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Abstract

We discuss the identification and estimation of discrete games of complete informa-

tion. Following Bresnahan and Reiss (1990, 1991), a discrete game is a generalization of

a standard discrete choice model where utility depends on the actions of other players.

Using recent algorithms to compute all of the Nash equilibria to a game, we propose

simulation-based estimators for static, discrete games. We demonstrate that the model

is identified under weak functional form assumptions using exclusion restrictions and

an identification at infinity approach. Monte Carlo evidence demonstrates that the

estimator can perform well in moderately-sized samples. As an application, we study

entry decisions by construction contractors to bid on highway projects in California.

We find that equilibria in this game are more likely to be played if they are in mixed

strategies and if they maximize joint profits.
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1 Introduction

In this paper, we study the identification and estimation of static, discrete games of complete

information. These are the canonical normal form games of basic microeconomic theory,

with a history dating back to the seminal work of Nash (1951). Econometrically, a discrete

game is a generalization of a standard discrete choice model, such as the conditional logit

or multinomial probit, that allows an agent’s utility to depend on the actions of all other

agents. The utilities of all agents are common knowledge, and we assume that observed

outcomes are generated by a Nash equilibrium, where agents play strategies that are mutual

best responses. Discrete game models been applied to diverse topics such as labor force

participation (Bjorn and Vuong (1984), Kooreman and Soetevent (2006), entry (Bresnahan

and Reiss (1990, 1991), Berry (1992), and Jia (2006)), product differentiation (Seim (2001),

Mazzeo (2002)), technology choice (Ackerberg and Gowrisankaran (2006) and Ryan and

Tucker (2006), Manuszak and Cohen (2004)), advertising (Sweeting (2006)), long term care

and family bargaining (Stern and Heideman(1999), Stern and Engers (2002)), analyst stock

recommendations (Bajari, Hong, Nekipelov and Krainer (2004)) and production with discrete

units (Davis (2005)).

A generic feature of normal form games is that, for a given set of payoffs, there are often

multiple Nash equilibria to the game. Therefore, the model does not satisfy the standard

coherency condition of a one-to-one mapping between the model primitives and outcomes,

which is problematic for identification and estimation. The literature has taken three ap-

proaches to dealing with multiple Nash equilibria. The first approach is to introduce an

equilibrium selection mechanism which specifies which equilibrium is picked as part of the

econometric model. Examples include random equilibrium selection in Bjorn and Vuong

(1984) and the selection of an extremal equilibrium, as in Jia (2006). The second approach

is to restrict attention to a particular class of games, such as entry games, and search for

an estimator which allows for identification of payoff parameters irrespective of the presence

of multiple equilibria. For example, Bresnahan and Reiss (1990, 1991) and Berry (1992)

study models in which the number of firms is unique even though there may be multiple

Nash equilibria. They propose estimators in which the number of firms, rather than the

entry decisions of individual agents, is treated as the dependent variable. A third method,

proposed by Tamer (2002), uses bounds estimation to estimate an entry model. The bounds

are derived from the necessary conditions for pure strategy Nash equilibria which imply that

the entry decision of one agent must be a best response to the entry decisions of other agents.

Bounds estimation has also been used by Ciliberto and Tamer (2003), Pakes, Porter, Ho and

Ishii (2005) and Andrews, Berry, Jia (2005). Berry and Tamer, (2006) and Reiss (2006)
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provide recent surveys of the econometric analysis on discrete games.

In this paper, we study identification and estimation of discrete complete information

games, explicitly allowing for both multiple and mixed strategy equilibria. We propose a

simulation-based estimator for these games. The model primitives include player utilities

and an equilibrium selection mechanism which determines the probability that a particular

equilibrium to the game is played. Using these primitives, we define a Method of Simulated

Moments (MSM) estimator. We exploit recent algorithms that can compute all of the equi-

libria for general discrete games (see McKelvey and McLennan (1996)). Finding the entire

set of Nash equilibria is computationally expensive in all except the most simple games. For

moderately sized games, for example five players each of whom has two potential actions,

we have found that it may take up to 20 minutes of CPU time on a 3.0 GHz single processor

workstation to compute all the Nash equilibria. Therefore, we construct a smooth simula-

tor for our model using an approach related to work on importance sampling by Ackerberg

(2004) and Keane and Wolpin (1997, 2001). As we shall demonstrate in Section 3, this

algorithm significantly reduces the computational burden of estimation and can be easily

implemented as a parallel process. In a Monte Carlo study, we demonstrate that it is possi-

ble to construct estimates and standard errors for our model with less than a day of CPU

time on a standard processor. We provide Monte Carlo evidence that our estimator works

well even with moderately size samples. Finally, we apply our framework to study entry in

an asymmetric first-price auction model. Using a unique data set, we study the strategic

decision of contractors to bid on highway repair contracts in California and we estimate the

probability of alternative equilibrium to the entry game.

Our approach makes several contributions to the literature on estimating static discrete

games. First, our approach can be applied any normal form game of complete information.

Several of the previous approaches in the literature restrict attention to specific classes of

games, such as entry games or games with strategic complementarities. Also, to the best of

our knowledge, our estimator is the only approach which can accommodate mixed strategy

equilibria. In Section 2, we demonstrate that unless strong restrictions are made on the

underlying payoffs or on the support of the error terms, every discrete game with complete

information generates equilibrium sets that contain no pure strategy equilibria with positive

probability. Moreover, some research argues that mixed strategy equilibria are likely in some

settings, such as zero-sum games. For example, in their study of penalty kicks, Chiapporri,

Groseclose, and Levitt (2002) find evidence in favor of mixed strategies. Levin and Smith

(2001) conduct an experimental study of entry in auctions and find evidence in favor of the

mixed strategy entry equilibrium compared to the pure strategy entry equilibrium. In exper-

imental studies, El-Gamal and Grether (1995) and Shachat and Walker (2004) both found
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that mixed strategy equilibria can be consistent with an unobserved mixture of Bayesian

learning by players.

Second, we explicitly model and estimate the equilibrium selection mechanism. McK-

elvey and McLennan (1997, 1997) have established that normal form games generically have

large numbers of Nash equilibria that increase at an exponential rate as the number of

players and/or actions grows. Estimating the selection mechanism allows the researcher to

simulate the model, which is central to performing counterfactuals. This contrasts with the

earlier literature on discrete games, which proposed estimators which do not specify which

equilibrium is selected, making it impossible to simulate the model.

Understanding how equilibria are selected in actual plays of a game is also a topic of

independent interest. There is a large and influential literature on refinements of the Nash

equilibrium solution concept, such as trembling hand perfection or stability. However, there

may be a large number of Nash equilibria which satisfy even the strongest refinements.

Currently, there is no generally accepted method in economic theory for selecting between

alternative equilibria to a normal form game. As a result, in some applications, the usefulness

of game theory may be limited because the economist is forced to either make simplifying

assumptions which guarantee a unique outcome or propose an ad hoc rule for selecting

between multiple equilibria. We contribute to the literature by taking an empirical approach

to the problem of equilibrium selection. We believe that an empirical approach may be useful

given the lack of theory for selecting between alternative equilibria in many applications.

Our third contribution is to propose sufficient conditions for the semiparametric identifi-

cation of both the structural parameters underlying the payoff functions and the parameters

of the equilibrium selection mechanism. We propose two separate sets of conditions. The

first identification strategy is based on an identification at infinity argument. Here we sup-

pose that the structural utility parameters can be defined as a linear index, and that the

covariates have a sufficiently rich support. We demonstrate that it is possible to identify

the structural parameters of our model by examining choice behavior for sufficiently large

values of the covariates. The second strategy is based on finding an appropriate exclusion

restriction. For example, if there are covariates that shift the utility of one player, but can be

excluded from the utility of another player, then we demonstrate that both payoffs and the

equilibrium selection mechanism are locally identified. In an entry game, for example, we

would search for a covariate that shifts the profitability of one firm for entering a particular

market that can be excluded from the profits of other firms. An example of this could be

distance from headquarters, as in empirical studies of entry by discount retailers (see Jia

(2006) and Holmes (2006)). This excluded variable allows us to generate variation in all of

the choice probabilities, while only changing the payoff for one player. We demonstrate that
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this type of variation is sufficient to locally identify the structural parameters of our model.

Our identification strategy is closely related to approaches found in treatment effect

and sample selection models. The probability that a particular equilibrium is played is

analogous to the selection equation, and the equation that determines utility corresponds to

the treatment equation. In sample selection models, it is well known that identification under

weak functional form assumptions often requires an exclusion restriction or identification at

infinity (see Heckman (1990)). These models have simpler structure than our model of

a discrete game since they only consider the actions of a single agent acting in isolation.

It follows that equally, or even more, stringent assumptions will be required in our more

complicated models. Both exclusion restrictions and index restrictions have been commonly

used to identify econometric models of discrete games. Bresnahan and Reiss (1991) and

Tamer (2002) use these restrictions to identify latent utility parameters in two by two games.

These restrictions are necessary because, as shown in Bresnahan and Reiss (1991), without

any restrictions all outcomes are observationally equivalent in games other than two by two

games. To the best of our knowledge, we are the first to use these restrictions to identify

both payoffs and the equilibrium selection mechanism in general normal form games.

Finally, we consider an application of our estimator to the study of entry in auctions.

Entry in auctions has been considered in earlier research, but researchers have not formally

treated the possibility of multiple equilibria to the auction game (see Bajari and Hortacsu

(2003) and Athey, Levin, and Seira (2006)). We construct a data set of bidder entry into

procurement auctions for highway paving projects in California. This application fits our

modeling assumptions well. First, contractors’ entry decisions can reasonably be modeled as

a simultaneous move game. Contractors are prohibited by antitrust law from communicating

before submitting their bids, enforced by the threat of both civil and criminal penalties.

Second, an observation in our data set is the decision to bid for a single, precisely specified

construction project with a fixed duration. In our data, we find that backlog and other

dynamic factors are fairly minor in accounting for bidding behavior. Thus, we argue that

our entry decision can be reasonably modeled as static, isolated instances of the entry game.

In other applications, entry decisions will involve competing in a market for an indeterminate

period of time which suggest allowing for a dynamic model may be important. The focus

of our application is the estimation of an equilibrium selection mechanism. We allow the

probability that a particular equilibrium is observed to depend on if the equilibrium is in pure

strategies, maximizes joint profits, has the highest Nash product among pure strategies, and

if it is dominated. To the best of our knowledge, this is the first empirical test of alternative

criteria for selecting between Nash equilibrium in a normal form game.
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2 The Model

The model is a simultaneous move game of complete information, commonly referred to as

a normal form game. There are i = 1, . . . , N players, each with a finite set of actions Ai.

Define A = ×iAi and let a = (a1, . . . , aN) denote a generic element of A. Player i’s von

Neumann-Morgenstern (vNM) utility is a map ui : A → R, where R is the real line. Let πi

denote a mixed strategy over Ai. A Nash equilibrium is a vector π = (π1, . . . , πN) such that

each agent’s mixed strategy is a best response.

Following Bresnahan and Reiss (1990, 1991), assume that the vNM utility of player i can

be written as:

ui(a, x, θ1, εi) = fi(x, a; θ1) + εi(a). (1)

We will sometimes abuse notation and write ui(a) instead of ui(a, x, θ1, εi). In Equation 1,

i’s vNM utility from action a, ui(a), is the sum of two terms. The first term is a function

fi(x, a; θ1), which depends on a, the vector of actions taken by all of the players, covariates

x, and parameters θ1. The second term is εi(a), a random preference shock. The term εi(a)

reflects information about utility that is common knowledge to the players, but not observed

by the econometrician. In games where there are a small number of players who know each

other well, they will observe important information about each other that is not observed to

the econometrician. Note that the preference shocks depend on the entire vector of actions

a, not just the actions taken by player i. In much of the literature, stochastic shocks are

only a function of player i’s own actions, which is less general than the present model. The

εi(a) are assumed to be i.i.d. with a density gi(εi(a)|θ2) and joint distribution g(ε(a)|θ2) =∏
i

∏
a∈A gi(εi(a)|θ2). We could easily modify our estimator to allow the εi(a) to only depend

on the actions of i or to drop the independence assumption, for example by including random

effects to account for unobserved heterogeneity.1 We discuss the independence assumption

in more detail in our section on identification.

Let ui = (ui(a))a∈A denote the vector of utilities for player i, and let u = (u1, . . . , uN).

Given that there may be more than one equilibrium for a particular u, let E(u) denote the

set of Nash equilibria. We now introduce a mechanism for how a particular equilibrium is

selected in the data. We let λ(π; E(u), β) denote the probability that equilibrium π ∈ E(u)

is selected, where β is a vector of parameters. In order for λ to generate a well-defined

1If εi(a) has full support, the set of games u that can be drawn has full support. Therefore, the support
of the likelihood function is A for all parameter values and covariates. If εi(a) only depends on i’s actions,
ai, the likelihood may not have full support, A. This may lead to a severe specification problem since the
model could predict that some events may have zero probability.
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distribution it must be the case that, for all u and β:∑
π∈E(u)

λ(π; E(u), β) = 1.

Economic theory or the specifics of a particular application might suggest factors which

favor some types of equilibria. For instance, economic theory suggests that an equilibrium

is more plausible if it satisfies a refinement such as trembling hand perfection. Berry (1992)

and Ciliberto and Tamer (2003) suggest an equilibrium could be more likely if it is in pure

strategies, or if it maximizes the joint profits of firms in the industry. Given u and E(u)

we could create dummy variables for whether a given equilibrium, π ∈ E(u), satisfies any of

these criteria. Let y(π, u) denote a vector of variables that we generate in this fashion. For

instance, to construct an equilibrium selection mechanism based on the three factors listed

above, define the following quantities:

y1(π, u) =

1 if π is trembling-hand perfect,

0 otherwise.
(2)

y2(π, u) =

1 if π is a pure strategy equilibrium,

0 otherwise.
(3)

y3(π, u) =

1 if (
∑

i

∑
a π(a)ui(a))− û = 0,

0 otherwise,
(4)

where

π(a) =
∏

i

πi(ai),

and

û = max
π′∈E(u)

{∑
i

∑
a

π′(a)ui(a)

}
.

A parsimonious, parametric model of λ is then:

λ(π; E(u), β) =
exp(β · y(π, u))∑

π′∈E(u) exp(β · y(π′, u))
. (5)

Note that in Equation 5 the sum is taken over the distinct elements of the equilibrium set

π′ ∈ E(u). For each π′, we calculate the vector y(π, u) = (y1(π, u), y2(π, u), y3(π, u)) as

above. Then we evaluate the standard logit formula where β weights the probability that

a particular type of equilibrium is selected. The example above is meant to be a simple
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illustration of what a selection mechanism might look like in practice. It is easy to generalize

λ to allow for a less restrictive functional form and a richer set of variables, y(π, u).

Computing the set E(u), all of the equilibria to a normal form game, is a well studied

problem. McKelvey and McLennan (1996) survey the available algorithms in detail. The

free, publicly available software package, Gambit, has routines that can be used to compute

the set E(u) using these methods.2 Finding all of the equilibria to a game is not a polynomial

time computable problem. However, the available algorithms are fairly efficient at computing

E(u) for games of moderate size. Readers interested in the details of the algorithms are

referred to McKelvey and McLennan (1996). In the next sections, we shall take the ability

to compute E(u) as given.

