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1. Introduction

Understanding of bumpy unpredictable movements in nominal exchange rates with solid

economic reasoning is always a challenging business. Since Meese and Rogoff’s (1983) seminal

exercise, a random walk has been recognized as a primary property of flexible nominal exchange

rates in post-Bretton Woods samples of major advanced economies. The fact that nominal exchange

rates are most described by a naive random walk statistical model has negated past attempts of

academic researchers to enjoy equilibrium models of nominal exchange rates and of policy makers to

extract macroeconomic policy implications. Nominal exchange rates resemble a beast that resists

a casual explanation stubbornly.

A random walk is also a major characteristic of the yen/US dollar nominal exchange rate,

at least, after the Plaza Accord in 1985. In fact, the serial correlation of the currency return of the

yen against the US dollar is estimated to be statistically low and economically negligible. Moreover,

the yen/US dollar rate seems to be disconnected with any real economic variables such as output

and consumption. Neither common trend nor common cycle does it share with both the output

and consumption differentials between the two major exchange rate floaters.

Nevertheless, there are two outstanding statistical properties of the yen/US dollar exchange

rate to be noted for profoundly figuring out nominal exchange rate fluctuations. As the first

property, the Soros chart is well-known anecdotal evidence that the yen/US dollar exchange rate is

traced by the two countries’ relative size of money supply.1 Figures 1(a) and (b) are two versions

of the Soros chart. The former plots the yen/US dollar rate and the corresponding monetary base

differential. This version of the Soros chart appears unsuccessful. In particular, after 2001 when

the Bank of Japan (BOJ) initiated the first quantitative easing (QE) policy, the monetary base

differential (the green line) moves far apart from the yen/US dollar exchange rate (the black line).

This failure of the first Soros chart stays obvious even after the Lehman shock with subsequent QE

policies conducted by the Federal Reserve System (Fed).

The reason behind the failure of the first Soros chart clearly stems from the massive ac-

cumulation of the excess reserves at the BOJ and the Fed through the unconventional monetary

policies after 2001. Figure 1(b) depicts the same exchange rate (the black line) and the monetary

base differential augmented by subtracting the excess reserve from each country’s monetary base

(the green line). Observe that the augmented Soros chart traces the low-frequency slow-moving

component of the yen/US dollar exchange rate surprisingly well. It, therefore, is empirically plau-

sible that the augmented monetary base differential shares a common stochastic trend with the

yen/US dollar exchange rate.

1The Soros chart is named after George Soros who pointed out this anecdotal evidence behind the yen/US dollar

nominal exchange rate.
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The second outstanding property is the historically tight linkage between the two countries’

interest rate differential and the low-frequency component of the currency return (i.e., the depreci-

ation rate) of the yen against the US dollar. Figure 2 displays the differential of the three-month

Treasury Bill rates between the two countries (the black line) on the left axis and the currency

return of the yen against the US dollar (the green line) on the right axis, where each time series is

demeaned by its own unconditional mean. Notice that the interest rate differential comoves tightly

with the slow-moving component of the currency return, at least, prior to the Lehman shock when

the Fed started the zero interest rate policy. This fact suggests that the conventional uncovered

interest parity (UIP) condition nearly holds in the post-Plaza Accord sample of the yen/US dollar

exchange rate.

In this paper, we develop a simple two-country incomplete-market model that can describe

the above major characteristics of the post-Plaza Accord sample of the yen/US dollar exchange

rate. The sample moments our model targets include (i) the two versions of the Soros chart, (ii)

the near random walk behavior of the yen/US dollar rate with a negligible serial correlation of the

currency return, (iii) the disconnection of the yen/US dollar rate with real output and consumption

differentials, and (iv) the historically tight linkage between the interest rate differential and the

currency return. Recently, Kano (2013) theoretically establishes the equilibrium random walk

property of nominal exchange rates within a canonical two-country incomplete-market model for

the post-Bretton Woods sample of Canada and the United States.2 In this paper, we extend

Kano’s exercise by explicitly modeling a money creation process to describe the two versions of

the Soros chart simultaneously. Exploiting the post-Plaza Accord sample of Japan and the United

States, we then estimate the proposed two-country model through a Bayesian restricted unobserved

component approach. To our best knowledge, this paper is the first attempt to figure out the Soros

chart within an equilibrium open-economy model with solid microfoundations.

Section 2 introduces our two-country model. Section 3 establishes the equilibrium ran-

dom walk property of the nominal exchange rate. Section 4 describes the Bayesian unobserved

component approach of this paper and reports the empirical results. Section 5 concludes.

2. A two-country incomplete-market model for the Soros chart

2.1. The model

2The important predecessors of this paper are Engel and West (2005), Nason and Rogers (2008), and Kano (2013).

