treat them on their merits.

If firms are modeled as having respective CRS technologies that are iden-
tical (as by Lucas and Prescott 1971, or that differ only by a multiplicative
productivity or production-cost factor (as by Jovanovic 1982), then aggre-
gate shocks should affect large and small firms proportionally. Bernanke and
Gertler’s suggestion that a market imperfection is required to explain differ-
ent sensitivity to shocks between large and small firms is valid, conditional on
such a background assumption. However, the background assumption also
implies that large and small firms should use identical factor proportions even
if the small firms face credit constraints, Oi (1983) refutes that implication.

The question remains open, then, whether or not a competitive model
can reflect the disproportionate sensitivity to shocks of small firms’ market
participation. One aspect of this question concerns how closely a detailed
general-equilibrium model can match moments, impulse responses, and other
statistical features of the actual economy when it is solved by numerical
simulation. Khan and Thomas (2004) and the references cited there have
made considerable progress in this regard. This sort of model is a black box,
though. If it does entail that small firms are disproportionately sensitive to
shocks, it nevertheless may not provide much intuition about what causes
that sensitivity. To the extent that it does not provide such intuition, it is
uninformative about which moments (among the very large number available
when disaggregated data are studied) are the relevant ones to match, to
show that the model performs better than one based on financial-market
constraints.

The example to be analyzed here is complementary to such quantitative
models. It is a schematic model that would be unsuitable for estimation or
calibration. Instead, its virtues are that it is analytically tractable and has
intuitively intelligible implications.

2 An overlapping-generations example with

heterogeneous producers

The model has the usual demographic structure of an “initial old” cohort 0
and a sequence of further cohorts t = 1, 2 . . .. Each cohort is represented as
a copy of the interval [θL, θH ] ⊆ (0,∞) with Lebesgue measure. Each agent
in cohort 0 is endowed with s0(θ) > 0 units of an investment good that I will
call ‘capital’. Output of production at each date is divided into a composite
consumption good and capital to be carried over to the next date. Agent
θ in cohort t ≥ 1 takes the following sequence of actions. (αt > 0, φ > 0,
γ ∈ (0, 1).) The shocks αt are generated by a stationary Markov process with
finite state space A = {a1, . . . , an} ⊆ (0,∞), having transition probabilities
Pr(αt+1 = aj|αt = ai) = pij ∈ (0, 1)).

1. Purchase capital, produce output, save and consume at date t.

(a) Observe a productivity shock αt ∈ R+
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(b) Purchase ω ≥ 0 units of capital on short-term credit at competi-
tive purchase price qt, to own as an asset.

(c) Choose an amount κ > 0 of capital to be used in production of

f(κ, α, θ) = χ≥φ(κ)αθ(κ− φ)1/2 (1)

units of output, where χ≥φ(κ) = 1 if κ ≥ φ and if χ≥φ(κ) = 0 if
κ < φ.

- The difference κ− ω is acquired (or provided, if ω > κ) on a
rental market at competitive price rt.

(d) After producing, surrender qtω+rt(κ−ω) units of output to settle
capital purchase and rental obligations. (There is a rental receipt
if ω > κ.)

(e) Save a quantity σ of output satisfying

σ ∈ [(1− δ)ω, f(κ, α, θ) + (1− δ)ω − (qtω + rt(κ− ω))] (2)

as capital for sale at date t + 1.

(f) Consume the remainder, c = f(κ, α, θ) + (1− δ)ω − (qtω + rt(κ−
ω) + σ) ≥ 0

2. Sell σ units of capital and consume c′ = qt+1σ units of output at date
t + 1

Agents maximize expected consumption with discount factor β ∈ (0, 1).
That is, if αt = ai, then agent θ in cohort t chooses these actions to maximize

c + β

n∑
j=1

pijc
′
j (3)

recognizing that qt+1, and hence c′, will depend on αt+1.
2

3 Equilibrium

For t ≥ 1, define wt(θ), kt(θ) and st(θ) to be the choices of ω, κ, and σ
respectively by agent θ in cohort t.

Define L1
+ to be the set of integrable nonnegative functions g : [θL, θH ] →

R+. An equilibrium consists of a sequence ((w1, k1, s1), (w2, k2, s2), . . .) ∈
(L1

+ ×L1
+ ×L1

+)N+ and a sequence ((q1, r1), (q2, r2), . . .) ∈ (R+ ×R+)N+ that
satisfy the following 3 conditions for each t ≥ 1.