2.1 Discussion

2.1.1 Mixed Strategies

Allowing for mixed strategies in our framework is necessary because there is a strictly positive

probability of a mixed strategy equilibrium if the error term has large enough support. As a

result, our estimator would be ill-defined if we restricted attention to pure strategy equilibria.

Consider the well-known game of matching pennies, illustrated in the figure below:

Matching Pennies

H T

H (1,-1) (-1,1)

T (-1,1) (1,-1)

In matching pennies, each player simultaneously chooses heads (H) or tails (T). If the

choice of strategies match, then player one receives utility of one and player two receives a

utility of negative one. If the strategies differ, the payoffs are reversed. The only equilibrium

to this game is in mixed strategies with each player placing probability 1/2 on H and 1/2 on

T. Consider games that have payoffs in a neighborhood of matching pennies by perturbing

the payoffs as follows:

Perturbed Game
H T

H (1+ε1(H, H),-1+ε2(H, H)) (-1+ε1(H, T ),1+ε2(H, T ))

T (-1+ε1(T,H),1+ε2(T,H)) (1+ε1(T, T ),-1+ε2(T, T ))

2Gambit can be downloaded on the web from http://econweb.tamu.edu/gambit/.
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For sufficiently small, but still non-zero, values of ε it can easily be verified that there is

no pure strategy equilibrium to this game. For example, (H,H) cannot be a pure strategy

equilibrium since player 2 would have an incentive to deviate and play T. Thus, there is an

open set of payoffs for which the game that only has an equilibrium in mixed strategies. As

a result, in our model the probability that payoffs are in this open set is strictly positive and

the probability of a mixed strategy equilibrium is also strictly positive. It is straightforward

to show that this result can be generalized to games with more players and more strategies.

If we only allowed for pure strategies, the model would have no equilibrium with probability

greater than zero and would not be well defined.

Previous research on complete information games generally limits attention to entry

games (see Bresnahan and Reiss (1990, 1991), Berry (1992) and Tamer (2002)). These papers

carefully restrict payoffs to guarantee the existence of a pure strategy equilibrium. Thus,

the estimators proposed in these papers, which restrict attention to mixed strategies, do not

need to accommodate mixed strategies. However, since we are interested in a more general

specification of payoffs, we must allow for mixed strategies. To the best of our knowledge,

our framework is the only available method which can accommodate mixed strategies.

2.1.2 Equilibrium Selection

A unique aspect of our framework is that we include the equilibrium selection mechanism,

λ, in our econometric model. The inclusion of λ is useful for two reasons. First, there are

frequently multiple Nash equilibria to a normal form game. Including λ specifies the proba-

bility of each equilibrium and therefore allows us to simulate the model. This is necessary for

both the construction of our estimator in the next section and for counterfactual analysis.

Second, equilibrium selection is an extremely important question in game theory and there

is very little empirical work in this area. Using our modeling framework, we are able to

empirically investigate equilibrium selection, which is important given that economic theory

may provide little guidance about which equilibrium to select.

For example, consider the pure coordination game below, where player one chooses {T,B},
top or bottom, and player 2 chooses {L,R}, left or right.

Coordination Game
L R

T (1,1) (0,0)

B (0,0) (1,1)

This game has three equilibria (T,L), (B,R) and a mixed strategy equilibrium where each

player plays each strategy with probability 1/2. Economic theory provides little guidance
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about which equilibrium is most likely in this game. For example, it does not seem possible

to use theory to predict whether the (T,L) or (B,R) equilibrium is more plausible. Both

equilibrium generate the same payoffs and only differ in the names assigned to the strategies.

The inability of economic theory to select a unique equilibrium is not specific to this example.

Many games generate multiple equilibria that satisfy the best known refinements in the

theoretical literature.

Our approach allows for an empirical approach to equilibrium selection in this example.

Suppose that the payoff matrix is known and that the economist has access to data on

repeated plays of this game. With a sufficiently large number of observations, the economist

will be able to precisely estimate the probability of observing the strategy pairs (T,L),

(T,R), (B,L) and (B,R). In this example, knowing λ requires the economist to specify the

probability that each of the three equilibria is played. Since the economist has knowledge

of four probabilities, three of which are linearly independent, it follows that λ is identified.

Therefore, while economic theory cannot be used to determine equilibrium selection, our

simple example suggests that an empirical approach to this problem may sometimes be

possible.

In our identification section, we investigate conditions under which both the equilibrium

selection mechanism and the payoff matrix can be simultaneously identified. We demon-

strate, similar to Bresnahan and Reiss (1991) that in general our problem is underidentified.

However, we also describe two sets of sufficient conditions for identification that may be

useful in some applications. Our identification results extend those of Bresnahan and Reiss

(1991) and Tamer (2002) to general normal form games with flexible equilibrium selection

mechanisms.

2.1.3 Comparison with Incomplete Information Games

An alternative approach used in the applied literature is to assume that the error terms only

depend only player i’s own actions and are private information. Incomplete information

games are attractive for empirical work since it is often possible to estimate these models

using a simple two-step procedure.3 However, discrete games with incomplete information

have a very different equilibrium structure than games with complete information. For

example, in a coordination game Bajari, Hong, Krainer and Nekipelov (2006) show that

the number of equilibria decreases as the number of players in the game increase. In fact,

the equilibrium is typically unique when there are more than four players. In a complete

information game, by comparison, the average number of Nash equilibrium will increase as

3See Pesendorfer and Schmidt-Dengler (2003), Aguirregabiria and Mira (2004), Brock and Durlauf (2001),
Sweeting (2006) and Bajari, Hong, Krainer and Nekipelov (2006).
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players are added to the game (see McKelvey and McLennan (1996)). Thus, the assumption

of incomplete information appears to refine the equilibrium set.

While games of incomplete information have been used in several applied papers, they

have not been studied in detail in economic theory (with the notable exception of Brock

and Durlauf (2001) and McKelvy and Palfrey (1995)). Theorists have not characterized

the structure of the equilibrium set and there is no literature on equilibrium refinement

and selection for this class of models. On the other hand, for complete information games

there is an extensive literature which characterizes the equilibrium set and which discusses

equilibrium selection and refinements. Therefore, we believe it worthwhile to study games

of complete information since the model is more closely linked to existing economic the-

ory. However, there is currently no method for determining whether the data generating

process corresponds to a complete information game or incomplete information game. We

believe that evaluating the merits of games with complete and incomplete information is an

important topic for future research.4

2.2 Examples of Discrete Games

The model that we propose is quite general and could be applied to many discrete games

considered in the literature. We discuss three examples: entry, technology adoption with

network effects, and peer effects. The first example is static entry into a market (see Bres-

nahan and Reiss (1990, 1991), Berry (1992), Tamer (2002), Ciliberto and Tamer (2003), and

Manuszak and Cohen (2004)). In applications of entry games, the economist observes a cross

section of markets and the players correspond to a set of potential entrants. The potential

entrants simultaneously choose whether to enter: ai = 1 denotes a decision by i to enter the

market and ai = 0 not to enter the market. In empirical work, the function fi typically takes

the form:

fi =

θ1 · x + δ
∑

j 6=i 1{aj = 1} if ai = 1,

0 if ai = 0.
(6)

In Equation 6 the mean utility from not entering is set equal to zero.5 The covariates x

are variables which influence the profitability of entering a market, such as the number of

consumers in the market, average income, and market-specific cost variables. The term

δ measures the influence entry by other firms on firm i’s profits. If profits decrease from

having another firm enter the market, then δ < 0. The error εi(a) capture shocks to the

profitability of entry that are commonly observed by all firms in the market, but which

4In addition, it may be easier to compute the set of all equilibria in games of complete information. See
Bajari, Hong, Nekipelov and Krainer (2004) for a discussion.

5We formally discuss this normalization in our section on identification.
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are unobserved to the econometrician. In applied work, it might be desirable to include a

market-specific random effect in the specification of the error term εi(a) in order to account

for factors which shift profits that are commonly observed by the firms, but are unobserved

by the econometrician. As discussed above, this extension to our estimator is completely

straightforward.

A second example is technology adoption in the presence of network effects, as in Acker-

berg and Gowrisankaran (2006) who model the decision by banks in spatially separated

markets to adopt the Automated Clearing House (ACH) payment system. The players in

the game are the existing banks in some market. Let ai = 1 denote a decision to adopt ACH

and ai = 0 denote non-adoption. A priori, network effects are likely since the customers of

bank i are able to transfer funds to customers of bank j if both i and j adopt ACH. An

empirical model of network effects could take the form:

fi =

θ1 · x + δ
∑

j 6=i 1{aj = 1} · cj · ci if ai = 1,

0 if ai = 0.
(7)

In Equation 7, xi denotes some factors which influence the costs and benefits to adoption

by firm i, such as the number of customers of bank i and their characteristics (e.g. large

corporate or government agencies commonly use ACH to make automatic payroll deposits).

The term ci is the current number of clients of bank i. If δ > 0, the term δ
∑

j 6=i 1 {aj = 1} ·
cj · ci captures the network effect. The marginal benefit of i’s adoption of ACH is a function

of the number of adopting customers at i’s bank interacted with the number of adopters

at other banks. The term εi(a) captures benefits to adoption observed by the banks but

unobserved by the economist. Once again, market specific random effects could be used to

account for unobserved heterogeneity in the benefits from adopting ACH.

A third example is peer effects, as in Manski (1993) and Brock and Durlauf (2001, 2003).

A peer effect connotes a situation in which there is a benefit from conforming to the average

or norm behavior. For example, consider the decision by a high school senior to take calculus.

The players in the game are all of the students who could potentially take the class. Let

ai = 1 if student i decides to take calculus and ai = 0 otherwise. The utility of student i is:

fi =

θ1 · xi + δ
∑

j 6=i 1{aj = 1} · sj if ai = 1,

0 if ai = 0.
(8)

In Equation 8, the covariates xi could include terms that shift a student’s incentives to take

calculus, such as the educational status of her parents. The term si denotes the score of
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student i on a standardized achievement test and is commonly used to proxy for ability. If

δ > 0, the term δ
∑

j 6=i 1{aj = 1}·sj captures a positive peer effect, i.e. the utility to student

i from taking calculus in an increasing function of the number of other students who take

calculus, interacted with the test scores of student i’s peers.

The modeling framework we propose could be applied beyond these three examples. In

principal, the framework above could be used to model any discrete choice where 1.) the

payoffs of agents are interdependent, 2.) decisions are made simultaneously, and 3.) there

is complete information. If the number of players or actions is very large, our estimator

may not be computationally feasible due to the computational cost of solving for the entire

equilibrium set. However, in the next section we describe an estimator which reduces the

computational burden of estimation through the use of a parallel algorithm.

3 Simulation

Next, we propose a computationally efficient Method of Simulated Moments (MSM) esti-

mator for θ and β, the parameters governing agent payoffs and the equilibrium selection

mechanism, respectively. Let P (a|x, θ, β) denote the probability that a vector of strategies,

a = (a1, . . . , aN), is observed conditional on x, θ, and β. MSM estimation requires an accu-

rate and computationally efficiently method for simulating P (a|x, θ, β), which can be written

as:

P (a|x, θ, β) =

∫  ∑
π∈E(u(x,θ,ε))

λ (π; E(u(x, θ1, ε)) , β)

(
N∏

i=1

πi(ai)

) g(ε|θ2)dε. (9)

In principal, this integral could be simulated using a straightforward Monte Carlo procedure.

First, pseudo random values of the random preference shocks ε = (ε1, . . . , εN) are drawn

from the distribution g(ε|θ2). Second, for each pseudo random error draw ε = (ε1, . . . , εN),

utilities are computed using Equation 1; we denote the utilities as u(x, θ, ε) to emphasize

their dependence on the parameters, covariates and preference shocks. Third, the equilibrium

set E(u(x, θ, ε)) is computed. And finally, the probability an event is observed is computed

by summing over the equilibria π ∈ E and computing 1.) λ(π), the probability that the

equilibrium π is selected, and 2.)
∏N

i=1 πi(ai), the probability that a is observed given π.

By averaging over a large number of draws of ε, the economist could precisely simulate

P (a|x, θ, β).

Unfortunately, this straightforward approach is not practical for applied work in all but

the simplest games. The reason is that P (a|x, θ, β) must be simulated a large number of times

for many different parameter values, and the equilibrium set E(u(x, θ, ε)) must be recomputed

every time the parameter values are changed. This can be computationally expensive; for
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example, we have found that it may take up to 20 minutes to compute E(u(x, θ, ε)) for 5

player games with two strategies, for each draw of ε from g(·). As a result, the computational

costs of using straightforward Monte Carlo integration for simulating Equation 9 may be

prohibitive for applied work.

In order to lower the computational burden of simulating P (a|x, θ, β), we borrow from

Keane and Wolpin (1997), Keane and Wolpin (2001) and Ackerberg (2004). First, we change

the variable of integration in Equation 9 from ε to u. Let h(u|θ, x) denote the density u,

conditional on θ and x. In many models, this density is trivial to compute. For instance,

suppose that the preference shocks εi(a) are i.i.d. normal with density φ(·|µ, σ), with mean

µ = 0 and standard deviation σ. Then, the density h(u|θ, x) is:

h(u|θ, x) =
∏

i

∏
a∈A

φ(ui(a)− fi(x, a; θ1)|0, σ)

which can easily be computed very quickly using standard programming packages, such as

Fortran, C or Matlab. If we change the variable of integration from ε to u, then Equation 9

becomes:

P (a|x, θ, β) =

∫  ∑
π∈E(u)

λ (π; E(u) , β)

(
N∏

i=1

πi(ai)

)h(u|θ, x)du. (10)

In our simulator, we will use importance sampling; therefore, we rewrite Equation 10 as:

P (a|x, θ, β) =

∫  ∑
π∈E(u)

λ (π; E(u) , β)

(
N∏

i=1

πi(ai)

) h(u|θ, x)

q(u|x)
q(u|x)du,

where q(u|x) is the importance density. For a given value of x, we draw a pseudo random

sequence u(s) = (u
(s)
1 , . . . , u

(s)
N ), s = 1, . . . , S of random utilities from the importance density

q(u|x). We then compute the equilibrium sets E(u(s)), a step which can be performed in

parallel across several CPU’s. Since computing the equilibria is the most burdensome step

of the computation, the time required to estimate the model is roughly proportional to the

inverse of the number of processors that the economist can exploit.

We can then simulate P (a|x, θ, β) as follows:

P̂ (a|x, θ, β) =
1

S

S∑
s=1

 ∑
π∈E(u(s))

λ(π; E(u(s)), β)
(∏

N
i=1πi(ai)

) h(u(s)|θ, x)

q(u(s)|x)
(11)

This simulator has three practical advantages for applied work. First, P̂ (a|x, θ, β) will be a
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unbiased estimator of P (a|x, θ, β). Second, given the simulation draws u(s), the parameters

θ and β do not enter into the expression for the equilibrium set E(u(s)). Therefore, when we

change the parameter values, it is not necessary to recompute the equilibrium set E(u(s)).