Engel and West establish the equilibrium random walk property in a partial equilibrium asset approach of nominal

exchange rates when economic fundamentals are I(1) and the discount factor approaches one. Nason and Rogers

show that the equilibrium random walk property holds in a two-country incomplete market model. Kano (2013)

confirms Nason and Rogers’ s claim even when the two-country model of Nason and Rogers is closed suitably to find

a balanced growth path with a stationary net foreign asset distribution.
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In this paper, we extend the canonical incomplete market model with two countries, which is

investigated in Kano (2013), for understanding the Soros chart. Consider the home h and foreign f

countries. Each country is endowed with a representative household whose objective is the lifetime

money-in-utility

∞∑
j=0

βjEt

{
lnCi,t+j + Γi,t+j ln

(
Md

i,t+j

Pi,t+j

)}
, 0 < β < 1, for i = h, f,

where Ci,t, M
d
i,t, and Pi,t represent the ith country’s consumption, money demand, and price index,

respectively. The money-in-utility function is subject to a preference shock Γi,t. The representative

households in the home and foreign countries maximize their lifetime utility functions subject to

the home budget constraint

Bh
h,t+StB

f
h,t+Ph,tCh,t+M

d
h,t = (1+rhh,t−1)B

h
h,t−1+St(1+r

f
h,t−1)B

f
h,t−1+M

d
h,t−1+Ph,tYh,t+Th,t, (1)

and its foreign counterpart

Bh
f,t

St
+Bf

f,t+Pf,tCf,t+M
d
f,t = (1+ rhf,t−1)

Bh
f,t−1

St
+(1+ rff,t−1)B

f
f,t−1+M

d
f,t−1+Pf,tYf,t+Tf,t, (2)

respectively, where Bl
i,t, r

l
i,t, Yi,t, Ti,t, and St denote the ith country’s holdings of the lth country’s

nominal bonds at the end of time t, the ith county’s returns on the lth country’s bonds, the

ith country’s output level, the ith country’s government transfers, and the level of the bilateral

nominal exchange rate, respectively. Each country’s output Yi,t is given as an exogenous endowment

following a stochastic process Yi,t = yi,tAi,t, where yi,t is the transitory component and Ai,t is the

permanent component. Below, we interpret the permanent component Ai,t as the TFP in the

underlying production technology.

The first-order necessary conditions (FONCs) of the home country’s household are given

by the budget constraint (1), the Euler equation

1

Ph,tCh,t
= β(1 + rhh,t)Et

(
1

Ph,t+1Ch,t+1

)
, (3)

the utility-based uncovered parity condition (UIP)

(1 + rhh,t)Et

(
1

Ph,t+1Ch,t+1

)
=

(1 + rfh,t)

St
Et

(
St+1

Ph,t+1Ch,t+1

)
, (4)

and the money demand function

Md
h,t

Ph,t
= Γh,t

(
1 + rhh,t

rhh,t

)
Ch,t. (5)

The foreign country’s FONC counterparts are the budget constraint (2), the Euler equation

1

Pf,tCf,t
= β(1 + rff,t)Et

(
1

Pf,t+1Cf,t+1

)
, (6)
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the utility-based uncovered parity condition (UIP)

(1 + rhf,t)Et

(
1

St+1Pf,t+1Cf,t+1

)
=

(1 + rff,t)

St
Et

(
1

Pf,t+1Cf,t+1

)
, (7)

and the money demand function

Md
f,t

Pf,t
= Γf,t

(
1 + rff,t

rff,t

)
Cf,t. (8)

The most important extension of this model from Kano’s (2013) is found in the paper’s

explicit modeling of a money creation process, which specifies the linkage among money supply

Mi,t, monetary base Hi,t, and excess reserve ERi,t in country i = h, f . The monetary base consists

of cash in circulation Vi,t, required reserve RRi,t, and excess reserve ERi,t held by private banks in

the accounts at the central bank of country i:

Hi,t = Vi,t +RRi,t + ERi,t, for i = h, f. (9)

The money supply is defined as the sum of the cash in circulation and demand deposit at private

banks denoted by Di,t:

Mi,t = Vi,t +Di,t, for i = h, f. (10)

Let vi,t ∈ (0, 1) denote the ratio of the cash to the deposit, Vi,t/Di,t. Similarly, let rri,t ∈ (0, 1)

denote the required reserve rate, RRi,t/Di,t. From eqs (9) and (10), we can derive the following

money creation process

Mi,t = Ψi,t(Hi,t − ERi,t) = Ψi,t(1− eri,t)Hi,t, (11)

where Ψi,t = (1 + vi,t)/(rri,t + vi,t) > 1 is the money multiplier and eri,t is the ratio of the excess

reserve to the monetary base, ERi,t/Hi,t. In this paper, we assume that both the money multiplier

and the excess reserve ratio follow exogenous stochastic processes that we specify below more in

details.

The central bank of country i controls for the monetary base. We decompose the monetary

base into permanent and transitory components Hτ
i,t and hi,t: Hi,t ≡ hi,tH

τ
i,t. Then, from eq.(11),

the money supply also contains a permanent component:

Mi,t = hi,tΨi,t(1− eri,t)H
τ
i,t = hi,tM

τ
i,t.

where M τ
i,t is the permanent component of the money supply, Ψi,t(1 − eri,t)H

τ
i,t.

3 Each country’s

government transfers the seigniorage collected through the money creation process (11) to the

household as a lump-sum. Hence, the government’s budget constraint is

Mi,t −Mi,t−1 = Ti,t, for i = h, f.
3Therefore, the permanent component of the money supply depends on the money multiplier that also relies on

the household’s portfolio choice between the cash and the demand deposit.
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To close the model within an incomplete international financial market, we allow for a

debt-elastic risk premium in the interest rates faced only by the home country:

rlh,t = rlw,t[1 + ψ{exp(−Bl
h,tΓl,t/M

τ
l,t + d̄)− 1}], d̄ ≤ 0, ψ > 0, for l = h, f (12)

where rlw,t is the equilibrium world interest rate of the lth country’s bond. The risk premium is

given as an externality: The household does not take into account the effect of the debt position

on the risk premium when maximizing the lifetime utility function. On the other hand, we do not

attach a risk premium to the foreign country’s interest rates: rlf,t = rlw,t for l = h, f .