1. For all θ, (ω, κ, σ) = (wt(θ), kt(θ), st(θ)) solves the constrained opti-
mization problem described above.

2In the usual fashion of overlapping-generations models, agents in cohort 0 maximize c′

only. The solution of this trivial optimization problem is to sell their entire capital stocks
to the agents of cohort 1.

3



2. The market-clearing condition for capital purchase holds that

∫ θH

θL

wt(θ) dθ =

∫ θH

θL

st−1(θ) dθ (4)

3. The market-clearing condition for capital rental holds that

∫ θH

θL

kt(θ) dθ =

∫ θH

θL

wt(θ) dθ (5)

The state of the economy at date t is the pair (αt,
∫ θH

θL
st−1(θ) dθ). That

is, the state is determined by the aggregate shock and the aggregate quantity
of capital carried into the economy by old agents. Define the state space

X = A× R+ (6)

I adopt the notation that

x = (α, κ̄) κ̄t =

∫ θH

θL

st−1(θ) dθ (7)

An equilibrium is recursive if there are functions κ∗ : X → R+, Q : X →
R+ and R : X → R+ such that, for all t, κ̄t+1 = κ∗(xt), qt = Q(xt) and
rt = R(xt).

Define a shock-determined equilibrium (SDE) to be a recursive equilib-
rium such that there is a function k∗ : A → R+ satisfying3

κ∗(xt) = k∗(αt) (8)

This is a restrictive condition that would not typically be satisfied in equi-
librium except with linear utility. However, if it does exist in this case, then
an SDE is particularly simple to describe and to analyze.

4 Competitive production decisions

In this environment with both asset-purchase and rental markets for capital,
each young agent’s decision problem can be decomposed into an intertempo-
ral and an intratemporal component. The intratemporal problem is to set
factor demand for capital to maximize output net of rental cost. Given that
the supply of capital is predetermined by the amount carried in by old agents,

3A more general condition, allowing for capital-adjustment constraints to bind, would
be that

|κ∗(xt)− k∗(αt)| = min

{
|κ− k∗(αt)|

∣∣∣∣∣ κ ∈
[
(1− δ)

∫ θH

θL

ωt(θ) dθ,

∫ θH

θL

f(kt(θ), α, θ) + (1− δ)ωt(θ) dθ

]}
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young agents’ demand schedule for capital determines the equilibrium rental
price.

Now I derive this demand schedule. Define k̂(x, θ, r) to be the value
of κ that maximizes f(κ, α, θ) − rκ. This quantity satisfies the first-order
condition that

αθ

2
(k̂(x, θ, r)− φ)−1/2 = r (9)

which implies that

k̂(x, θ, r) =

(
αθ

2r

)2

+ φ (10)

Define θ̃(x, r) to be the marginal firm (that is, the firm for which
f(k̂(x, θ, r), α, θ)−rk̂(x, θ, r) = 0) or else to be θL if all firms can earn positive
profit at rental price r, or else to be θH if no firm can earn positive profit at
r. This firm is defined by

∣∣∣∣θ̃(x, r)− 2rφ1/2

α

∣∣∣∣ = min

{ ∣∣∣∣θ −
2rφ1/2

α

∣∣∣∣ | θL ≤ θ ≤ θH

}
(11)

Define D(x, r) to be aggregate factor demand for capital. That is,

D(x, r) =

∫ θH

θ̃(x,r)

k̂(x, θ, r) dθ (12)

If

θL ≤ 2rφ1/2

α
≤ θH (13)

then

D(x, r) =
( α

2r

)2
[
θH

3 − (2rφ1/2/α)3

3

]
+ φ

[
θH − 2rφ1/2

α

]
(14)

The equilibrium rental price of capital, R(x), satisfies

κ̄ = D(x,R(x)) (15)

If (13) holds, then by (14) and (15), there exists a function ρ : R+ → R+

such that
R(x) = αρ(κ̄) (16)

In particular, substitution of αρ for r on the right side of (14) and substitution
of the resulting expression for D(x,R(x)) in (15) yield an equation that
simplifies to