Exploiting this property will drastically reduce the time required to compute our estimator.

Third, this simulator is a smooth function of the underlying parameters. As a result, the

minimization of our MSM objective function will be numerically well behaved.6

The theory of importance sampling proves that P̂ (a|x, θ, β) is a smooth and unbiased

simulator for any choice of the importance density q(u(s)|x) that has sufficiently large support.

However, as a practical matter, it is important that the ratio h(u(s)|θ,x)

q(u(s)|x)
does not become

too large. In order to ensure this, we need to make sure that the tails of the importance

density q(u(s)|x) are not too thin in a neighborhood of the parameter that minimizes our

MSM estimator. In our applied work, we have often constructed the importance density

q(u|x) by first estimating a version of the model in which the error terms ε = (ε1, . . . , εN)

are private information instead of common knowledge. We then use the method proposed

in Bajari, Hong, Nekipelov and Krainer (2004) to estimate the parameters of the private

information version of the model. This is an extremely simple estimation problem and can

be quickly programmed using a standard statistical package such as STATA. The importance

density q(u|x) is then set equal to the distribution of utilities conditional on x in the private

information version of the game.7

3.1 The Estimator

The econometrician observes a sequence (at, xt) of actions and covariates, t = 1, . . . , T .

Equation 11 can be used to form a maximum simulated likelihood estimator (MSL) for these

observations. As is well known, MSL is biased for any fixed number of simulations. In

order to obtain
√

T consistent estimates, one needs increase the number of draws S so that

6We note that while we follow Keane and Wolpin (1997), (2001) and Ackerberg (2004) in constructing
the importance sampler, its use in normal form game estimation is new. In addition, there is also a sub-
tle difference between our use of the importance sampling and the use by previous authors. The dynamic
discrete choice model in these earlier papers requires a complete random coefficient specification to allow
the importance sampler to reduce the computation burden. Similarly, in a model of incomplete information
games, the separation of equilibrium computation and numerical optimization in the estimation procedure
also requires random coefficient specification. The complete information normal form game has the interest-
ing feature that it does not require a random coefficient specification in order for the importance sampler to
save on the computation burden of the estimator.

7This estimator can be performed in two stages. In the first stage, the economist flexibly estimates the
choice probabilities P (a|x) using standard methods. In the second stage, the economist assumes that these
estimated choice probabilities represent the agent’s equilibrium expectations. These choice probabilities are
then substituted into the utility function. Bajari, Hong, Nekipelov and Krainer (2004) present a simple,
static example of how to use these estimators.
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S√
T
→∞.8

Alternatively, one can estimate the parameters using MSM. An advantage of MSM is it

generates an unbiased and consistent estimator for a fixed value of S. To form the MSM

estimator, enumerate the elements of A from k = {1, . . . , #A}. Note that, because the

probabilities of all of the elements of a ∈ A must sum to one, one of these probabilities will

be linearly dependent on the others, so there are effectively #A−1 conditional moments. Let

wk (x) be a vector of weight functions, with dimension larger than the number of parameters,

for each k and let 1 (at = k) denote the indicator function that the tth vector of actions is

equal to k. The function P (k|x, θ, β) denotes the probability that the observed vector of

actions is k given x and the parameters θ and β. This is probability is defined in Equation

9. At the true parameters of the data-generating process the predicted probability of each

action equals its empirical probability for each action k:

E [1 (at = k)− P (k|x, θ, β)] wk (x) = 0.

Using the sample counterpart of the above expectation, we form a vector of #A−1 moments,

where the k-th element is defined by:

mk,T (θ, β) =
1

T

T∑
t=1

[1 (at = k)− P (k|xt, θ, β)] wk (xt) .

In practice, P (k|xt, θ, β) is evaluated by simulation using the importance sampler in Equa-

tion 11. For each xt, we draw a vector of S simulations u
(s)
t , where s = {1, . . . , S}, from the

importance density q(u|x). We assume that the simulation draws u
(s)
t are independent over

both t and s, and are independent of the data. The k-th moment condition is then replaced

by its simulation analog:

m̂k,T (θ, β) =
1

T

T∑
t=1

[
1 (at = k)− P̂ (k|xt, θ, β)

]
wk (xt) .

Then for a positive definite weighting matrix WT , the MSM estimator is:(
θ̂, β̂
)

= arg min
(θ,β)

m̂T (θ, β)′ ×WT × m̂T (θ, β) . (12)

The asymptotic theory for estimating discrete choice models using MSL and MSM is well

developed. See McFadden (1989), Pakes and Pollard (1989), or Hajivassiliou and Ruud

8In practice we have found that MSL can be useful for finding starting values for MSM. In our experience,
the likelihood function is more concave around the maximum than in the MSM estimator.
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(1994) detailed discussions.

4 Identification

We next develop two approaches to identification. To be clear, we are interested in conditions

under which it is possible to recover the unknown primitives of the model in Section 2:

f(a, x) and λ(x). In the first approach, we provide sufficient conditions to identify payoffs

and the selection mechanism as the support of the covariates grows large. The second

approach considers identification based on agent-specific payoff shifters. We first discuss

two necessary restrictions on the data-generating process that are familiar from the discrete

choice literature. We also provide some negative results on nonparametric identification

before discussing the details of our approaches.

4.1 Scale and Location Normalizations

Assumption 1. The payoffs of one action for each agent are fixed at a known constant.

This restriction is similar to the argument that we can normalize the mean utility from the

outside good equal to a constant, usually zero, in a standard discrete choice model. It is clear

from the definition of a Nash equilibrium that adding a constant to all deterministic payoffs

does not perturb the set of equilibria, so a location normalization is necessary. Similarly, a

scale normalization is also necessary, as multiplying all deterministic payoffs by a positive

constant does not alter the set of Nash equilibria either. This restriction is subsumed in the

following assumption about the distribution of the error terms.

Assumption 2. The joint distribution of ε = (εi(a)) is independent and known to all agents

and the econometrician.

Assumption 2 allows εi(a) to be any known joint parametric distribution. However, for

expositional clarity, we shall assume that it has a standard normal distribution. This is

a necessary condition, as even in the simplest discrete choice models it is not possible to

identify both fi (a, x) and the joint distribution of the εi (a) nonparametrically. Consider

a standard binary choice model where the dependent variable is 1 if the index u(x) + ε is

greater than zero, i.e.

y = 1(u(x) + ε > 0) (13)

All the population information about this model is contained in the conditional probability

P (y = 1|x), the probability that the dependent variable is equal to one given the covariates
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x. If the CDF of ε is G, then Equation (13) implies that:

P (y = 1|x) = G(u(x)), (14)

Obviously, only the composition of G(u(x)) can be identified, and it is necessary to make

parametric assumptions on one part (e.g. G or u) in order to identify the other part. For

instance, if G is the standard normal CDF, we could perfectly rationalize the observed

moments in Equation (14) by setting u(x) to the inverse CDF evaluated at P (y = 1|x).

Therefore, we will assume that the error terms are normally distributed.

We are also making the assumption that the ε(a)’s are independently distributed. This

assumption is also required for the identification of single agent models if the function f(a, x)

is nonparametrically specified. For example, consider a simple single agent multinomial

choice model with three options. Denote the possible choices as a ∈ {1, 2, 3}. For a = 1, 2

let

u(a, x, ε) = f(a, x) + ε(a).

Also, the mean utility for the third option is normalized identically equal to 0:

u(3, x, ε) ≡ ε(3).

In the population, only two conditional probability functions are available to identify the

model:

P (a = 1|x) and P (a = 3|x) .

The last observable probability,

P (a = 2|x) ,

is linearly dependent on the other two probabilities and does not help identification.

Holding x fixed, since there are only two moments, the unknowns f (1, x) and f (2, x)

already exhaust the degrees of freedom available in the population. We can only hope to

identify f (1, x) and f (2, x) by assuming that the joint distribution of the error terms is

known. There are no additional degrees of freedom to identify the correlation structure

between the error terms. Variation in x does not help because we place no restrictions on

how f(1, x) and f(2, x) may vary with x. This is in contrast to a multinomial probit model

or a nested logit model, which allows one to estimate the correlation coefficients between

ε(1), ε(2) and ε(3). However, this comes at the cost of assuming a parametric functional

form for the deterministic utility component f(a, x).
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4.2 Nonparametric Identification Results

Even if parametric methods are used, an estimation approach is more appealing if identifica-

tion does not hinge on functional form assumptions. Therefore, in this section, we consider

the nonparametric identification of our model.

A model is said to be identified if the model primitives can be recovered given the prob-

ability distributions the economist can observe. In a normal form game, the available popu-

lation probabilities are P (a|x) for a ∈ A, the probability distribution of the observed actions

conditional on the covariates x. The primitives we wish to identify are f(a, x) and λ(x).

That is, we wish to learn the vector of mean utilities f(a, x) = (fi(a, x))i=1,...,N and λ(x)

without making parametric assumptions about these objects.

We can generalize Equation (9) by writing P (a|x) in a way that does not hinge on the

specific parametric forms implicitly assumed in Section 2.

P (a|x, f, λ) =

∫  ∑
π∈E(u(f,ε))

λ (π; E (u (f, ε) , x))
(∏

N
i=1π(ai)

) g(ε)dε (15)

In Equation (15), we write the vNM utilities as u(f, ε) to remind ourselves that they are a

sum of the mean utilities f(a, x) and the shocks ε. Holding x fixed we can view Equation (15)

as a finite number of equations that depend on the finite number of parameters, f(a, x) and

λ(x). Denote this system as P (a|x) = H(f(a, x), λ(x)) where H is the map implicitly defined

by Equation (15). When writing H, assume that we drop one choice probability for each

player. Since choice probabilities add up to one, this introduces a linear dependence between

the rows of this system. We will let DHf,λ(x) denote the Jacobian formed by differentiating

H with respect to the parameter vectors f(a, x) and λ(x).

Definition 1. Given the probabilities P (a|x), suppose that f 0(a, x) and λ0(x) satisfy Equa-

tion (15). We will say that
(
f 0(a, x), λ0(x)

)
are locally identified if there exists an open

neighborhood Nx of
(
f 0(a, x), λ0(x)

)
such that there is no other vector

(
f̃(a, x), λ̃(x)

)
∈ Nx,(

f̃(a, x), λ̃(x)
)
6=
(
f 0(a, x), λ0(x)

)
, that also satisfies Equation (15).

In what follows, we shall often invoke the following assumption:

Assumption 3. The map H is continuously differentiable. Also suppose that for all x, the

Jacobian matrix DHf,λ has rank that is no less than the minimum of the row dimension and

the column dimension.

Assumption 3 implies that we can check local identification by comparing the number of

moments, P (a|x), to the number of free parameters (f(a, x), λ(x)). If the number of moments

19



is greater than the number of parameters, then the implicit function theorem implies that

the parameters are locally identified. While we can directly verify Assumption 3 for certain

games, it can be difficult to do so for general games. At a minimum, this would require us

to characterize the different sets of all equilibria that can be reached. This can be difficult

in games with many players and strategies.

To fix ideas in what follows, consider the following simple game:

L R

T (ε1(TL), ε2(TL)) (ε1(TR), f2(TR, x) + ε2(TR))

B (f1(BL, x) + ε1(BL), ε2(BL)) (f1(BR, x) + ε1(BR), f2(BR, x) + ε2(BR))

In the tabulation of the above payoff matrix, we have implicitly adopted the following

normalization:

f1 (TL, x) = f1 (TR, x) = f2 (TL, x) = f2 (BL, x) = 0.

The first result we note is that, even if the selection mechanism λ is known, a two by two

game has more utility parameters that need to be identified than the number of moment

conditions that can be observed in the data. Holding a given realization of x fixed, since there

are two players with two strategies, the econometrician observes four conditional moments:

P (TL|x), P (TR|x), P (BL|x) , P (BR|x) .

However, because the probability of the actions must sum to one, there are effectively three

moments that the econometrician observes. On the other hand, we have four utility param-

eters,

f1 (BL, x) , f1 (BR, x) , f2 (TR, x) , f2 (BR, x)

that need to be identified. We note that variation in x does not help to reduce the total

number of utility parameters that need to be identified because we place no restrictions on

how the four utility parameters vary with x.

The result above can easily be generalized to generic games. Consider a game with N

players and #Ai strategies for player i. Holding x fixed, the total number of mean utility

parameters fi (a, x) is equal to

N ·
∏

i

#Ai −
∑

i

∏
j 6=i

#Aj.

This is equal to the cardinality of the number of strategies, times the number of players,

minus the required normalizations. The number of moments that the economist can observe,
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conditional on x, is only equal to ∏
i

#Ai − 1.

If each player has at least two strategies and if there are at least 2 players in the game, then

for each given x the difference between the number of utility parameters, fi, to estimate and

the number of available moment conditions is bounded from below by(
(N − 1)− N

2

)∏
i

#Ai + 1 ≥ 0.

Therefore, conditional on x, the number of mean utility parameters is greater than the

number of moments available to the econometrician.

While the above calculations suggest that completely nonparametric identification is dif-

ficult in our setting, the next two sections do provide conditions that are considerably flexible

under which the researcher can recover the underlying primitives. While our approach can

be criticized as not being completely nonparametric, it does permit considerable flexibility.

To the best of our knowledge, we establish the only results in the literature that allow for

identification of the selection mechanism under weak functional form assumptions. At a

minimum, we hope that this will be a useful starting point for further work.

4.3 Identification at Infinity

The first approach to providing conditions for the identification of the parameters in the

payoffs and equilibrium selection mechanism is based on a strategy of identification at infinity.

Suppose that the covariates have full support and that mean utilities are defined by a linear

index of the covariates. Suitable sign restrictions are imposed on the covariates that have

full support. The identification strategy involves two steps. In the first step, we attempt to

identify the mean utilities by focusing on a path of the covariate values that permits a unique

equilibrium with probability close to 1. We then vary the covariates locally to identify the

parameters of the linear index on utility. In the second step, under an invariance assumption

on the equilibrium selection mechanism, the equilibrium selection probabilities are identified

from the observable choice probabilities. The basic idea is that if the number of equilibria is

less than the number of moments, then identification follows from solving for the equilibrium

selection parameters from the observable choice probabilities.

To see how this identification strategy works, consider the following game:

L R

T (0, 0) (0, f2(TR, x2) + ε2(TR))

B (f1(BL, x1) + ε1(BL), 0) (f1(BR, x1) + ε1(BR), f2(BR, x2) + ε2(BR))
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This is identical to the two-by-two game discussed above, save that we have applied the

normalization that the payoff to one of the actions is equal to zero for both players. Assume

that X = {x1, x2} has full support on R2. Then it is possible to find x2 such that player

two will play L with probability approaching one. For this partition of x2, to a first-order

approximation the probability that player one chooses B is:

Pr(B) = Pr(f1(BL, x1) + ε1(BL) > 0). (16)

Note that this is a single-agent decision problem: x2 is such that player two is going to

play L regardless of player one’s decision. Therefore, player one will choose B if and only

if the threshold condition in Equation 16 is satisfied. In the space where x2 is large enough

that only L is observed, the econometrician can recover f1(BL, x) by matching the empirical

probabilities of playing B against their theoretical counterparts. To be concrete, suppose

that ε1(BL) is drawn from a standard normal distribution. Then the econometrician finds

the value of f1(BL, x1) such that:

Pr(B|L, x1) = Pr(ε1(BL) > −f1(BL, x1)) = 1.0− Φ(−f1(BL, x1) = Φ(f1(BL, x1)), (17)

where Φ(·) is the standard normal cumulative distribution, holds for all realizations of x1.