The purchasing power parity (PPP) is assumed to hold only up to a persistent PPP deviation

shock ln qt:

StPf,t = Ph,tqt.

The market-clearing conditions of the two countries’ bond markets are

Bh
h,t +Bh

f,t = 0 and Bf
h,t +Bf

f,t = 0,

i.e., along an equilibrium path, the world net supply of nominal bonds is zero on a period-by-period

basis.

As claimed by Kano (2013), to found a balanced growth path in the two-country incomplete

market model, the permanent TFPs of the two countries need to be cointegrated in the long run.

Fo this purpose, we assume that the logarithm of the total factor productivity (TFP) of each

country is I(1) and the cross-country TFP differential, ln at ≡ lnAh,t/Af,t, is I(0). This assumption

requires that two country’s TFPs must be cointegrated. Hence, we specify the TFP processes as

the following error correction models (ECMs)

∆ lnAh,t = ln γA − λ

2
(lnAh,t−1 − lnAf,t−1) + ϵhA,t,

∆ lnAf,t = ln γA +
λ

2
(lnAh,t−1 − lnAf,t−1) + ϵfA,t, (13)

where γA > 1 is the common drift term and λ ∈ [0, 1) is the adjustment speed of the error correction

mechanism. ECMs (13) imply that the cross-country TFP differential is I(0) because

ln at = (1− λ) ln at−1 + ϵhA,t − ϵfA,t.

Importantly, if the adjustment speed λ is sufficiently close to zero, the cross-country TFP differential

can be realized near I(1), as maintained by Nason and Rogers (2008).

We assume the logarithm of the permanent component of the monetary base of each country,

lnHτ
i,t, to be I(1). Moreover, we allow for a two-period ahead news shock to the permanent

component of the monetary base, ξt, to identify anticipated permanent changes in the monetary
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policy.4 We then specify each country’s monetary base growth rate ∆ lnHτ
i,t ≡ γiH,t as the following

stochastic process:

γiH,t = (1− ρH) ln γH + ρHγ
i
H,t−1 + ξit−2 + ϵiH,t, 0 < ρH < 1, for i = h, f.

where ln γH is the mean of the monetary base growth rate common to the two countries. The

news shock ξit is assumed to an i.i.d. shock ϵiξ,t. Importantly, this specification implies that the

cross-country differential in permanent component of the monetary base between the two countries,

lnHτ
h,t/H

τ
f,t is I(1).

The fraction of the non-excess reserve component in the total monetary base, ln(1−eri,t), is
also assumed to be I(1) and so is the corresponding cross country differential, ln(1−erh,t)/(1−erf,t).5

Therefore, we specify the growth rate of each country’s non-excess reserve component of the total

monetary base ∆ ln(1− eri,t) ≡ γier,t to be independent AR(1) process:

γier,t = ρerγ
i
er,t−1 + ηit−2 + ϵier,t, 0 < ρer < 1, for i = h, f.

where ηit is a two-period ahead news shock to the non-excess reserve component. News shock ηt

is assumed to an i.i.d. white noise ϵη,t. We characterize the stochastic processes of the preference

shocks and the money multipliers, Γi,t and Ψi,t for i = h, f , jointly as a single I(1) permanent

stochastic process. Let define a new variable Φi,t by Γi,t/Ψi,t for i = h, f . Then the growth rate of

the variable ∆ lnΦi,t ≡ γiΦ,t is

γiΦ,t = ρΦγ
i
Φ,t−1 + ϵiΦ,t, 0 < ρΦ < 1, for i = h, f.

We call the variable Φi,t the money demand shock throughout the paper below.6

The stochastic processes of the other structural shocks are assumed to be stationary. The

logarithm of the transitory output component for each country, ln yi,t, is specified as the following

AR(1) process:

ln yi,t = (1− ρy) ln yi + ρy ln yi,t−1 + ϵiy,t, 0 < ρy < 1, for i = h, f.

Similarly, the stochastic process of the logarithm of the transitory monetary base component for

each country, lnhi,t, is specified as the following AR(1) process:

lnhi,t = (1− ρh) lnhi + ρh lnhi,t−1 + ϵih,t, 0 < ρh < 1, for i = h, f.
4That is, news shock ξt is a shock to the future permanent component of the monetary base lnHτ

i,t+2, which is

realized at period t.
5Because, by construction, ln(1 − ert) is a bounded sequence, its specification by an I(1) process is, in fact,

statistically irrelevant. It is not obvious and quite difficult to find a suitable stationary process to fit to the data of

the excess reserves in Japan and the U.S. Hence, in this paper, we tract the data of the excess reserves in the two

countries by independent stochastic trends.
6Notice that our definition of the money demand shock contains shocks to the money demand functions and the

money multipliers. The money multiplier depends on the cash-deposit ratio, which should be determined by the

portfolio deception of the households between cash and demand deposit. We include any time-series variations in the

portfolio decision into the money demand shocks.
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The PPP shock qt follows an AR(1) process.

ln qt = ρq ln qt−1 + ϵq,t, 0 < ρq < 1.

Throughout this paper, we assume that all structural shocks are distributed independently.