32φ3/2ρ3 + 12(κ̄− φθH)ρ2 − θH
3 = 0 (17)

Solving this equation defines ρ as a function of κ̄ and parameters of the
model. In particular, for κ̄ = 0, this procedure yields

ρ(0) =
θH

2φ1/2
(18)

Note that, by (11) and (16),
∣∣∣θ̃(x,R(x))− 2ρφ1/2

∣∣∣ = min
{ ∣∣∣θ − 2ρφ1/2

∣∣∣ | θL ≤ θ ≤ θH

}
(19)
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Equations (18) and (19) imply that

κ̄ = 0 =⇒ θH =
2R(x)φ1/2

α
(20)

so that θ̃(x,R(x)) = θH but the constraint that θ̃ ≤ θH does not bind in (19).
It also follows from (19) that

ρ(κ̄) =
θL

2φ1/2
=⇒ θL =

2R(x)φ1/2

α
(21)

so that θ̃(x,R(x)) = θL but the constraint that θL ≤ θ̃ does not bind in (19).
Applying the implicit function theorem to equation (17) yields

ρ′(κ) =
−ρ(κ)

8φ3/2ρ(κ)− 2φθH

(22)

so

ρ(κ) >
θH

4φ1/2
=⇒ ρ′(κ) < 0 (23)

Therefore, by (20) and (23),

θL ≥ θH/2 =⇒ ∀ α ∈ A ∀κ̄ ∈
(

0, ρ−1

(
θL

2φ1/2

))

[θL < θ̃((α, κ̄), R(α, κ̄)) < θH and ρ′(κ̄) < 0]

(24)

5 An economy possessing a shock-determined

equilibrium

Now I show that, for some economies, an SDE exists. In the equilibrium that
I exhibit, each cohort has positive aggregate consumption in both periods of
its lifetime. In order for such a consumption pattern to be consistent with op-
timization of the discounted-consumption objective function (3), prices must
statisfy4

∀t ∈ N+ β−1 = E[qt+1|xt]

∀x ∈ X β−1 = E[Q(xt+1)|xt]
(25)

The other condition implied by agents’ optimization is that

∀t ∈ N+ qt = rt + (1− δ)

∀x ∈ X Q(x) = R(x) + (1− δ)
(26)

4In this pair of equations and in the next pair, the second equation is a sufficient
condition for the first, which is an equilibrium condition that must hold a.s.
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This condition reflects the situation that there is only one difference between
purchasing and renting capital: the part of purchased capital that remains
after depreciation can be sold (at expected price β−1) for consumption in the
next period, while depreciated rented capital must be returned to the owner.

Combining these equations (for x and x′ respectively),

∀x ∈ X β−1 + δ − 1 = E[R(x′)|x] (27)

Consider a 2-state shock process,

A = {a1, a2} a1 < a2 (28)

Suppose that k∗ : A → R+ determines an SDE. Define κ1 = k∗(a1) and
κ2 = k∗(a2). Equations (16), (25) and (26) imply that

β−1 + δ − 1 = p11a1ρ(κ1) + p12a2ρ(κ1)

β−1 + δ − 1 = p21a1ρ(κ2) + p22a2ρ(κ2)
(29)

This is equivalent to
(

(β−1 + δ − 1)/ρ(κ1)
(β−1 + δ − 1)/ρ(κ2)

)
= P

(
a1

a2

)
(30)

Multiplication by P−1 yields

(
a1

a2

)
= P−1

(
(β−1 + δ − 1)/ρ(κ1)
(β−1 + δ − 1)/ρ(κ2)

)

=
β−1 + δ − 1

p11 + p22 − 1

(
p22/ρ(κ1) + (p11 − 1)/ρ(κ2)
(p22 − 1)/ρ(κ1) + p11/ρ(κ2)

) (31)

Assume that
p11 + p22 − 1 > 0 (32)

which is the condition that the Markov process with transition matrix P is
stochastically monotone. Equations (28) and (32) imply that

κ1 < κ2 (33)

and

a2 − a1 =
β−1 + δ − 1

p11 + p22 − 1

[
1

ρ(κ2)
− 1

ρ(κ1)

]
(34)

Now consider a1 and a2 to be a function of κ1 and κ2 respectively, P ,
θH , and φ, defined by (17) and (31). An SDE exists in the economy with
parameters 〈αt〉 (which determines P ), θH , θL ≥ θH/2, and φ, if κ1 and
κ2 can be chosen such that, for the values of a1 and a2 determined by this
function, the following 3 conditions are satisfied.