The uniqueness of f1(BL, x1) is guaranteed by the monotonicity of Φ(·).
An analogous argument can be made to identify all of the unknown payoff parameters by

a suitable choice of either x1 or x2. Once we have recovered all the payoff parameters, the

only unknowns are those governing the equilibrium selection mechanism. Under a regular-

ity condition concerning the dimensionality of the unknowns entering equilibrium selection

mechanism, formally discussed below, it is possible to identify the unknown parameters of

that mechanism from observed probabilities of outcomes for the values of X where each

player does not have a strictly dominant strategy with probability approaching one. We

formalize this intuition for two-by-two games with general payoffs in the next section.

4.3.1 Formal Identification in Two-by-Two Games

We first make an assumption about the support of the covariates.

Assumption 4. For each i = 1, 2, j = T, B and k = L, R, there exists a set

T j(2−i)+k(i−1)
i
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of covariates x such that

lim
||x||→∞,x∈T j(2−i)+k(i−1)

i

P
[
ai = j2−iki−1|x

]
= 1.

Assumption 4 requires that for each player i and for each of player i’s strategies, we can

shift the covariates x along a dimension such that action ai is a dominant strategy for player

i with probability arbitrarily close to 1. For example, for i = 2 and k = L, Assumption 4

requires that along a path of ||x|| → ∞, x ∈ T L
2 , P [a2 = L|x] → 1, or

P [ε2 (TL) > f2 (TR, x) + ε2 (TR) , ε2 (BL) > f2 (BR, x) + ε2 (BR)] −→ 1.

Assumptions 1, 2, and 4 will basically allow us to identify the mean utilities along this

path. The next assumption requires that we can extrapolate knowledge of the deterministic

utilities along this path to other values of x on its support.

Assumption 5. For i = 1, 2, j = T, B, k = L, R, the deterministic payoff functions

f3−i ((i− 1) Bk + (2− i) jR, x)

can be extrapolated from the path ||x|| → ∞, x ∈ T j(2−i)+k(i−1)
i to the full support of x.

For example, if fi ((2− i) Bk + (i− 1) jR, x) = xβτ
i for τ = (2− i) Bk + (i− 1) jR, then a

sufficient conditional for global extrapolation of βτ
i is that there exists some L0 > 0 such that

inf
L≥L0

min eigE
[
xx′|x ∈ T j(i−1)+k(2−i)

3−i , ||x|| ≥ L
]

> 0.

Theorem 1. Under Assumptions 1, 2, 4, and 5, fi ((2− i) Bk + (i− 1) jR, x) is identified

for all i = 1, 2, j = T,B and k = L, R.

Proof. The goal is to identify fi ((2− i) Bk + (i− 1) jR, x) for i = 1, k = L, R and for

i = 2, j = T, B. Because of Assumption 2, this is equivalent to identifying the single agent

type choice probabilities, for k = L, R and j = T, B:

P (fi((2− i)Bk + (i− 1)jR, x) + εi((2− i)Bk + (i− 1)jR) ≥ εi((2− i)Tk + (i− 1)jL)|x).

Denote these unconditional choice probabilities by:

P̄ ((2− i)Bk + (i− 1)jR|x) .
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From the data we can only identify the conditional choice probabilities:

P

(
ai = (2− i) B + (i− 1) R

∣∣∣∣a3−i = (2− i) k + (i− 1)j, x

)
.

However, because of Assumption 4,

lim||x||→∞,x∈T (i−1)j+(2−i)k
3−i

[
P

(
ai = (2− i) B + (i− 1) R

∣∣∣∣a3−i = (2− i) k + (i− 1)j, x

)
−P̄ ((2− i) Bk + (i− 1) jR, x)

]
= 0.

This implies that P̄ ((2− i) B + (i− 1) R, x) and hence fi ((2− i) Bk + (i− 1) jR, x) can be

identified along the path of ||x|| → ∞, x ∈ T (i−1)j+(2−i)k
3−i . Assumption 5 then allows for

the extrapolation of fi ((2− i) Bk + (i− 1) jR, x) along this path to the entire support of

x ∈ X .

A special case of Assumption 4 is when ε = (εi (jk)) , i = 1, 2, j = T, B, k = L, R has

finite support but the support for fi ((2− i) Bk + (i− 1) jR, x) for i = 1, k = L, R and for

i = 2, j = T, B is either larger or infinite. Denote by L an upper bound of the absolute value

of the support of, for all k and j,

εi ((2− i) Tk + (i− 1) jL)− εi ((2− i) Bk + (i− 1) jR) .

Then a sufficient condition for Assumption 4 to hold is that

P [x : fi ((2− i) Bk + (i− 1) jR, x) > L,∀k = L, R, ∀j = T, B] > 0,

and

P [x : fi ((2− i) Bk + (i− 1) jR, x) < −L, ∀k = L, R, ∀j = T,B] > 0.

Then we do not need the requirement that ||x|| → ∞. We can define the sets T j(2−i)+k(i−1)
i

to be

T B(2−i)+R(i−1)
i =

{
x : fi ((2− i) Bk + (i− 1) jR, x) > L,∀k = L, R, ∀j = T,B

}
,

and

T T (2−i)+L(i−1)
i =

{
x : fi ((2− i) Bk + (i− 1) jR, x) < −L, ∀k = L, R, ∀j = T, B

}
.
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In this case, a sufficient condition for Assumption 5 to hold is that for all i = 1, j = {T, B},
and i = 2, k = {L, R}, the matrices

E
[
xx′|x ∈ T (i−1)j+(2−i)k

3−i

]
(18)

are positive definite and finite. Under the finite support assumption for the error terms, one

identifies the sets T (i−1)j+(2−i)k
3−i from the sample, then recovers fi ((2− i) Bk + (i− 1) jR, x)

on this set. This is followed by a linear regression of fi ((2− i) Bk + (i− 1) jR, x) on the set

of T (i−1)j+(2−i)k
3−i to recover βτ

i for τ = (2− i) Bk + (i− 1) jR.

4.3.2 Identifying the Equilibrium Selection Mechanism

Given that the deterministic utility components are identified in Theorem 1, the next goal is

to identify the equilibrium selection mechanism. In the following, with no loss of generality,

we can set

εi ((2− i) Tk + (i− 1) jL) = 0, for i = 1, k = L, R, i = 2, j = T, B.

Otherwise we can replace εi ((2− i) Bk + (i− 1) jR) with

εi ((2− i) Bk + (i− 1) jR)− εi ((2− i) Tk + (i− 1) jL) .

The equilibrium selection probabilities are only needed when there are three equilibria, which

can be either (TL, BR, mix) or (BL, TR, mix). The mixing probabilities for these two cases

are:

Pm (R; x, ε) =
f1 (BL, x) + ε1 (BL)

f1 (BL, x)− f1 (BR, x) + ε1 (BL)− ε1 (BR)
, Pm (L; x, ε) = 1− Pm (R; x, ε)

and

Pm (B; x, ε) =
f2 (TR, x) + ε2 (TR)

f2 (TR, x)− f2 (BR, x) + ε2 (TR)− ε2 (BR)
, Pm (T ; x, ε) = 1−Pm (B; x, ε) .

In the ideal case where there are no error terms:

εi ((2− i) Bk + (i− 1) jR) = 0, i = 1, k = L, R, i = 2, j = T, B.

All of Pm (R) , Pm (L) , Pm (T ) and Pm (B) are functions of the known deterministic payoffs.

Let the equilibrium selection probabilities be: ρ (TL, x) , ρ (BR, x) , 1−ρ (TL, x)−ρ (BR, x)
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in the case of (TL, BR, mix), and be ρ (BL, x) , ρ (TR, x) , 1−ρ (BL, x)−ρ (TR, x) in the case

of (BL, TR, mix), where the dependence on covariates x is made explicit. Then obviously

for those values of x where (TL, BR, mix) is realized,

P (TL|x) =ρ (TL, x) + (1− ρ (TL, x)− ρ (BR, x)) Pm (T ) Pm (L)

P (TR|x) = (1− ρ (TL, x)− ρ (BR, x)) Pm (T ) Pm (R)

P (BL|x) = (1− ρ (TL, x)− ρ (BR, x)) Pm (B) Pm (L) .

These are three equations that identify the two unknown variables ρ (TL, x) and ρ (BR, x).

Similarly, for values of x such that (BL, TR, mix) is realized,

P (BL|x) =ρ (BL, x) + (1− ρ (BL, x)− ρ (TR, x)) Pm (B) Pm (L)

P (BR|x) = (1− ρ (BL, x)− ρ (TR, x)) Pm (B) Pm (R)

P (TL|x) = (1− ρ (BL, x)− ρ (TR, x)) Pm (T ) Pm (L) ,

are the three equations that overidentify the two unknown variables ρ (BL, x) and ρ (TR, x).

In the presence of the unobservable error terms ε’s, we need to impose certain identifica-

tion assumptions that isolate the effects of the error terms. Denote

ρ (x, ε) = [ρ (TL; x, ε) , ρ (BR; x, ε) , ρ (BL; x, ε) , ρ (TR; x, ε)] .

Assumption 6. The equilibrium selection probabilities depend only on the latent utility

indices:

ρ (x, ε) = ρ (fi ((2− i) Bk + (i− 1) jR, x) + εi ((2− i) Bk + (i− 1) jR, x) ,∀i, j, k.)

This assumption rules out the possibility that ρ (x, ε) might depend on x and ε nonsep-

arably, independent of the latent utility indexes.

Assumption 7. The equilibrium selection probabilities are scale invariant with respect to

the latent utility indexes. For all α > 0,

ρ (αUi ((2− i) Bk + (i− 1) jR, x) ,∀i, j, k) = ρ (Ui ((2− i) Bk + (i− 1) jR, x) ,∀i, j, k) .

The scale invariance assumption, supplemented by the following support condition on

the observables and unobservables, allows us to identify the equilibrium selection probabil-

ities from the variations in the covariates x. In particular, Assumption 7 implies that the

determinants for the equilibrium selection probabilities are the same as the determinants for
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the mixing probabilities, which are

Ui ((2− i) Bk + (i− 1) jR)− Ui ((2− i) Tk + (i− 1) jL)

Ui ((2− i) Bk′ + (i− 1) j′R)− Ui ((2− i) Tk′ + (i− 1) j′L)
, for i = 1, 2, k 6= k′, j 6= j′.

Assumption 7 allows for a rich class of equilibrium selection mechanisms but does exclude

some important ones. For example, it allows for the Pareto efficient equilibrium to be selected

with a larger probability and for this probability to depend on the relative efficiency level.

However, it does not allow this probability to depend on how much more efficient the efficient

equilibrium is compared to the inefficient ones in absolute terms.9

Assumption 8. There exists a set T such that for all ε > 0:

lim
|x|→∞,x∈T

P

(
fi ((2− i) Bk + (i− 1) jR, x)

Ui ((2− i) Bk + (i− 1) jR, x, ε)
> 1− ε

)
= 1, (19)

for all i = 1, 2, j = T,B, k = L, R and that for all Λ = R,B, T, L,

lim
|x|→∞,x∈T

P

(
Pm (Λ; x, ε)

Pm (Λ; x, 0)
> 1− ε

)
= 1.

This assumption is satisfied if ε has finite support but fi ((2− i) Bk + (i− 1) jR, x) has

infinite support.

Theorem 2. Under Assumptions 1 to 8, the equilibrium selection probabilities

ρ (Ui ((2− i) Bk + (i− 1) jR, x) ,∀i, j, k)

are all identified from the observed choice probabilities.

Proof. Assumptions 1 to 5 identify the payoff functions fi ((2− i) Bk + (i− 1) jR, x) for all

i, j, k. Using Assumption 8, we can approximate the mixing probabilities with arbitrary

precision by using larger and larger values of the covariates x. This allows us to recover

the equilibrium selection probabilities with arbitrary precision at very large values of the

covariates x. The equilibrium selection probabilities with smaller values of the latent utility

indexes are obtained by extrapolation along the remote sections of a ray that emanates from

the origin and goes through the latent utility indexes.

9This restriction follows intuitively from the idea that if all payoffs were scaled by a constant we would
not expect the distribution over outcomes to change, which would be the case if the equilibrium selection
mechanism which depended on absolute levels.
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4.4 Extension to General Games

The identification results in the previous section for two by two games can be generalized

to the more general case with more than two players and more than two strategies. The

following assumptions are the direct analog of those in two by two cases.

Assumption 9. For any i = 1, . . . , N and action profile k−i ∈ A−i, there exists a set T k−i

−i

of covariates x such that

lim
||x||→∞,x∈T

k−i
−i

P (a−i = k−i|x) = 1. (20)

This assumption requires that for each player i, the covariates x can be shifted along

a dimension such that each element in k−i is a dominant strategy for each player in −i.

This assumption allows us to identify fi (ai, a−i, x) as a single agent discrete choice problem

holding a−i fixed at these values of the covariates x. The next assumption requires that

utilities recovered from this path can be extended to the entire range of covariates.

Assumption 10. For all i and all a ∈ A, the deterministic payoff functions fi (a, x) can be

extrapolated from the path ||x|| → ∞, x ∈ T a−i

−i , for all i, forall a−i, to the full support of x.

Theorem 3. Under Assumptions 9 and 10, fi (a, x) is identified for all i and all a up to the

normalization in Assumption 1.

Identification of the equilibrium selection mechanism in the general case similarly requires

the invariance assumption:

Assumption 11. The equilibrium selection probabilities depend only on the latent utility

indices: ρ (x, ε) = ρ (u (a, x, ε)), and are scale invariant with respect to the latent utility

indexes: for all α > 0, ρ (αu (a, x, ε)) = ρ (u (a, x, ε)).

Assumption 12. There exists a set T such that for all δ > 0:

lim
|x|→∞,x∈T

min
i,a

P

[∣∣∣∣ fi (a, x)

ui (a, x, ε)
− 1

∣∣∣∣ < δ

]
= 1. (21)

Theorem 4. Under Assumptions 9 to 12, the equilibrium selection probabilities ρ (u (x, ε))

are all identified from the observed choice probabilities whenever the cardinality of E (u (x, ε))

is less than or equal to #A− 1.

28



Remark: Note that the conditions in this theorem depend on the numbers of players and

strategies, and generally also on the particular realization of u (x, ε). When the maximum

number of equilibria for a game is less than or equal to #A− 1, the condition in the above

theorem holds uniformly for all realizations of u (x, ε). Such is the case, for example, for two

by two games and for games with two players each equipped with four strategies.

In general, the maximum number of equilibria can be much larger than the number of

moment conditions #A − 1, indicating that the equilibrium selection mechanism can not

identified for a certain range of the distribution of the random utility ui (x, ε). On the other

hand, the expected number of equilibrium is typically much smaller than the total number

of moment conditions, suggesting that the equilibrium selection mechanism can be identified

for a certain range of the random utility distribution of u (x, ε). See Appendix A for more

details.