2.2. Stochastically de-trended system and log-linear approximation

Define stochastically de-trended variables as ci,t ≡ Ci,t/Ai,t, pi,t ≡ Pi,tAi,tΓi,t/M
τ
i,t, b

l
i,t ≡

Bl
i,tΓl,t/M

τ
l,t, γ

i
A,t ≡ Ai,t/Ai,t−1, γ

i
M,t ≡M τ

i,t/M
τ
i,t−1, γ

i
Γ,t = Γi,t/Γi,t−1, and st ≡ StM

τ
f,tΓh,t/(M

τ
h,tΓf,t).

The stochastically de-trended PPP condition is atst = ph,tqt/pf,t. I can take the stochastic de-

trending of the home country’s FONCs, (1), (3), (4), (5), and (12), as

ph,tch,t + bhh,t + stb
f
h,t = (1 + rhh,t−1)b

h
h,t−1γ

h
Γ,t/γ

h
M,t + (1 + rfh,t−1)stb

f
h,t−1γ

f
Γ,t/γ

f
M,t + ph,tyh,t, (14)

1

ph,tch,t
= β(1 + rhh,t)Et

(
γhΓ,t+1

γhM,t+1ph,t+1ch,t+1

)
, (15)

st(1 + rhh,t)Et

(
γhΓ,t+1

ph,t+1ch,t+1γ
h
M,t+1

)
= (1 + rfh,t)Et

(
st+1γ

f
Γ,t+1

ph,t+1ch,t+1γ
f
M,t+1

)
, (16)

mh,t

ph,t
= ch,t

(
1 + rhh,t

rhh,t

)
, (17)

rhh,t = rhw,t[1 + ψ{exp(−bhh,t + d̄)− 1}], (18)

and

rfh,t = rfw,t[1 + ψ{exp(−bfh,t + d̄)− 1}]. (19)

Similarly, the stochastically de-trended versions of the FONCs of the foreign country, (2) (6), (7),

and (8), are

qtph,tcf,t − atstb
f
h,t − atb

h
h,t = −(1 + rfw,t−1)atstb

f
h,t−1γ

f
Γ,t/γ

f
M,t

− (1 + rhw,t−1)atb
h
h,t−1γ

h
Γ,t/γ

h
M,t + qtph,tyf,t, (20)

atst
qtph,tcf,t

= β(1 + rfw,t)Et

at+1st+1γ
f
Γ,t+1

γfM,t+1qt+1ph,t+1cf,t+1

, (21)

(1 + rhw,t)Et

(
at+1γ

h
Γ,t+1

qt+1ph,t+1cf,t+1γ
h
M,t+1

)
=

(1 + rfw,t)

st
Et

(
at+1st+1γ

f
Γ,t+1

qt+1ph,t+1cf,t+1γ
f
M,t+1

)
, (22)
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and
atstmf,t

qtph,t
= cf,t

(
1 + rfw,t

rfw,t

)
. (23)

These ten equations, (14) - (23), determine the ten endogenous variables ch,t, cf,t, ph,t, st, b
h
h,t, b

f
h,t,

rhh,t, r
f
h,t, r

h
w,t, and r

f
w,t, given nine exogenous variables γhM,t, γ

f
M,t, γ

h
Γ,t, γ

f
Γ,t, at, hh,t, hf,t, yh,t, and

yf,t.
7

Let x̂ denote a percentage deviation of any variable xt from its deterministic steady state

value x∗, x̂ ≡ lnxt − lnx∗.8 Also, let x̃ denote a deviation of x from its deterministic steady state,

x̃ = x−x∗.9 The log-linear approximation of the stochastically de-trended home budget constraint

(14) is

p∗h(c
∗
h − yh)p̂h,t + p∗hc

∗
hĉh,t − p∗hyhŷh,t + b̃hh,t + d̄(1− β−1)s∗ŝt + s∗b̃fh,t

= β−1d̄[(1+ r̂hh,t−1)− γ̂hM,t+ γ̂
h
Γ,t−1]+ s

∗β−1d̄[(1+ r̂fh,t−1)− γ̂
f
M,t+ γ̂

f
Γ,t]+β

−1b̃hh,t−1+ s
∗β−1b̃fh,t−1;

(24)

that of the home Euler equation (15) is

p̂h,t + ĉh,t + (1 + r̂hh,t) = Et(p̂h,t+1 + ĉh,t+1 + γ̂hM,t+1 − γ̂hΓ,t+1); (25)

that of the home UIP condition (16) is

Etŝt+1 − ŝt = (1 + r̂hh,t)− (1 + r̂fh,t) + Et(γ̂
h
Γ,t+1 − γ̂fΓ,t+1 − γ̂hM,t+1 + γ̂fM,t+1); (26)

7If the TFP differential at is I(1) as assumed in NR, the above system of stochastic difference equations becomes

nonstationary through the home and foreign budget constraints (14) and (20) and there is no deterministic steady

state to converge. Notice that neither the cross-country permanent money supply differential lnMτ
h,t/M

τ
f,t nor the

cross-country preference shock differential ln Γh,t/Γf,t appears in the stochastically de-trended system of the FONCs.