• If αt−1 = ai and αt = aj, then aggregate production in the resulting
state (aj, k

∗(ai)) is greater than k∗(aj)− (1− δ)ai.
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– It is sufficient that aggregate production in state (a1, k
∗(a1)) is

greater than k∗(a2)− (1− δ)a1.

• If αt−1 = ai and αt = aj, then (1 − δ)k∗(ai) < k∗(aj) so that the rate
of depreciation does not constrain the capital stock from declining to
its target in 1 period.

– It is sufficient that (1− δ)k∗(a2) < k∗(a1)

• 0 < κ1 < κ2 < ρ−1(θL/[2φ1/2]), as required by (24) and (33).

I prove that this can be done. The key is a change of variable, by which
equilibrium quantities are represented as functions of the marginal producer,
θ̃, rather than of the capital stock. By (16) and (53), the equilibrium rental
price is

R∗(α, θ̃) =
αθ̃

2φ1/2
(35)

The analogue of k̂(x, θ, R(x)) is

k∗(θ, θ̃) = k̂(x, θ, R(α, θ̃)) =

(
αθ

2R∗(α, θ̃)

)2

+ φ = φ

[(
θ

θ̃

)2

+ 1

]
(36)

The analogue of D(x,R(x)) is

K(θ̃) =

∫ θH

θ̃

k∗(θ, θ̃) dθ =
φ

3θ̃2

(
θH

3 − θ̃3
)

+ φ(θH − θ̃) (37)

Aggregate output, when K(θ̃) is allocated efficiently in a state having θ̃ as
marginal producer, is

Y (α, θ̃) =

∫ θH

θ̃

f(k∗(θ, θ̃), θ, α) dθ =
αφ1/2

3θ̃

(
θH

3 − θ̃3
)

(38)

In order to exhibit an SDE, first consider the case in which aggregate pro-
ductivity is a nonstochastic constant a. By (25) and (26), β−1 = R∗(a, θ̃) +
(1− δ). That is, by (35),

β−1 + δ − 1 =
aθ̃

2φ1/2
(39)

In light of (39), define

α(θ̃) =
2φ1/2(β−1 + δ − 1)

θ̃
(40)

The single-state SDE must reach a stationary allocation at date 2, in
which Y − δK > 0 so that consumption can be positive. Substituting (40)
into the formula for Y − δK yields5

5To streamline notation in the following computation, I write ‘θ’ rather than ‘θ̃’.
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Y (α(θ), θ)− δK(θ) =
2(β−1 + δ − 1)φ

3θ2
(θH

3 − θ3)−

δ

[
φ

3θ2
(θH

3 − θ3) + φ(θH − θ)

]

=

[[
2(β−1 + δ − 1)− δ

3θ2

] (
θH

3 − θ3
)−

δ(θH − θ)

]
φ

(41)

In particular,
Y (α(θH), θH)− δK(θH) = 0 (42)

Now I use Taylor’s approximation to sign Y (α(θ), θ)−δK(θ) as θ approaches
θH from below.

∂

∂θ
[Y (α(θ), θ)− δK(θ)] =

[−2[2(β−1 + δ − 1)− δ]

3θ3

(
θH

3 − θ3
) −

[2(β−1 + δ − 1)− δ] + δ

]
φ

=

[−2[2(β−1 + δ − 1)− δ]

3θ3

(
θH

3 − θ3
) −

2(β−1 + δ − 1)

]
φ

(43)

In particular,

∂

∂θ
[Y (α(θ), θ)− δK(θ)]|θ=θH

= −2(β−1 + δ − 1)φ < 0 (44)

Therefore, for some θ∗ ∈ (θL, θH),

∀θ ∈ (θ∗, θH) Y (α(θ), θ) > δK(θ) (45)

By (45) and by continuity of K and Y , the following condition holds. For
every θ ∈ (θ∗, θH), there exists ε > 0 such that, for all θ1 and θ2 satisfying
max(θ∗, θ − ε) < θ2 < θ1 < min(θH , θ + ε) and all a ∈ (α(θ)− ε, α(θ) + ε),