4.5 Exclusion Restrictions

The results of the previous section are not surprising in light of the analysis of Bresnahan

and Reiss (1991) and Pesendorfer and Schmidt-Dengler (2003), who demonstrate failures

of identification in discrete games. As we noted in the introduction, the structure of our

models is not unlike treatment effect and sample selection models. The latent utilities f

seem analogous to the treatment equation and λ to the selection equation. It is well known

that these simpler models cannot be identified without exclusion restrictions. That is, we

must search for variables that influence one equation, but not the other. In what follows,

we demonstrate that a similar approach is possible in games. The exclusion restrictions

that we consider are covariates that shift the utility of agent i but which do not enter as

arguments into uj(j 6= i) or the equilibrium selecction mechanism λ. In many applications,

such covariates are not difficult to find.

Assumption 13. For each agent i, there exists some covariate, xi that enters the utility of

agent i, but not the utility of other agents. That is, i’s utility can be written as fi(a, x, xi).

Furthermore, in addition to assumption 11, ρ (u (α, x, ε)) depends on u (α, x, ε) only through

a set of sufficient statistics of dimension M × (N − 1) where M is a constant that does not

depend on the number of players N .

The first part of assumption 13 implies that there are agent i specific utility shifters.

While this assumption is unlikely to be perfectly satisfied, to a first approximation it does

seem reasonable in many applications. The second part of assumption 13 is a weak assump-

tion that will be satisfied, for example, if the equilibrium selection probabilities depends only

on the total utilities of all players in each equilibrium.
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Theorem 5. Suppose that Assumptions 1, 2, 6, 7, 11 and 13 hold. If #xi are sufficiently

large, the model is nonparametrically (locally) identified.

Proof. The proof follows similarly to the previous section. Hold x fixed. Consider a large,

but finite number of values of xi equal to K for each agent. Consider the all the distinct

vectors of the form x = (x1, . . . , xN) that can be formed. The number will be equal to

KN . Consider the moments generated by these KN distinct covariates. The number of

moments is equal to KN ·

(∏
i

#Ai − 1

)
. The number of mean utility parameters is equal

to
∑

i

K (#Ai − 1)
∏
j 6=i

#Aj plus the number of parameters required to characterize λ. The

maximum number of parameters required to characterize λ depends on the total number of

players and the number of strategies for each player, and does not depend directly on xi.

Thus, the second part of assumption 13 implies that the number of equilibrium selection

probability parameters grows at most at the rate of KN−1. Since the number of utility

parameters depends linearly on K and the number of equilibrium selection probabilities

depends on K at the rate of KN−1, but the number of moments grows exponentially with

K at the rate of KN . By choosing sufficiently large values for K the model is identified.

The intuition behind the theorem above is quite simple. By shifting the individuals’

utilities one at a time, it is possible to increase the number of moments at a faster rate than

the number of parameters. Thus, identification of the model is possible.

Our results demonstrate that the model is identified if we have covariates that are indexed

by the agent’s identity i. Such covariates are used in most existing applications of discrete

games. For example, consider empirical studies of strategic entry. In the case of an airline

deciding whether to serve a particular city-pair, one such shifter could be the number of

connecting routes that airline has at both endpoints, or whether one or both of the cities is

a hub for that airline. These covariates which influence the payoffs of entering that market

that do not directly influence the payoffs of that airline’s competitors. In the case of entry by

large discount retail chains, such as the entry of Walmart and Kmart as studied by Holmes

(2006) and Jia (2006), an analogous payoff shifter is the distance of the market from regional

distribution centers and company headquarters.

As a second example, consider technology adoption in the presence of network effects,

as in Ryan and Tucker (2006). Here employees within a firm decide whether to adopt a

videoconferencing technology which allows them to make video calls to other employees in

the firm who have adopted the technology. The benefit to any given employee of adopting this

technology depends on the adoption decisions of all the other employees. Furthermore, the

benefit of using this technology varies with an employee’s rank in the firm, their geographic
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locale, and their job function. All of these characteristics shift around the benefits of adoption

on an individual basis and do not directly influence the payoffs of other employees. For

example, senior managing directors in equities are likely to have different payoffs from using

the network than a junior administrator in human resources.

We note that the above result demonstrates that our model is identified if we can estimate

fi(a) up to an affine transformation in a first stage. This is commonly done in the literature

on two-step estimation of dynamic games. The econometrician typically begins by estimating

a differentiated product demand system and static markup following widely used methods

such as Berry, Levinsohn, and Pakes (1995). After this demand system is estimated, the

remaining “dynamic” parameters take the form of fixed entry costs. See Bajari, Benkard,

and Levin (2006), Aguirregabiria and Mira (2004), Pesendorfer and Schmidt-Dengler (2003),

and Pakes, Berry, Ostrovsky (2005). A similar approach could obviously be used in our

framework. In the application that we consider in the present paper, we examine the decision

of the four largest firms in the Californian construction industry to bid on highway paving

procurement contracts. In the first step, we flexibly estimate firm level expected profits using

the methods proposed by Guerre, Perrigne and Vuong (2000). The remaining parameters of

fi(a) represent the fixed costs of submitting a bid.

Finally, we note that the maintained exogeneity assumptions used in our identification

results are quite strong. We assume that the only form of unobserved heterogeneity is an iid

shock to payoffs, εij(ai). However, it is quite straightforward to include random effects in our

econometric model by modifying the importance sampler to permit correlation between the

error terms. For example, in a study of entry, it would be natural to include market specific

random effects to control for market specific determinants of entry which are commonly

observed by the firms but which are unobserved to the econometrician. In our application,

we control for unobserved heterogeneity in the first stage by including contract specific fixed

effects in our estimates of expected profits. A similar strategy may be possible in other

applications where markups are similarly estimated in a first stage using, for example, the

method of Berry, Levinsohn, and Pakes (1995).

5 Monte Carlo

To demonstrate the performance of our estimator in small samples, we conducted a Monte

Carlo experiment using a simple entry game with two players. Each player has the following

profit function:

πi(a) = 1(ai = 1) {β1xi1 + β2x2i + εi(a)} ,
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with the observable covariates defined by xi1 ∼ N(1, 1) and x2i = n(a), where N(µ, σ2) is

the normal distribution with mean µ and variance σ2, and n(a) is the number of competitors

a firm faces given action profile a. The idiosyncratic error term, which is different for

each player for each action profile a, is drawn independently from the standard normal

distribution. The choice of unit variance in the random shock satisfies the need for a scale

normalization, and assigning payoffs of zero to not entering the market satisfies the location

normalization. We think about x1i representing variability in profits to firm i from entering

that market, and x2i captures the effects of having a competitor. The true payoff parameters

are β1 = 2 and β2 = −10.

The distributions of the covariates were chosen such that when payoffs are evaluated

at their means it is optimal for only one of the two firms to enter the market. Under

these circumstances the set of equilibria in this game, denoted by E , has three elements:

two pure strategies characterized by one firm or the other entering the market, and one

mixed strategy where firms enter with some probability. We specify that the probability of

equilibrium πi ∈ E being played as:

Pr(πi) =
exp(θ1MIXEDi)∑

πj∈E exp(θ1MIXEDj)
,

where MIXEDi is an indicator variable equal to one if equilibrium πi is in mixed strategies.

When θ1 = 0 one of the three equilibria is picked with equal chance. As that parameter

tends to either negative or positive infinity, the mixed strategy is played with probability

approaching zero or one, respectively. The true selection parameter is θ1 = 1.

Our game has three unknown parameters: β1, β2, and θ1. The game generates moments

from the probabilities of observing the four possible combinations of entry choices. Only

three of these moments are linearly independent, as the probabilities must sum to one,

implying our model is exactly identified. Consequently, we use the identity matrix as our

GMM weighting matrix without loss of efficiency. We generated 500 samples of size n =

25, 50, 100, 200, and 400 to assess the finite sample properties of our estimator. We set the

number of importance games to be equal to the sample size, and generated new importance

games for each replication. Standard nonlinear optimization techniques were used to find

the estimated parameters. The results of our Monte Carlo are reported in Table 1.

The results are encouraging even in the smallest samples sizes. The payoff parameters

are tightly estimated near their true values, while the mixed strategy shifter is estimated

with considerably lower precision. The standard deviation of the estimates of all three

parameters shrinks as the sample size increases, as does the mean and median absolute

deviations. Significantly, the decrease in the standard deviation for the payoff parameters
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Table 1: Monte Carlo Results

Standard Mean Median Mean Median
Parameter Mean Median Deviation Bias Bias MSE AD AD

n = 25

β1 2.0071 2.0034 0.0149 0.0071 0.0034 0.0003 0.0091 0.0048
β2 -10.0016 -9.9964 0.0534 -0.0016 0.0036 0.0028 0.0309 0.0208
θ1 1.6866 0.8142 4.7465 0.6866 -0.1858 22.9559 2.2876 0.8235

n = 50

β1 2.0051 2.0036 0.0060 0.0051 0.0036 0.0001 0.0058 0.0040
β2 -9.9996 -9.9981 0.0233 0.0004 0.0019 0.0005 0.0170 0.0123
θ1 1.0456 0.7950 2.0455 0.0456 -0.2050 4.1778 0.9818 0.6008

n = 100

β1 2.0037 2.0032 0.0035 0.0037 0.0032 0.0000 0.0040 0.0032
β2 -9.9990 -9.9975 0.0152 0.0010 0.0025 0.0002 0.0119 0.0101
θ1 0.9394 0.8592 0.6194 -0.0606 -0.1408 0.3866 0.4789 0.3591

n = 200

β1 2.0036 2.0033 0.0024 0.0036 0.0033 0.0000 0.0036 0.0033
β2 -9.9992 -9.9988 0.0095 0.0008 0.0012 0.0001 0.0076 0.0063
θ1 0.9782 0.9555 0.4127 -0.0218 -0.0445 0.1705 0.3117 0.2639

n = 400

β1 2.0034 2.0032 0.0016 0.0034 0.0032 0.0000 0.0034 0.0032
β2 -9.9986 -9.9983 0.0062 0.0014 0.0017 0.0000 0.0051 0.0043
Mixed Strategy 0.9810 0.9800 0.2855 -0.0190 -0.0200 0.0817 0.2256 0.1790

The true parameter vector is β1 = 2, β2 = −10, and θ1 = 1. Each sample size was evaluated 500 times.
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is close to
√

n, as theory would imply. The rate of convergence of the equilibrium selection

parameter is much more dramatic as the sample size gets increasingly larger. The precision

of the estimated payoff coefficients intuitively follows from the fact that the payoff-relevant

covariates define the thresholds at which firms are willing to enter a market, and thus enter

into the likelihood of every observation directly. It is also of interest to note the relative

precision of β1 and β2. Recall that the β1 multiplies a covariate with continuous support, and

enters into every entry decision, conditional on the other player’s action, while β2 influences

a discrete shifter which only enters the payoff function when the other firm has entered the

market. The combination of these factors implies that the first payoff coefficient is estimated

more precisely than the second payoff coefficient.

The third parameter, θ1, governs how often mixed strategies are played relative to pure

strategies. This parameter is estimated with some slight upward bias in the smallest samples,

and is estimated less precisely than the payoff parameters across all sample sizes. This is

to be expected, as the selection parameter is identified off coordination failures between

the firms due to the mixed strategy equilibrium. To illustrate, suppose that all payoffs,

including idiosyncratic shocks, were observed by the econometrician. For some realizations

of the covariates, the model would predict two pure strategies, with one or the other of the

firms entering the market, and a single mixed strategy. If the mixed strategy equilibrium

is played, there is a chance of either no firms entering the market or both firms entering

the market. It is only when these mistakes are observed that the econometrician knows

that the mixed strategy was played. This is a subtle and complex interplay among the

components of the game, as the probability of observing a mistake is a function of both

θ1, which controls how often a mixed strategy occurs, and the payoffs of the game, which

determine the probability of observing a mistake conditional on playing a mixed strategy.

This interplay illustrates a more general point, which is that although the parameters are

theoretically identified, the estimation of some parameters may depend on a relatively small

subset of outcomes. It should be emphasized that this is true even in the extreme case that

the payoff functions, including the idiosyncratic shocks, are known with certainty, since the

model itself generates probabilistic outcomes through both the equilibrium selection device

and the nature of mixed strategies. In light of this, the results here are very positive, as we

are able to recover unbiased estimates of the true parameters with acceptable precision in

moderate sample sizes.

There is one caveat to our procedure that researchers have to address in practice. In

each Monte Carlo, we knew the true parameters of the game, and we were able to generate

importance games using these. With real data, of course, these parameters are initially

unknown. The importance sampler can generate imprecise parameter estimates if given
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poor initial guesses, so it is necessary to derive starting parameters from another source.

We demonstrate one possible solution to this problem in our application below by using a

related game of private information to generate initial starting values.

6 Application

Next we use our estimator to model strategic entry by bidders into highway procurement

auctions conducted by the California Department of Transportation (CalTrans) between

1999 and 2000. Econometric modeling of entry has been of considerable interest in empirical

industrial organization; see Bresnahan and Reiss (1990, 1991), Berry (1992), Mazzeo (2002),

Tamer (2002), and Ciliberto and Tamer (2003). Bajari and Hortacsu (2003), Li and Zheng

(2006), Athey, Levin and Seira (2006) and Krasnokutskaya and Seim (2005) have studied

entry in bidding markets.

Bidder entry in highway procurements is an attractive application for our estimator

for three reasons. First, CalTrans awards its contracts using an open competitive bidding

system. For each highway contract, there is a fixed and publicly announced deadline for

submitting bids. Any communication between bidders about entry or other bidding decisions

would be considered collusion and could lead to civil and criminal penalties. Therefore, the

assumption of a simultaneous move game is plausibly satisfied in our application.

Second, there is a well developed empirical literature for estimating structural models

of bidding for highway procurement contracts, see Porter and Zona (1999), Bajari and Ye

(2003), Pesendorfer and Jofre-Bonet (2003), Krasnokutskaya and Seim (2005) and Li (2006).

The flexible econometric methods proposed by Guerre, Perrigne and Vuong (2000) are com-

monly used in this literature, and in the empirical auctions literature more generally, to

estimate the structural parameters of the model. In a first step, we use these methods to

precisely estimate the expected payoffs to each player for all possible configurations of entry,

conditioning on observable characteristics. In a second step, we estimate the fixed costs of

bidding and the parameters of our equilibrium selection mechanism.

Finally, in our data set, the dependent variable is a decision by a contractor to submit a

bid to complete a single and indivisible construction project. We focus on paving contracts,

instead of all contracts awarded by CalTrans, as in Pesendorfer and Jofre-Bonet (2003), in

order to reduce the importance of dynamics in our application. Most of the existing entry

literature considers the decision by a firm to enter a spatially separated retail or service

market and compete for an indefinite length of time. We believe that a static model is more

plausible in our application than in much previous work on entry.

Our model of entry in auctions is similar to Athey, Levin and Serra (2006). In the first
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stage, contractors simultaneously choose whether to incur a fixed cost in order participate.