In contrast to the TFP differential at, the I(1) properties of lnM
τ
h,t/M

τ
f,t and ln Γh,t/Γf,t do not matter for the closing

of the model. This might be an obvious result of the model’s property that the super-neutrality of money holds in

the money-in-utility model: Money growth does not matter for the deterministic steady state.
8Notice that at the deterministic steady state, the TFP differential a∗ is one. Because of the stationarity of the

system of equations (14)-(23), the deterministic steady state is characterized by constants c∗h, c
∗
f , p

∗
h, s

∗, bh∗h , bf∗h ,

rh∗h , rf∗h , rh∗w , and rf∗w that satisfy

bh∗h = bf∗h = d̄,

r∗ ≡ rh∗h = rf∗f = rh∗w = rf∗w = γH/β − 1,

s∗ =
yf (γH)−1r∗ + (yh + yf )(1− β−1)d̄

yh(γH)−1r∗ − (yh + yf )(1− β−1)d̄
,

p∗hyh = (1− β−1)(1 + s∗)d̄+ (γH)−1r∗,

p∗hc
∗
h = (γH)−1r∗,

c∗f = s∗c∗h.

Below, the steady state value of the nominal market discount factor is denoted by κ ≡ 1/(1 + r∗) = β/γM .
9In particular, for an interest rate rt, (1 + r̂t) = (rt − r∗)/(1 + r∗).
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and that of the home money demand function (17) is

p̂h,t + ĉh,t − m̂h,t =
1

r∗
(1 + r̂hh,t). (27)

The foreign country’s counterparts are the log-linear approximation of the stochastically de-trended

foreign budget constraint (20)

p∗h(c
∗
f − yf )(p̂h,t + q̂t − ât − ŝt) + p∗hc

∗
f ĉf,t − p∗hyf ŷf,t − b̃hh,t − d̄(1− β−1)s∗ŝt − s∗b̃fh,t

= −β−1d̄[(1+ r̂hw,t−1)− γ̂hM,t+ γ̂
h
Γ,t]− s∗β−1d̄[(1+ r̂fw,t−1)− γ̂

f
M,t+ γ̂

f
Γ,t]−β

−1b̃hh,t−1− s∗β−1b̃fh,t−1;

(28)

that of the foreign Euler equation (21)

ât+ ŝt− p̂h,t− ĉf,t− q̂t− (1+ r̂fw,t) = Et(ât+1+ ŝt+1− p̂h,t+1− ĉf,t+1− q̂t+1− γ̂fM,t+1+ γ̂
f
Γ,t+1); (29)

that of the foreign UIP condition (22)

Etŝt+1 − ŝt = (1 + r̂hw,t)− (1 + r̂fw,t) + Et(γ̂
h
Γ,t+1 − γ̂fΓ,t+1 − γ̂hM,t+1 + γ̂fM,t+1); (30)

and that of the home money demand function (17)

ât + ŝt + m̂f,t − p̂h,t − ĉf,t − q̂t = − 1

r∗
(1 + r̂fw,t). (31)

The log-linear approximations of the home country’s interest rates (18) and (19) are

(1 + r̂hh,t) = (1 + r̂hw,t)− ψ(1− κ)b̃hh,t, and (1 + r̂fh,t) = (1 + r̂fw,t)− ψ(1− κ)b̃fh,t. (32)

Notice that the home interest rates (32) redefine the home UIP condition (26) as

Etŝt+1 − ŝt = (1 + r̂hw,t)− (1 + r̂fw,t)− ψ(1− κ)(b̃hh,t − b̃fh,t)

+ Et(γ̂
h
Γ,t+1 − γ̂fΓ,t+1 − γ̂hM,t+1 + γ̂fM,t+1).

Comparing the above home UIP condition with the foreign UIP condition (30) implies that the home

and foreign bonds are perfectly substitutable along the equilibrium path. Hence, the equilibrium

condition b̃t ≡ b̃hh,t = b̃fh,t holds.
10

3. Equilibrium random-walk property

10Appendix A characterizes the equilibrium transitory dynamics of the model for a simplified case including two

symmetric countries.
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We will now show that the equilibrium random-walk property of the exchange rate holds in

this two-country model. To prove this proposition, we first derive the DSGE-PVM of the exchange

rate as an equilibrium condition. Let ct and ht denote the de-trended consumption ratio and

the transitory monetary base ratio between the two countries, ct ≡ ch,t/cf,t and ht ≡ hh,t/hf,t,

respectively. Furthermore, let M τ
t denote the ratio of the permanent money supplies of the home

and foreign countries M τ
h,t/M

τ
f,t; let Mt denote the ratio of the money supplies of the home to the

foreign countries Mh,t/Mf,t ≡ htM
τ
t ; let Ct denote the ratio of the consumptions of the home and

foreign countries Ch,t/Cf,t; and let Γt denote the ratio of the preference shocks of the home and

foreign countries Γt = Γh,t/Γf,t. The home and foreign money demand functions, (27) and (31),

and the home interest rates (32) yield the following interest rate differential:

(1 + r̂hw,t)− (1 + r̂fw,t) = r∗(ât + ŝt + ĉt − ĥt − q̂t) + ψ(1− κ)b̃t. (33)

Substituting the interest rate differential (33) into the foreign UIP condition (30) leads to the

expectational difference equation of the de-trended exchange rate ŝt:

ŝt = κEtŝt+1 − (1− κ)(ât + ĉt) + (1− κ)(ĥt + q̂t)

− κEt(γ̂
h
Γ,t+1 − γ̂fΓ,t+1 − γ̂hM,t+1 + γ̂fM,t+1)− ψκ(1− κ)b̃t.