Y (a, θ1) > δK(θ1) + (K(θ2)−K(θ1)) (46)

and
K(θ1) > (1− δ)K(θ2) (47)

Now a 2-state SDE can be constructed. Let P be any transition matrix
satisfying the stochastic-monotonicity condition (32). Let 0 < θL < θH/2
and 0 < δ < 1. Let θ∗ satisfy (45), and define θ1 = (θ∗ + θH)/2. Set

κ1 = ρ−1

(
θ1

2φ1/2

)
(48)
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as specified by (35). For n ≥ 2, define

κ∗n = ρ−1

(
θ1 + 1/n

2φ1/2

)
(49)

Define, according to (31),

(
a∗1n

a∗2n

)
=

β−1 + δ − 1

p11 + p22 − 1

(
p22/ρ(κ1) + (p11 − 1)/ρ(κ∗n)
(p22 − 1)/ρ(κ1) + p11/ρ(κ∗n)

)
(50)

Then

a∗1n < a∗2n and lim
n→∞

a∗1n = lim
n→∞

a∗2n =
β−1 + δ − 1

ρ(κ1)
= α(θ1) (51)

Define k∗(α∗1n) = κ1 and k∗(α∗2n) = κ∗n. It follows from (46), (47), and
(51) that, if α1 = α∗1n and α∗2 = α2n for sufficiently large n, then k∗ (together
with the capital-rental and -purchase prices specified by (35) and (26)) is an
SDE.

6 Conclusion

My aim here is to explain how entry and exit over the course of the business
cycle might be concentrated among small firms, even without institutional
distortions, and then to show that that the explanation is consistent with a
fully specified equilibrium. The results of the preceding section enable me
largely to accomplish the first part of this aim.

In this model economy, the proper definition of a “small producer” is
unambiguous: it is a low-θ agent. Both factor demand for capital and also
output are strictly increasing in θ.

Suppose that there is an equilibrium in which the state is always in the
range (specified by the range of quantification in the consequent of (24))
where

θL < θ̃(x,R(x)) < θH and ρ′(κ) < 0 (52)

By (19) and (52),
θ̃(x,R(x)) = 2φ1/2ρ(κ̄) (53)

always in this economy. Now consider 2 possible states at date t that have
identical aggregate capital stocks, x = (αx, κ̄) and y = (αy, κ̄), such that

αx < αy (54)

By (53), the allocation of capital to producers is identical in these two states.
Therefore aggregate output is higher in y than in x.

Let κ̄′x and κ̄′y be the aggregate amounts of new capital that producers
carry into date t + 1 in states x and y respectively. It has been shown in
section 5 that the stochastic monotonicity assumption (32) implies that

[αx < αy and κ̄x ≤ κ̄y] =⇒ κ̄′x < κ̄′y (55)
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For any value α′ of the productivity shock, consider states s′x = (α′, κ̄′x) and
s′y = (α′, κ̄′y). By (52) and (55), ρ(κ̄′x) > ρ(κ̄′y). By (53),

θ̃(κ̄′x) < θ̃(κ̄′y) (56)

This implication from (54) to (56) shows that small producers’ participa-
tion in the market is affected by the lagged productivity shock, with small
producers’ participation (that is, κ(θ) > φ(θ) for low θ) tending to move in
the same direction as the productivity shock. If the shock process is stochas-
tically monotone, then I expect that small producers’ participation will be
correlated with the current productivity shock, but the current shock does
not affect small producers’ participation causally although it is forecastable.
Rather, the entire effect of the lagged productivity shock comes through its
effect on the size of the current aggregate capital stock.

These conclusions seem, qualitatively at least, fairly robust. It is easy
to imagine embroidering a model like this one with details that would give
the productivity shock some degree of direct effect on the identity of the
marginal firm, but it is more difficult to imagine that such an effect would
swamp the effect of the capital-stock level. The conclusions of this model
are also fairly strong—perhaps strong enough not to be very plausible. It
would be worthwhile to know whether or not they qualitatively character-
ize the actual U.S. economy, and also whether or not they characterize the
simulated equilibria of the more elaborate models designed for calibration.
If the conclusions characterize equilibria of those calibrated models but not
the equilibrium of the actual economy, then that discrepancy would provide
grounds for taking models based on market distortions seriously.
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