In the second stage, participating contractors submit sealed bids in a first-price auction

and the contract is awarded to the low bidder. Our model of entry often has multiple

equilibria, and there is no clear criterion from economic theory that can be used to select a

unique equilibrium to our game. Previous empirical research on entry in auctions abstracts

from the multiplicity problem by imposing modeling assumptions that guarantee a unique

equilibrium. We contribute to the literature on entry in auctions by estimating λ, the

probability of selecting a particular equilibrium. We parameterize λ to allow for four criteria

that have been suggested in the literature as potentially influencing equilibrium selection:

the equilibrium is in pure strategies, the equilibrium maximizes joint profits, the equilibrium

is dominated, and the equilibrium is in pure strategies and has the highest Nash product

among pure strategy equilibria. To the best of our knowledge, this is the first empirical

analysis of equilibrium selection in a normal form game.

6.0.1 The Bidding Game

In the model, there are i = 1, . . . , N potential bidders who bid on t = 1, . . . , T highway

paving contracts. Following previous researchers, we model bidding in this industry as an

asymmetric first-price auction with independent private values (see Porter and Zona (1999),

Bajari and Ye (2003), Pesendorfer and Jofre-Bonet (2003), Krasnokutskaya and Seim (2005)

and Li (2006)). Let N(t) ⊆ {1, . . . , N} denote the set of contractors who submit bids on

project t. We assume that the set of bidders is common knowledge at the time bids are

submitted.10

Before submitting a bid, bidder i will prepare a cost estimate ci,t. The cost estimate

of bidder i is private information which has a distribution Fi(xi,t) where xi,t are publicly

observable covariates which influence bidder i’s cost distribution. We follow previous research

and include in xi,t an engineering cost estimate, the distance of contractor i to project t, a

measure of i’s backlog, contractor fixed effects and project fixed effects. We assume that the

cost distribution has a common support for all bidders and satisfies the regularity conditions

10In principal, it is possible to consider a model where bidders are uncertain about which firms will
participate. Changing our estimator to allow for this possibility would be straightforward. However, existence
and uniqueness of equilibrium bidding functions to the first price asymmetric auction with random entry
has not yet been established to the best of our knowledge.

Also, we believe that allowing the set of bidders to be common knowledge corresponds most closely to what
happens in this industry. Bidders that we have spoken with feel like they are quite knowledgeable about
which other contractors will submit bids. Typically, the closest firms and firms with the lowest backlogs of
outstanding work are most likely to bid. Also, CalTrans provides a list of plan holders for the project shortly
before bids are due which allows the contractors to learn about which competing firms are interested in the
project. A similar modeling assumption is made in Athey, Levin and Serra (2006) and Kransnokutskaya and
Seim (2005).
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discussed in LeBrun (1996) and Maskin and Riley (2000) so that an equilibrium exists, is

unique, and is strictly increasing in a bidder’s private information.

Let bi,t(ci,t) be the bidding strategy used by bidder i in auction t, and let φi,t(bi,t) denote

the inverse bid function. Bidders are assumed to be risk neutral. The expected profit to

bidder i from bidding bi,t is:

(bi,t − ci,t)
∏

j∈N(t),j 6=i

(
1− Fj

(
φj,t(bi,t)|xi,t

))
Expected profit is the product of two terms. The first term is a markup, (bi,t − ci,t), which

reflects bidder i’s profits conditional on winning the job. Since the bid functions are strictly

increasing, the term 1− Fj

(
φj,t(bi,t)|xi,t

)
is the probability that firm j’s bid is greater than

i’s bid bi,t. As a result,
∏

j∈N(t),j 6=i

(
1− Fj

(
φi,t(bi,t)|xi,t

))
is the probability that bidder i wins

the contract with a bid of bi,t. Thus, expected profits are the product of a markup times the

probability that firm i wins the contract.

Following Guerre, Perrigne, and Vuong (2000), we rewrite bidder i’s profit maximization

problem as:

max
bi,t

(bi,t − ci,t)
∏

j∈N(t),j 6=i

(1−Gj(bi,t|xt)).

We let Gj(bi,t|xt) denote the equilibrium distribution of bids submitted by firm j conditional

on the publicly observed information xt = (xi,t)i∈N(t). The first order conditions for profit

maximization imply that:

ci,t = bi,t −

 ∑
j∈N(t),j 6=i

gj(bi,t|xt)

(1−Gj(bi,t|xt)

−1

(22)

Note that the right hand side of the above equation is a function of bi,t and the distribution

of bids, which can be estimated by pooling bidding data across contracts t = 1, ..., T . The

left hand side is the structural parameter ci,t which is unobserved to the econometrician.

Following Guerre, Perrigne and Vuong (2000), we will evaluate the empirical analogue of

the right hand side of the above expression in order to recover the structural cost parameter

ci,t.
11

11In Bajari, Houghton and Tadelis (2006), we argue that bidders payoffs are somewhat more complicated
than in the above model because of change orders and cost overruns. However, we find that the method of
Guerre, Perrigne and Vuong (2000) estimates bidder profits quite well. As we report below, our estimates
seem sensible given what is known about bidder markups and other structural parameters.
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6.0.2 The Entry Game

In the first stage of our model, bidders simultaneously and independently decide whether

to bid for contract t. Submitting a bid is a costly decision. Based on extensive industry

experience, Park and Chapin (1992) report that the costs of preparing a bid for projects

in this industry is typically one percent of the total bid b i,t. Publicly traded firms in the

construction industry typically report profit margins of one to five percent. This implies

that the fixed costs of bidding are nontrivial compared to a firm’s profit margins and hence

bidders should selectively submit bids on projects they are most likely to win. Let θi denote

the cost to firm i of submitting a bid. Note that it is useful to allow the costs of bidding

to vary across firms i in order to rationalize differences in participation rates across firms.

As we shall discuss in the next section, the size distribution of firms in our data is quite

skewed. While there are 271 firms that submit bids, a small number of these firms account

for the majority of total output. In our application, we shall focus on the entry decisions of

the four largest firm that each have a market share of at least five percent, as measured by

winning bids. We shall denote these firms as i = 1, 2, 3, 4. We shall take the entry decisions

of the other bidders N(t)−{1, 2, 3, 4} as predetermined. It would obviously be preferable to

endogenize the entry decisions of all bidders. However, repeatedly solving for all of the Nash

equilibrium to a game with approximately three hundred players is not computationally

tractable. Nonetheless, we believe that it is fairly innocuous to take the entry decisions of

small, fringe firms as exogenous. Such firms rarely win large CalTrans contracts, since they

lack the capital and managerial expertise to complete these large projects at a competitive

price. Fringe firms typically win much smaller jobs in the public sector, such as resurfacing

streets for a mid-sized California city, or smaller private sector jobs, such as resurfacing

parking lots for small businesses. In our CalTrans data, these fringe firms have little influence

on the winning bid and hence on profits at the margin. We believe that it is much more

important to carefully model the entry decisions by the largest firms in our data set and this

is where we focus our attention.

Let ai,t = 1 if firm i decides to submit a bid on project t and ai,t = 0 otherwise. Given

ai,t i = 1, . . . , 4 for the largest bidders, the set of bidders who participates will be denoted as

N(t|a). This set includes all the fringe firms observed to participate in the data and those

firms i = 1, . . . , 4 for which ai,t = 1. If one of our four largest firms i enters, then conditional

on a and xt, i’s profit will be:

ui(a; xt, θi) =

∫
(bi,t(ci,t; xt, N(t|a))− ci,t)

∏
j 6=i

(1−Gj(bi,t|xt, N(t|a)))dF (ci,t|xi,t)− θi (23)

38



The above expression implicitly assumes that the timeline for the game is as follows. First, all

large firms simultaneously decide whether or not to enter. The project characteristics, xt, and

the entry decisions of the fringe firms are common knowledge. Second, after entering, each

of the four largest firms observes which other large firms have entered the market. Third, all

participating bidders independently make their cost draws ci,t. Finally, firms submit sealed

bids and the lowest bidder wins. In the above equation, ui(a; xt, θi) is i’s profits conditional on

the entry decisions of the other large firms, the publicly observed data xt and the parameter

θi. Given ui(a; xt, θi), we can specify a normal form game as in the framework of Section 2.

6.1 Estimation

The estimation procedure that we propose is done in two steps. In the first step, we form

an estimate of the term
∫

(bi,t(ci,t; xt, N(t|a)) − ci,t)
∏

j 6=i(1 − Gj(bi,t|xt, N(t|a)))dF (ci,t|xi,t)

in Equation 23 by adapting the approach proposed in Guerre, Perrigne, and Vuong (2000).

In the second step, we take the estimates from the first stage and estimate θi, the fixed cost

of preparing a bid, and λ, the selection of equilibrium, using the methods from Sections 2

and 3.

6.1.1 Markup Estimation

The basic idea behind Guerre, Perrigne and Vuong’s estimator is quite simple. The left

hand size of Equation 22 is the bidder’s private information, ci,t, which is unobserved to the

econometrician. The right hand side is a function of the bid, bi,t, the density of bids, gj(bi,t|xt),

and the CDF of bids, Gj(bi,t|xt). By pooling observations from contracts t = 1, . . . , T , we

construct an estimate ĝj(bi,t|xt) and Ĝj(bi,t|xt) using standard nonparametric techniques.

We then construct an estimate firm i’s private information ĉi,t by evaluating the empirical

analogue of the right hand side of Equation 22. Once we have recovered the distribution of

a firm’s private information, it is possible to compute the ex-post entry profits in Equation

23.

6.1.2 Equilibrium Selection

In the second step, we estimate the fixed costs of bidding, θi, and the probability that a

particular equilibrium is selected, taking the expected entry profits in Equation 23 as given.

We follow the approach outlined in Section 2 and use a conditional logit as a parsimonious

specification of λ. Following the previous literature on entry games, we have found four

criteria discussed in the literature that might influence the selection of equilibrium. First,

in empirical papers such as Tamer (2002), Ciliberto and Tamer (2003) and Andrews, Berry
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and Jia (2005) and Jia (2006) it is usually assumed that only pure strategies are used in

the entry game. The authors argue that mixed strategy equilibria are a priori implausible

in these markets. There is also an experimental literature on entry in auctions. A paper by

Levin and Smith (2001) argues that experimental evidence suggests that the mixed strategy

equilibrium seems most reasonable in auction entry experiments. Therefore, we construct a

dummy variable MIXED(π) if the equilibrium π involves mixed strategies.

Second, we allow the selection of equilibrium to depend if the equilibrium is efficient in

the sense that it maximizes joint payoffs. Therefore, we include the term from Equation

4. Maximizing joint payoffs has commonly been used to select an equilibrium in economic

theory and has also been proposed in the empirical entry literature by Ciliberto and Tamer

(2003). Since the firms in our data interact repeated, they obviously have incentives to

tacitly collude on an equilibrium that maximizes industry surplus. Although we label this

equilibrium as “efficient,” it is not necessarily the equilibrium that the social planner would

choose as does not account for either the revenues generated by the auction or the other

fringe participants.

Third, we include a dummy variable that is equal to one if an equilibrium is Pareto

dominated. In the game theory literature, it is common to assume that Pareto dominated

equilibrium are less plausible and are unlikely to be observed in the data. Finally, we include

the Nash product of player’s utilities for pure strategy equilibria. Harsanyi and Selten (1988)

argue that risk dominant equilibrium are more plausible. When an equilibrium has a large

Nash product, this implies that deviating from the observed equilibrium behavior is especially

costly and hence, the equilibrium is more likely to be self reinforcing.

6.2 The Data

We have constructed a unique data set of bidding by highway contractors in the State

of California from 1999-2000. The data includes 414 contracts awarded by the California

Department of Transportation (CalTrans) during this time period.12 The total value of

winning bids in this data was $369.2 million. There are a total of 1,938 bids and 271

general contractors in our sample. Highway improvement projects are awarded using open

12The data contains contracts for paving and excludes other contracts such as bridge repair. We partition
the data by filtering out contracts where asphalt costs accounted for less than 1/3 of the winning bid.
We focus on paving contracts since capacity constraints and the dynamics emphasized in Pesendorfer and
Jofre-Bonet (2003) are less important for this set of contracts. In Bajari, Houghton and Tadelis (2006) we
produce closely related structural estimates. In this paper, we adjust our estimates to allow for the presence
of dynamics through non-trivial capacity constraints. We find that the inclusion of such capacity constraints
has little effect on estimated markups. In order to simplify the presentation of the results, we focus on a
static model of profits, although it would be quite straightforward to extend the analysis to allow for capacity
to influence profit margins and markups.
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Table 2: Bidder Identities and Summary Statistics

Company Share No. Wins No. Bids Participation Total Bids for
Entered Rate Contracts Awarded

Granite Construction Company 27.2% 76 244 58.9% 343,987,526
E. L. Yeager Construction Co Inc 10.4% 13 31 7.5% 132,790,460
Kiewit Pacific Co 6.6% 5 30 7.2% 112,057,627
M. C. M. Construction Inc 6.5% 2 6 1.4% 89,344,972
J. F. Shea Co Inc 3.3% 9 40 9.7% 43,030,861
Teichert Construction 3.3% 16 43 10.4% 40,177,076
W. Jaxon Baker Inc 2.9% 13 65 15.7% 37,702,631
All American Asphalt 2.2% 14 33 8.0% 30,764,962
Tullis And Heller Inc 2.1% 10 16 3.9% 27,809,535
Sully Miller Contracting Co 1.9% 17 49 11.8% 27,889,186

competitive bidding. Any qualified contractor can submit a bid and contracts are awarded

to the lowest qualified bidder.13 This data set is described in detail in Bajari, Houghton and

Tadelis (2006). We will describe some of the highlights of the data and the industry in this

section. The reader interested in a more complete description can consult this reference.

Let i = 1, . . . , N denote a bidder in our data set and t = 1, . . . , T denote a contract. For

each contract, we observe a detailed list of covariates including bi,t, the bid of contractor i on

project t, ESTt, the engineer’s estimate for project t, DISTi,t the distance in miles of firm i

to project t, CAPi,t, the capacity utilization of firm i at the time of bidding for project t, and

FRINGEi,t, a dummy variable equal to one if firm i is a fringe firm, defined as firms with

market shares of less than one percent. The data set includes the bids for all contractors,

not just the winning bids. The engineer’s estimate, ESTt, is constructed by CalTrans and

is meant to represent a fair market value for completing the work. The project plans and

specifications contain an exhaustive list of work items. The estimate is formed using blue

book prices for specific work items and local material prices.

In Table 2, we summarize the market shares of the 10 largest firms in the industry, where

share is defined using the winning bids.14 The market shares in this industry are quite skewed.

The largest firm, Granite Construction Company, has a share of 27.2 percent compared to

a share of 1.9 percent for the 10th largest firm, Union Asphalt. This skewed distribution

suggests that productivity varies across firms and hence it is important to include firm fixed

effects in our estimates of gj and Gj.

Table 2 demonstrates that the largest firms tend to bid more often as measured by their

participation rate. However, we note that the second largest firm only submits bids for 7.5

13In about 5 percent of the projects in our sample, CalTrans rejects all bids and lets the contracts at a
later date. We do not include these contracts in our sample.