After unwinding stochastic trends, the above expectational difference equation can be rewritten as

lnSt = κEt lnSt+1 + (1− κ)(lnMt − ln Γt)− (1− κ) lnCt + (1− κ) ln qt − ψκ(1− κ)b̃t.

Solving this expectational difference equation by forward iterations under a suitable transversality

condition provides the DSGE-PVM of this model:

lnSt = (1− κ)

∞∑
j=0

κjEt

(
lnMt+j − ln Γt+j − lnCt+j − ψκb̃t+j + ln qt+j

)
. (34)

If the fundamental lnMt − ln Γt − lnCt is I(1), so is the exchange rate.

The DSGE-PVM (34) implies an error-correction representation of the currency return

∆ lnSt. Appendix B shows that after rearranging the DSGE-PVM (34) in several steps, the cur-

rency return is

∆ lnSt =
1− κ

κ
(lnSt−1 − lnMt−1 + lnΓt−1 + lnCt−1 − ln qt−1) + ψ(1− κ)b̃t−1 + us,t, (35)

where us,t is the i.i.d., rational expectations error

us,t = (1− κ)

∞∑
j=0

κj(Et − Et−1)(lnMt+j − ln Γt − lnCt+j − ψκb̃t+j + ln qt+j).

Recall that the DSGE-PVM (34) is constructed as an equilibrium condition from some of

the model’s FONCs. The general equilibrium property of the model, however, imposes another

10



restriction on the present value of the future fundamentals in the DSGE-PVM (34). Note that

combining the log-linearized Euler equations of the home and foreign countries, (25) and (29),

with those of the home country’s interest rates (32), yields the first-order expectational difference

equation of lnSt + lnΓt − lnMt + lnCt − ln qt:

lnSt + lnΓt − lnMt + lnCt − ln qt = κEt(lnSt+1 + lnΓt+1 − lnMt+1 + lnCt+1 − ln qt+1)

+ κρH γ̂H,t + κξt−1 + κρerγ̂er,t + κηt−1 − κρΦγ̂Φ,t + κ(ρh − 1) lnht,

where γ̂H,t ≡ γ̂hH,t − γ̂fH,t, γ̂er,t ≡ γ̂her,t − γ̂fer,t, and γ̂Φ,t ≡ γ̂hΦ,t − γ̂fΦ,t. Because κ is less than one, the

difference equation above has the unique forward solution

lnSt = lnMt − ln Γt − lnCt + ln qt +
κρH

1− κρH
γ̂H,t +

κ

1− κρH
ξt−1 +

κ2

1− κρH
ξt

+
κρer

1− κρer
γ̂er,t +

κ

1− κρer
ηt−1 +

κ2

1− κρer
ηt −

κρΦ
1− κρΦ

γ̂Φ,t −
κ(1− ρh)

1− κρh
lnht (36)

under a suitable transversality condition.

Imposing the CER (36) on the error-correction process (35) provides the equilibrium cur-

rency return

∆ lnSt = ψ(1− κ)b̃t−1 +
(1− κ)ρH
1− κρH

γ̂H,t−1 +
1− κ

1− κρH
ξt−1 +

κ(1− κ)

1− κρH
ξt +

(1− κ)ρer
1− κρer

γ̂er,t−1

+
1− κ

1− κρer
ηt−1 +

κ(1− κ)

1− κρer
ηt −

(1− κ)ρΦ
1− κρΦ

γ̂Φ,t−1
(1− κ)(1− ρh)

1− κρh
lnht−1 + us,t. (37)

Equation (37) clearly shows that any dependence of the currency return on past information emerges

through the persistence of the net foreign asset position, the money supply growth differential, the

transitory money demand shock differential, and the transitory money supply differential.

The important implication of the equilibrium currency return equation (37) is that the

logarithm of the exchange rate follows a Martingale difference sequence at the limit of κ → 1

because

lim
κ→1

Et∆lnSt+1 = 0.

Therefore, in this paper, the exchange rate behaves like a random walk when the market discount

factor approaches one along the equilibrium path of the two-country model. The equilibrium

currency return equation (37) exhibits no dependence of the currency return on past information

in this case. Hence, the equilibrium random walk property of the exchange rate, as found in Engel

and West (2005), Nason and Rogers (2008), and Kano (2013), is also preserved in this extended

model.11

11A caveat of the above result is that in this model, κ is given as a function of structural parameters β and γH :

κ = β/γH . If γH > 1, as found in the postwar data on money growth rates in Japan and the United States, the

admissible range of β between zero and one implies that κ is strictly less than one. In this paper, I assume that the

limit of κ → 1 is well approximated by the limit of β → 1 because γH takes a value that is very close to one.
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In the limiting case with the unit market discount factor, the equilibrium currency return is

dominated by the i.i.d. rational expectations error us,t. An advantage of working with a structural

two-country model is that the rational expectations error us,t is now fully interpretable as a linear

combination of structural shocks. To see this, note that the rational expectations error us,t in

equilibrium is represented by

us,t = (Et − Et−1)∆ lnSt = ϵH,t + ϵer,t − ϵΦ,t + (Et − Et−1)ŝt,

where ϵH,t ≡ ϵhH,t − ϵfH,t, ϵer,t ≡ ϵher,t − ϵfer,t, and ϵΦ,t ≡ ϵhΦ,t − ϵfΦ,t. Appendix A shows that in the

special case of two symmetric countries, assuming d̄ = 0 and yh = yf , the equilibrium de-trended

exchange rate is determined by a linear function of b̃t−1, ât, ĥt, ŷt, q̂t, ξt, γ̂H,t, γ̂er,t, γ̂Φ,t:

ŝt =
βη − 1

βp∗hy
∗ b̃t−1 +

βη − 1

1− βη(1− λ)
ât +

1− κ

1− κρh
ĥt +

βη − 1

1− βηρy
ŷt −

βη − 1

1− βηρq
q̂t +

κρH
1− κρH

γ̂H,t

+
κ

1− κρH
ξt−1 +

κ2

1− κρH
ξt +

κρer
1− κρer

γ̂er,t +
κ

1− κρer
ηt−1 +

κ2

1− κρer
ηt −

κρΦ
1− κρΦ

γ̂Φ,t (38)

where the constant η approaches one at the limit of κ→ 1.12 Hence, the surprise in the de-trended

exchange rate between times t and t− 1 is

(Et − Et−1)ŝt =
βη − 1

1− βη(1− λ)
ϵA,t +

1− κ

1− κρh
ϵh,t +

βη − 1

1− βηρy
ϵy,t −

βη − 1

1− βηρq
ϵq,t

+
κρH

1− κρH
ϵH,t +

κ2

1− κρH
ξt +

κρer
1− κρer

ϵer,t +
κ2

1− κρer
ηt −

κρΦ
1− κρΦ

ϵΦ,t

where ϵh,t ≡ ϵhh,t − ϵfh,t, ϵΦ,t ≡ (ϵhΦ,t − ϵfΦ,t), and ϵy,t ≡ ϵhy,t − ϵfy,t denote the relative transitory

money supply, the relative transitory money demand, and the relative transitory income shocks.

The rational expectations error is then given as an explicit linear function of the structural shocks:

us,t =
βη − 1

1− βη(1− λ)
ϵA,t +

1− κ

1− κρh
ϵh,t +

βη − 1

1− βηρy
ϵy,t −

βη − 1

1− βηρq
ϵq,t

+
1

1− κρH
ϵH,t +

κ2

1− κρH
ξt +

1

1− κρer
ϵer,t +

κ2

1− κρer
ηt −

1

1− κρΦ
ϵΦ,t

Notice that at the limit of κ→ 1, the model also implies the subjective discount factor β → 1

under a positive deterministic money supply growth rate, γH > 1, which is close to one. In this

limiting case, observe that the permanent monetary base shock ϵH,t, the news shock ξt, the excess

reserve shock ϵer,t, and the money demand shock ϵΦ,t surely dominate the rational expectations

error us,t and, as a result, the random walk of the exchange rate.

lim
κ→1

∆lnSt = lim
κ,β,η→1

us,t =
1

1− ρH
ϵH,t +

1

1− ρH
ξt +

1

1− ρer
ϵer,t +

1

1− ρer
ηt −

1

1− ρΦ
ϵΦ,t.

12As defined in Appendix A, the constant η is one of the two roots of the expectational difference equation of the

de-trended net foreign asset position b̃t. A simple calculation shows that the equilibrium currency return (37) can

be derived directly from the CER (38) once the approximated relation ŝt ≈ lnSt + lnΨt − lnHτ
t − ln(1 − ert) is

recognized.
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Therefore, no transitory shock matters for the total variations in the random-walk exchange rate.

This is because when κ → 1, or equivalently, r∗ → 0, the interest rate differential (33) becomes

insensitive to the transitory money supply and consumption differentials. Hence, the exchange rate

turns out to be neutral to any transitory monetary and real shocks.

4. A Bayesian unobserved component approach

4.1. The restricted UC model and posterior simulation strategy

Under the symmetric case with d̄ = 0 and y = yh = yf , FONCs (24)-(31) are degenerated

to the following three expectational difference equations:

ŝt = κEtŝt+1 − (1− κ)(ĉt + ât − ĥt − q̂t) + κEt(γ̂H,t+1 + γ̂er,t+1 − γ̂Φ,t+1)− ψκ(1− κ)b̃t,

ât + ŝt + ĉt − q̂t = κEt(ât+1 + ŝt+1 + ĉt+1 − q̂t+1) + (1− κ)ĥt + κEt(γ̂H,t+1 + γ̂er,t+1 − γ̂Φ,t+1),

b̃t = β−1b̃t−1 + p∗hy
∗(ŷt − ĉt), (39)

where y∗ = y/4. Let Xt denote an unobserved state vector defined as

Xt = [ŝt ĉt Etŝt+1 Etĉt+1 b̃t γ̂H,t ξt ξt−1 γ̂er,t ηt ηt−1 γ̂Φ,t ât ĥt ŷt q̂t]
′.

Furthermore, let ϵt and ωt denote random vectors consisting of structural shocks and rational

expectations errors: ϵt ≡ [ϵH,t ϵA,t ϵh,t ϵy,t ϵq,t ϵΦ,t ϵer,t ϵξ,t ϵη,t]
′ and ωt ≡ [ŝt −Et−1ŝt ĉt −Et−1ĉt]

′,

respectively. In particular, for empirical investigation purposes, we presume that the structural

shock vector ϵt is normally distributed, with a mean of zero and a diagonal variance-covariance

matrix Σ: ϵt ∼ i.i.d.N(0,Σ) with diag(Σ) = [σ2H σ2A σ2m σ2y σ
2
q σ

2
Φ σ2er σ

2
ξ , σ

2
η]

′.