14Market share is defined using the total bids which may differ from final payments for reasons that we
describe in Bajari, Houghton and Tadelis (2006).
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percent of the jobs compared to Granite which submits bids for 58.9 percent of the jobs. This

suggests that in modeling entry, it will be important to account for firm specific differences

in the costs of bidding, θi.

In Table 3, we provide some summary statistics about the bids. In our data, a typical

winning bid is $3.2 million dollars and is about 6 percent lower than the engineer’s estimate.

Comparing the winning bid to the second highest bid, the average money left on the table

is about 6 percent of the estimate. This suggests that there is asymmetric information in

this market. If the low bidder knew the cost of the second lowest bidder, then in a Nash

equilibrium we would expect the low bidder to shade just under the cost of the second lowest

bidder. Leaving money on the table does not increase the probability of winning and only

decreases the profit of the low bidder.

In Table 4, we see that the the ranking of the bids corresponds closely to the distance

of the participating contractors from the project. For instance, DIST1, the distance of the

closest contractor is smaller than DIST2, the distance of the second closest contractor. The

average time of the closest contractor to the project is 47 miles compared to 73 miles for the

second closest contractor. This is consistent with the presence of substantial transportation

costs. The closest contract will, all else held constant, have a lower cost of hauling asphalt

to the project site and is therefore more likely to win the project.

In Table 5, we regress the bids on the various cost controls in our data set. In the first

column, a regression of all total bids on the engineer’s estimate has an R2 of 0.987 with a

coefficient of 1.02 suggesting that the estimate accounts for much of the observed variation

in bids and is therefore an extremely useful regressor. In the second column, we change the

dependent variable to bi,t/ESTt since the variance of the errors in the bid regressions are

likely to be proportional to ESTt. The next set of regressions demonstrate that distance, an

identifier for fringe firms, project fixed effects, and firm fixed effects for the largest four firms

are significant determinants of the observed bids. The expected signs are as anticipated. The

impact of distance on the bid is positive, reflecting the higher transportation cost for firms

that are farther away from the project. The average distance of a firm from the project in

our data is 72 miles with a standard deviation of 92 miles. The regression results imply that

increasing the distance by a standard deviation will raise the bid, relative to the engineer’s

estimate, by about 2.3 percent. Highway contracting is widely viewed as quite competitive.

The largest firm in our sample, Granite Construction, reports a profit margin of 3.31 percent

and an operating margin of 5.15 percent. Therefore, a two percent increase in bids is fairly

substantial. Relative to the engineer’s estimate, fringe firms on average bid 4.2 percent

higher than non-fringe firms.

In Table 6, we estimate a logit model of entry for the four largest firms in the industry.
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Table 3: Bidding Summary Statistics

Obs Mean Std. Dev. Min Max

Winning Bid 414 3,203,130 7,384,337 70,723 86,396,096
Markup: (Winning Bid-Estimate)/Estimate 414 -0.0617 0.1763 -0.6166 0.7851
Normalized Bid: Winning Bid/Estimate 414 0.9383 0.1763 0.3834 1.7851
Second Lowest Bid 414 3,394,646 7,793,310 84,572 92,395,000
Money on the Table: Second Bid-First Bid 414 191,516 477,578 68 5,998,904
Normalized Money on the Table: (Second Bid-
First Bid)/Estimate

414 0.0679 0.0596 0.0002 0.3476

Number of Bidders 414 4.68 2.30 2 19
Distance of the Winning Bidder 414 47.47 60.19 0.27 413.18
Travel Time of the Winning Bidder 414 56.95 64.28 1.00 411.00
Utilization Rate of the Winning Bidder 414 0.1206 0.1951 0.0000 0.9457
Distance of the Second Lowest Bidder 414 73.55 100.38 0.19 679.14
Travel Time of the Second Lowest Bidder 414 82.51 97.51 1.00 614.00
Utilization Rate of the Second Lowest Bidder 414 0.1401 0.2337 0.000 0.9959

Table 4: Distance to Job Site

Mean Std. Dev. Min Max

DIST1 47.47 60.19 0.27 413.18
DIST2 73.55 100.38 70.19 679.14
DIST3 75.47 95.56 0.13 594.16
DIST4 84.38 89.87 1.45 494.08
DIST5 76.12 86.33 1.25 513.31

Table 5: Bid Function Regressions

Variable bi,t bi,t/ESTt bi,t/ESTt bi,t/ESTt

ESTt 1.025
(56.26)

DISTi,t .000246 .000223
(5.66) (5.01)

UTILi,t 0.02539
(0.93)

FRINGEi,t
0.4288
(4.65)

Constant -25686 1.19 1.001
(0.56) (94.9) (79.98)

Fixed Effects No Project Project Project/Firm

R2 0.989 0.5245 0.5292 0.5321

Number of observations = 1938; t-statistics are reported in parentheses.
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Table 6: Logit Model of Entry

I II III

Constant -.9067 -1.6811
(7.91) (7.53)

DISTi,t -0.00218 -0.00322 -0.00854
(5.42) (5.66) (4.85)

Granite 2.889 4.4537
(13.28) (7.31)

E. L. Yeager - -

Kiewit Pacific -0.1527 1.1969
(0.57) (2.1)

M. C. M. -1.786 -.70779
(3.94) (1.12)

Fixed Effects No No Project

Observations 1656 1656 1068

Number of Groups 261

Log-Likelihood -784.20 -511.86 -101.0728

The dependent variable is whether one of the four largest firms in the industry
decides to submit a bid in a particular procurement; t-statistics are reported in
parentheses.
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For each of these firms, we calculate their distance to each project t even the firm does not

submit a bid. We find that participation is a decreasing function of the firm’s distance to the

project. Also, there is heterogeneity across the firms in terms of their participation decisions

suggesting that inclusion of firm level effects θi is important in modeling entry.

6.2.1 Estimates of Profits

We estimate bidder markups using the approach by Guerre, Perrigne and Vuong (2000) as

described above. Given the number of covariates in our application, it is not feasible to non-

parametrically estimate the distribution of bids gj and Gj. Instead, we use a semiparametric

approach. We first run a regression, as in Table 5:

bi,t

ESTt

= x′i,tα + u(t) + εi,t,

where the dependent variable is normalized by dividing through by the engineer’s estimate.

We also include an auction specific fixed effect, u(t). Let α̂ denote the estimated value of α

and let ε̂i,t denote the fitted residual. We will assume that the residuals to this regression

are iid. Let Ĥ denote the Kaplan-Meier estimate of the CDF of the fitted residuals.15

Under these assumptions, the estimated bid distributions satisfy:

Ĝi(b|zj,t, N(t)) = Pr

(
bi,t

ESTt

≤ b

ESTt

)
= Pr

(
x′i,tα̂ + û(t) + ε̂i,t ≤

b

ESTt

)
= Ĥ

(
ε̂i,t ≤

b

ESTt

− x′i,tα̂− û(t)

)
.

That is, the distribution of the fitted residuals, ε̂i,t can be used to to infer the distribution

of the bids. As the estimates in Table 5 suggest, variation in the estimated bid distribution

will be driven by three factors. The first is the auction fixed effects, û(t). The second is

the distance of each firm from the project. The further a particular firm is away from the

project, the higher its bid will be. Finally, the firm fixed effects are important. The largest

four firms will bid more aggressively than the smaller fringe firms.16 Recall that earlier

15We estimate the density h of the fitted residuals using kernel density estimation with an estimated
optimal bandwidth. Since there are 1938 fitted residuals, the estimates of H and h are quite precise given θ.
Ideally, our estimates would take account of the first stage estimation error in θ. However, the computational
burden of performing a resampling procedure such as the bootstrap is considerable and beyond the scope of
this research.

16We note that we must estimate the distribution of each firm i’s bid even if it does not participate in
a particular auction. We have therefore computed the distance of each of the four largest firms from all
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Table 7: Margin Estimates

Variable Num. Obs. Mean Std. Dev. Median 25th Percentile 75th Percentile

Profit Margin 1938 0.0644 0.1379 0.0271 0.0151 0.0520

The markup is defined as 1 minus the ratio of the estimated cost, which is private information, to the actual
bid.

we demonstrated that firm specific profit shifters are sufficient to identify our model under

fairly mild parametric assumptions. In our analysis, distance and firm fixed effects will be the

primary shifters of individual firms profits. Each firm has a unique distance to a particular

contract t. The variation in commuting times across projects generates shifts in the payoffs

of individual firms and therefore allows us to identify our model.

In Table 7, we summarize the distribution of estimated markups on the 1,938 bids in our

data set. The average markup is about 6 percent. However, the distribution of markups

is skewed. The median markup is estimated at 2.71 percent and the 75th percentile is 5.2

percent. These margins seem sensible given the publicly available information about this

market. The largest firm in our data set, Granite Construction is publicly traded under

the symbol GVA. In the first quarter of 2006, they reported a profit margin of 3.31 per-

cent and an operating margin of 5.15 percent. Margins reported in quarterly statements

and our margin estimates are not directly comparable since accounting costs and economic

costs differ. However, the publicly available information suggest that a reasonable answer

should involve a fairly low profit margin. The above margin estimates are very similar to

estimates constructed in Bajari, Houghton and Tadelis (2006). For a discussion of robust-

ness checks on the margin estimates to alternative covariates and alternative econometric

modeling assumptions, the interested reader can consult this reference.

6.2.2 Equilibrium Selection Parameters and Bid Costs

As mentioned in Section 5, a good choice of the importance density is vitally important for

the success of our estimation procedure. To this end, we first estimated a private-information

version of the entry game to obtain starting values for bid preparation costs and the profit

scale parameter. While these parameters will generally not be consistent estimates of the

complete information game parameters, they will be roughly in the correct neighborhood,

which greatly enhances the convergence properties of our importance sampling MSM proce-

dure. All equilibrium selection parameters were initially set at zero. We performed several

t = 1, . . . , 414 projects even if they did not submit a bid. We use Equation 22 to infer the distribution of
firm i’s bid in this case. The estimates of Table 6 suggest that bidder i will have a low chance of winning a
particular procurement t if it is a long distance from the project site.

46



Table 8: Games Estimation Results

Variable Mean Median Std.Dev. 95% Confidence Interval

Equilibrium Selection Parameters (λ)

Pure Strategy -1.3524 -1.5345 0.7979 -2.4903 0.1954
Joint Profit Maximizing 6.4365 6.4226 0.5321 5.6151 7.5149
Dominated -5.3841 -5.3316 0.7002 -6.7164 -4.0986
Nash Product 4.4143 4.2025 1.1017 2.9651 6.4836

Profit Scale

Profit Scale 0.0965 0.0954 0.0015 0.0954 0.0984

Bid Preparation Costs (θi)

Granite Construction 0.2341 0.2393 0.0977 0.0679 0.4271
E. L. Yeager 1.4583 1.4757 0.0941 1.2563 1.6227
Kiewit Pacific 1.6751 1.6720 0.0511 1.5775 1.7789
M. C. M. Construction 2.4490 2.4360 0.1144 2.2547 2.6966

Estimation and inference was performed using the LTE method of Chernozhukov and
Hong (2003). A Markov chain was generated with 500 draws for each parameter. 409
importance games were used in the importance sampler for the 409 observations.

sequential estimations, using 409 importance games that were initialized with the last itera-

tion’s final value. When the parameter values were consistent after several iterations, we ran

the Laplace-type estimator of Chernozhukov and Hong (2003) to generate standard errors

and to ensure that the estimated coefficients were robust to the optimization method used

in the initial steps. The results are reported in Table 8.

The first parameter to interpret is the coefficient on profit scale. The expected entry

profits for a firm are denominated in tens of thousands of dollars. These expected profits are

then multiplied by the profit scale parameter, which is equal to 0.0965. Therefore we should

interpret each unit of the fixed costs of bidding as representing about $96,500. For example,

this means that Kiewit Pacific faces, on average, a cost of approximately $161,650 to prepare

a bid, or roughly five percent of the average winning bid. This amount varies across the four

firms, from $22,590 for Granite Construction to $235,460 for M. C. M. Construction. Given

that winning bids are drawn from the left tail of the bid distribution, these numbers are

roughly consistent with Park and Chapin (1992), who argue that bid preparation costs are

approximately equal to one percent of the total bid in magnitude.

A second check on the validity of these estimates is to consider that the bid preparation

costs have to reconcile the rates of entry into these auctions, suggesting they should be

significant relative to the size of the expected profits. The typical expected profit if a firm

is the only one of the big four to enter is about $50,000. In a simple probit entry model, we
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would expect a firm with a participation rate of 50 percent to have fixed costs equal to this

value. Indeed, the Granite Construction Company, with the the highest participation rate

by far at over 58 percent, has fixed costs slightly lower than this. The fact that the bid costs

are lower than $50,000 reflects both that the entry rate is above 50 percent and that in most

auctions several other large firms are going to enter, which decreases the expected profits

below $50,000. A third check on the validity of our results is that bid costs are monotonically

and inversely related to participation rates: the two firms with similar participation rates,

E. L. Yeager and Kiewit Pacific, have almost identical bid preparation costs, and the bid

costs for M. C. M. Construction, with a low entry rate of 1.4 percent, are correspondingly

high, over ten times that of Granite Construction.

Turning to the parameters of the equilibrium selection mechanism, we have several in-

teresting results. First of these is that mixed strategy equilibria are more preferred to pure

strategy equilibria, all else equal. In entry games, this result is somewhat intuitive; supposing

that there is room for one firm in a game with two potential entrants, it would be surprising

to see one of the two firms consistently conceding the market when committing to the mixed

strategy strictly increases expected profits. This also dovetails with the results in Levin and

Smith (2001), who find support for mixed strategy equilibria in an experimental setting.

This results is particularly important in light of the number of papers which assume that

only pure strategies are played in equilibrium; our findings suggest that it may be common

to obtain biased parameter estimates under these assumptions.

Also surprising is the strong effect that efficiency has on the probability of an equilibrium

being chosen. Given that there are typically many pure and mixed strategies in a given game,

this shifter is by far the most influential factor in deciding which equilibrium is played. This

finding also has potentially collusive implications, as one would expect firms coordinating

their entry actions to operate in such a fashion that the equilibrium played in the data

maximized joint profits.

A less surprising result is that the coefficient on dominated equilibria is strongly negative.

This is also in line with intuition, as we would expect firms to stay away from equilibria where

everyone could do at least as well in expectation by playing a different equilibrium. Finally,

the coefficient on the equilibrium with the highest Nash product is strongly positive. This

indicates that among pure strategy equilibria, the one with the highest Nash product has a

strong tendency to be played in the data.
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7 Conclusion

Estimating models that are consistent with Nash equilibrium behavior is an important em-

pirical problem. In this paper, we have developed algorithms that can be used to estimate

both the utilities and the equilibrium selection parameters for static, discrete games. Our

algorithms, unlike previous research, can be applied to general normal form games, not just

specific examples such as entry games. The algorithms use computationally efficient methods

and our Monte Carlo work suggests that they may work well even with a moderate number

of observations.

We also study the nonparametric identification of these games. We provide approaches

for identification based on sufficient variation of payoff covariates and identification through

two types of exclusion restrictions. First, we can obtain identification if there are variables

that influence equilibrium selection but do not directly enter into payoffs. Second, we can

obtain identification if there are variables that: a.) shift a specific agent’s utility but which

do not enter into the utility of other players, and b.) can be excluded from the equilibrium

selection mechanism.

As an application of our methods, we studied the decision of four large construction

firms to enter into procurement auctions in California. We recovered fixed bid preparation

costs for each of the four firms which rationalize their entry rates into these auctions. The

application also highlighted one of the strengths of our approach: the ability to estimate

an equilibrium selection mechanism. Our estimates indicate that mixed strategy equilibria

are selected with a greater probability than pure strategy equilibria, an important finding

given the prevalence of empirical models which exclude the possibility of mixed strategy

equilibria. We also find that the equilibrium mechanism favors joint profit maximizing and

non-dominated equilibria. Among pure strategy equilibria, the one with the largest Nash

product is selected with higher probability. The estimation methods we propose to the best

of our knowledge are the only current approach capable of accommodating both multiplicity

and mixed strategy equilibria.
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A Maximal and Expected Number of Nash Equilibria

When considering the nonparametric identification of the equilibrium selection mechanism,

it is useful to know some generic properties of the set of Nash equilibria in a game. Briefly we

review results in the literature on the maximum number and expected number of equilibria

to normal form games of the class considered here.

A.1 Maximum Number of Equilibria

Solutions to normal form games can be characterized using polynomial equalities and in-

equalities. Therefore before considering games we review some general important results

discussing the solutions of the systems of polynomials. Let F = {fi(x)}n
i=1 be the system

of n polynomials of n variables and we are looking for the set of all common roots of this

system. A polynomial fi(x) =
J∑

j=1

aj x
eij
1

1 x
eij
2

2 . . . xeij
n

n =
J∑

j=1

aj

n∏
k=1

x
eij
k

k . Here the powers eij
k

are in general integers and index i refers to the number of equation, index j refers to the

number of monomial in the polynomial i and index k refers to the specific variable xk. The

points eij =
(
eij
1 , . . . , eij

n

)
form the finite sets Ei = (eij, j = 1, . . . , J) indicate which mono-

mial terms appear in fi. For instance, in the polynomial fi(x1, x2) = x2
1 x3

2 +2x2
1 the support

set is Ei = {(2, 3) , (2, 0)}.
The collection of sets E = (E1, E2, . . . , En) is called the support of the system of poly-

nomials. The convex hulls Conv (Ei) are called Newton polytopes of fi. For example the

Newton polytope of the polynomial f(x1, x2) = x1 x2 + x1 + x2 + 1 is the unit square with

vertices in (1, 1), (1, 0), (0, 1), and (0, 0).

The degree of the polynomial i is di = maxj

n∑
k=1

eij
k . One of the most important theorems

describing the behavior of zeros of F in the complex space Cn is Bézout’s theorem which says

that the total number of common complex roots of F is at most
n∏

i=1

di. Bézout’s theorem

gives an upper bound on the number of common roots in the system. A drawback of Bézout’s

theorem is that it gives little information about the polynomials that are sparse. In fact for

sparse systems the number of common roots of the polynomial system can be significantly

less than the bound set by this theorem. A universal and powerful tool for root counting in

case of sparse polynomial is the Bernstein’s theorem.

Let Pi be Newton polytopes of equations fi(x) in the system F defined previously. The

54



mixed volume of the system of polytopes is defined as:

M (P1, . . . , Pn) =
∑

S⊆{1,...,n}

(−1)|S| Vol

(∑
i∈S

Pi

)
, (24)

where S are all subsets of {1, 2, . . . , n}, |S| is the cardinality (number of elements) of a par-

ticular subset, while Vol (·) is the conventional geometric volume. The sum of the polytopes

is defined for two polytopes P and Q as P + Q = {p + q | p ∈ P, q ∈ Q}.

Theorem 6 (Bernstein). The number of common roots in the system F is equal to the mixed

volume of the n Newton polytopes of this system.

This is an extremely powerful result because the mixed volume is easy to compute. A

general problem with the complex roots though is that it is not invariant with respect to the

group of polynomial transformations of F . For example, if the polynomial f(x) has degree

d and thus has d distinct complex roots then the polynomial f(x)2 can have 2d distinct

complex roots. This is not the case with the real roots of the system of polynomials and

thus power transformations have no effect on the number of distinct real roots. This effect

is captured by Khovanskii’s theorem which sets the upper bound on the number of common

real roots of the polynomial system which does not depend on the degrees of the equations

in the system.

Theorem 7 (Khovanskii). If m is the number of all monomials in F (or equivalently m =

|E| =
∑n

i=1 J − i - cardinality of the support) and in F there are n polynomials then the

maximum number of real solutions of the system is 2((m
2 )) (n + 1)m.

In many cases, however, the so-called Kouchnirenko’s conjecture holds: if the number of

terms in fi is at most mi then the number of isolated real roots is at most
n∏

i=1

(mi− 1). This

conjecture is violated for some generic (although quite complex) counterexamples.

Consider an arbitrary N -person game where the player i has ni strategies. Using the

Lagrangian multiplier techniques it can be reduced to the system of n +
∑

i ni polynomial

equations with n+
∑

i ni unknowns. Let the variable x
(i)
k denote the strategy k of the player i,

ξ
(i)
j1,j2,...,ji−1,k,ji+1,...,jN

be the payoff function, representing the payoff of player i when she plays

the pure strategy k and the other players are playing j1, . . . , jN , and π(i) be the expected

payoff of player i. Let λ
(i)
k0 be the lagrange multiplier for the constraint x

(i)
k ≥ 0, and λ̃

(i)
be

the lagrange multiplier for the constraint
ni∑

k=1

x
(i)
k = 1. The Lagrangian for the bidder i can
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be written as:

L(i) =

ni∑
k=1

x
(i)
k

∑
j−i

ξ
(i)
j1,j2,...,ji−1,k,ji+1,...,jN

x
(1)
j1

. . . x
(i−1)
ji−1

x
(i+1)
ji+1

. . . x
(N)
jN

−
ni∑

k=1

λ
(i)
k0x

(i)
k + λ̃

(i)

(
1−

ni∑
k=1

x
(i)
k

)
.

The first order condition for the Lagrangian is complemented by the complementary slackness

conditions for the multipliers λ
(i)
k0 :

∂L(i)

∂x
(i)
k

=
∑
j−i

ξ
(i)
j1,j2,...,ji−1,k,ji+1,...,jN

x
(1)
j1

. . . x
(i−1)
ji−1

x
(i+1)
ji+1

. . . x
(N)
jN

− λ
(i)
k0 − λ(i) = 0, (25)

1−
ni∑

k=1

x
(i)
k = 0, (26)

x
(i)
k λ

(i)
k0 = 0, k = 1, . . . , ni. (27)

If we multiply the first equation by xi
k then it reduces to:

x
(i)
k

∑
j1,j2,...,ji−1,ji+1,...,jN

ξ
(i)
j1,j2,...,ji−1,k,ji+1,...,jN

x
(1)
j1

. . . x
(i−1)
ji−1

x
(i+1)
ji+1

. . . x
(N)
jN

− x
(i)
k λ̃

(i)
= 0, (28)

1−
ni∑

k=1

x
(i)
k = 0, (29)

x
(i)
k λ

(i)
k0 = 0, k = 1, . . . , ni. (30)

Summing the first equation over all k we obtain that π(i) = λ̃
(i)

. Then each bidder is

characterized by the system of equations:

x
(i)
k

πi −
∑

j1,j2,...,ji−1,ji+1,...,jN

ξ
(i)
j1,j2,...,ji−1,k,ji+1,...,jN

x
(1)
j1

. . . x
(i−1)
ji−1

x
(i+1)
ji+1

. . . x
(N)
jN

 = 0, (31)

ni∑
k=1

x
(i)
k − 1 = 0, k = 1, . . . , ni, i = 1, . . . , N. (32)

For each player thus we have ni + 1 equations and ni + 1 unknown parameters (ni mixed

strategies and the expected payoff). The individual equation has
∏

j 6=i nj + 1 terms (the

number of strategies of the other players when the strategy of the player i is fixed plus the

expected payoff of player i). In addition, the linear equations limiting the mixed strategies
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to the simplex have ni +1 terms each. In total there are
∑

i ni +N equations and unknowns.

The total number of terms is
∑

i

∏
j 6=i nj +

∑
i ni+2N . If we consider purely mixed strategies

then x
(i)
k > 0, and thus the system can be rewritten as:∑

j−i

(
ξ

(i)
j1,j2,...,ji−1,k,ji+1,...,jN

− ξ
(i)
j1,j2,...,ji−1,ni,ji+1,...,jN

)
x

(1)
j1

. . . x
(i−1)
ji−1

x
(i+1)
ji+1

. . . x
(N)
jN

= 0, (33)

k = 1, . . . , ni − 1, i = 1, . . . , N. (34)

This system has ni−1 unknowns for player i and
∑

i ni−N unknowns in total. The number

of terms for each equation is
∏

j 6=i nj according to the number of strategies of the rival players

when the strategy of the given player is fixed. The total number of terms is then given by

the sum
∑

i

(∏
j 6=i nj

)
(ni − 1).

McKelvey and McLennan directly apply Bernstein’s theorem to the given system of

equations and express the number of solutions in terms of the mixed volume of Newton

polytopes for the case of totally mixed solutions (the case with possible pure strategies needs

specific consideration for each payoff structure). We can also apply Khovanskii’s result to

this system. First, by Kouchnirenko’s conjecture the maximum number of solutions to this

system is
N∏

i=1

(∏
j 6=i

nj − 1

)ni−1

(35)

which gives an approximate formula for the upper bound on the number of solutions. By

the exact application of Khovanskii’s formula as m =
∑

i

(∏
j 6=i nj

)
(ni − 1) the maximum

number of solutions is 2
m!

2(m−2)! (
∑

i ni −N + 1)m.

For a particular case of k equal number of strategies of players Kouchnirenko’s formula

gives
(
kN−1 − 1

)N(k−1)
for the number of equilibria while Khovanskii’s bound is

2(Nk(N−1)(k−1)
2 ) [N(k − 1) + 1]Nk(N−1)(k−1) .

The number of moments which arise from the game with N players where each player has

k strategies is kN − 1. The corresponding numbers of moments are tabulated in Table 10.

The number of moments is significantly smaller than Kouchnirenko’s bounds.

A.2 Expected number of equilibria

McLennan applies a general formula obtained in Rojas (1996) which characterizes the ex-

pected number of solutions to sparse systems of polynomials with random coefficients. It is

important to note that the result in Rojas (1996) refers to the number of complex roots.
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Table 9: Tabulation of Kouchnirenko’s formula

Number of Strategies (k)
N 2 3 4 5 6
2 1 16 729 65536 9765625
3 27 262144 38443359375 3.65203E+16 1.44884E+23
4 2401 2.08827E+11 3.90919E+21 3.12426E+33 4.45419E+46
5 759375 1.07374E+19 1.25344E+36 8.01109E+55 6.40832E+77
6 887503681 4.03445E+28 1.50578E+54 7.4656E+83 5.2603E+116

Table 10: Tabulation of the Number of Available Moments

Number of Strategies (k)
N 2 3 4 5 6
2 3 8 15 24 35
3 7 26 63 124 215
4 15 80 255 624 1295
5 31 242 1023 3124 7775
6 63 728 4095 15624 46655
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As it was discussed in the previous literature, the number of solutions to the sparse

systems of polynomials is described by the Bernstein’s theorem which characterizes the

number of solutions by the mixed volume of a corresponding Newton polyhedron of the

system. The result in Rojas (1996) is obtained from the fact that if the coefficients are

symmetrically distributed, then the computation of the mixed volume becomes symmetric

as well. As a result, through a non-singular transformation, we can relate the distribution

of the mixed volume for any distribution of polynomial coefficients to the standard normal

distribution.

In McLennan and Berg (2002) and McLennan (2002) the authors consider a game with

the payoffs of the players distributed normally. They provide an independent asymptotic

analysis of this expected number of equilibria with large number of strategies. In particular,

the authors show that the number of equilibria in the 2-person games grow exponentially

(as O (exp(Mk)) for some constant M) if the number of pure strategies of both players, k,

grows at the same rate. However, if the number of strategies of one player is fixed, then the

growth rate is slower than exponential (as O
(
{log k}

M−1
2

)
, where M is the fixed number

of strategies). Their analysis relies on the insight that degenerate equilibria arise only with

probability zero. The expected number of equilibria in the asymptotic case can be expressed

by the formula:

E{Neq} =
1√
M

(√
π log k

2

)M−1

+ o
(
[log k](M−1)/2

)
, (36)

when the number of pure strategies of one player is fixed and equal to M and the number

of strategies of the other player is equal to k → ∞. The relative error of this asymptotic

approximation becomes smaller than 2% only if the number of strategies N is greater than

100. The number of moments available from the game and the number of expected equilibria

are tabulated in Tables 11 and 12. The number of moments significantly exceeds the expected

number of equilibria.
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Table 11: Expected number of equilibria for different numbers of pure strategies

Number of strategies (k)
M 10 20 50 200 300 400 500 600 700 800 900 1000
2 0.95 1.08 1.23 1.44 1.49 1.53 1.56 1.58 1.60 1.62 1.63 1.64
3 1.04 1.35 1.77 2.40 2.58 2.71 2.81 2.90 2.97 3.03 3.08 3.13
4 1.21 1.80 2.69 4.24 4.74 5.10 5.39 5.63 5.83 6.01 6.17 6.3
5 1.46 2.47 4.22 7.74 8.97 9.90 10.6 11.2 11.8 12.3 12.7 13.1
6 1.79 3.46 6.75 14.4 17.3 19.6 21.4 23.0 24.5 25.7 26.9 27.9
7 2.23 4.92 10.9 27.2 33.9 39.3 43.9 47.9 51.4 54.6 57.6 60.3
8 2.81 7.06 17.9 51.9 67.2 79.9 90.8 100 109 117 124 131
9 3.56 10.2 29.7 99.9 134 163 189 212 233 253 271 288
10 4.54 14.8 49.3 193 269 336 396 451 502 550 595 638
11 5.83 21.7 82.5 376 543 695 835 965 1087 1202 1312 1417

Table 12: The number of moments from the two-player game

N
M 10 20 50 200 300 400 500 600 700 800 900 1000
2 19 39 99 399 599 799 999 1199 1399 1599 1799 1999
3 29 59 149 599 899 1199 1499 1799 2099 2399 2699 2999
4 39 79 199 799 1199 1599 1999 2399 2799 3199 3599 3999
5 49 99 249 999 1499 1999 2499 2999 3499 3999 4499 4999
6 59 119 299 1199 1799 2399 2999 3599 4199 4799 5399 5999
7 69 139 349 1399 2099 2799 3499 4199 4899 5599 6299 6999
8 79 159 399 1599 2399 3199 3999 4799 5599 6399 7199 7999
9 89 179 449 1799 2699 3599 4499 5399 6299 7199 8099 8999
10 99 199 499 1999 2999 3999 4999 5999 6999 7999 8999 9999
11 109 219 549 2199 3299 4399 5499 6599 7699 8799 9899 10999
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