Accompanied by the stochastic processes of the exogenous forcing variables, the linear

rational expectations model (39) then implies that

Γ0Xt = Γ1Xt−1 +Φ0ωt +Φ1ϵt,

where Γ0, Γ1, Φ0, and Φ1 are the corresponding coefficient matrices. Applying Sims’s (2001) QZ

algorithm to the linear rational expectations model above yields a unique solution as the following

stationary transition equation of the unobservable state vector:

Xt = FXt−1 +Φϵt, (40)

where F and Φ are confirmable coefficient matrices.

To construct this paper’s UC model, we further expand the unobservable state vector Xt by

the permanent monetary base differential lnHτ
t , the excess reserve differential ln(1− ert), and the

money demand differential lnΦt to obtain the augmented state vector Zt: Zt ≡ [X′
t lnHτ

t ln(1−
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ert) lnΦt]
′. The stochastic processes of lnHτ

t , ln(1 − ert), and lnΦt and the state transition (40)

then imply the following non-stationary transition of the expanded state vector Zt:

Zt = GZt−1 +Ψϵt, ϵt ∼ i.i.d.N(0,Σ), (41)

where G and Ψ are confirmable coefficient matrices.

In this paper, I explore time-series data on the logarithm of the consumption differential

lnCt, the logarithm of the output differential lnYt, the logarithm of the monetary base differential

lnHt, the logarithm of the non-excess reserve ratio differential ln(1− ert), the interest rate differ-

ential rt ≡ rhh,t − rff,t, and the logarithm of the bilateral exchange rate lnSt. Let Yt denote the

information set that consists of these five time series: Yt ≡ [lnCt lnYt lnHt ln(1− ert) rt lnSt]
′.

It is then straightforward to show that the information set Yt is linearly related to the unobservable

state vector Zt as

Yt = HZt, (42)

where H is a confirmable coefficient matrix. The transition equation, the unobserved state (41),

and the observation equation (42) jointly consist of a non-stationary state-space representation of

the two-country model, which is the restricted UC model estimated in this paper.13

Given the data set YT ≡ {Yt}Tt=0, applying the Kalman filter to the UC model provides

model likelihood L(YT |θ), where θ is the structural parameter vector of the two-country model.

Multiplying the likelihood by a prior probability of the structural parameters, p(θ), is proportional

to the corresponding posterior distribution p(θ|YT) ∝ p(θ)L(YT |θ) through the Bayes law. The

posterior distribution p(θ|YT ) is simulated by the random-walk Metropolis-Hastings algorithm, as

implemented by Kano (2013).

4.2. Data and prior construction

In this paper, we examine post-Plaza accord quarterly data for Japan and the United States.

The data span the period from Q1:1988 to Q3:2013. All the data included in the information set

YT , except nominal exchange rates, are seasonally adjusted annual rates.14

Table 1 reports the prior distributions of the structural parameters of the two-country model,

p(θ). We follow Kano (2013) to construct the prior distributions. In particular, we elicit a uniform

prior distribution of κ and let the data tell the posterior position of κ given the identification of

the restricted UC model. In so doing, on the one hand, the prior distribution of the mean gross

monetary growth rate, γH , is intended to tightly cover its sample counterparts in both countries

13The state-space form of the model, (41) and (42), decomposes the I(1) difference-stationary information set Yt

into permanent and transitory components exploiting the theoretical restrictions provided by the two-country model.

Recursion of the Kalman filter for a non-stationary state-space model is explained in detail by Hamilton (1994).
14Appendix C provides a detailed description of the source and construction of the data examined in this paper.
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through the Gamma distribution, with a mean of 1.015 and standard deviation of 0.005. On

the other hand, the prior distribution of the subjective discount factor β is uniformly distributed

between zero and one. As a result, the prior distribution of the market discount factor κ is well

approximated as the uniform distribution spread over the support of the unit interval.

4.3. Results

Table 2 reports the posterior distributions of the structural parameters. The second, third,

and fourth columns correspond to the means, the standard deviations, and the 90 % credible

intervals of the the posterior distributions, respectively. An outstanding observation in the table

should be found in the posterior distribution of the market discount factor κ. The posterior mean

of the κ is 0.963, which indeed implies the 3.8 % annual nominal interest rate. Because the sample

mean of the US TB rate is 3.5 %, this estimate is of a quite reasonable size.15 This empirically

plausible inference on the market discount factor does not depend on any prior information because

the prior distribution of κ is uniform. The reasonable size of the discount factor is identified by the

model’s restrictions imposed on the data.

The estimated market discount factor close to one, indeed, fits the model to the near

random-walk yen/US dollar rate. According to the model’s theoretical implication, the currency

return should be well approximated by the permanent monetary base shock ϵH,t, the news shock

ϵξ,t, the non-excess reserve component shock ϵer,t, the news shock ϵη,t, and the money demand shock

ϵΦ,t. Figure 3 plots the currency return in the data (the black line) and the sum of the smoothed

inferences of ϵH,t, ϵξ,t, ϵer,t, ϵη,t, and ϵΦ,t through the Kalman smoother (the blue line). Observe

that the bumpy depreciation rate of the yen against the US dollar is almost perfectly tracked by

the model’s implication of the random walk shocks. Therefore, our model successfully explains the

near random-walk behavior of the yen/US dollar rate.

Is the model successful in mimicking the success and failure of the Soros chart? Figures 4(a)

and (b) just adds the model’s smoothed inferences of the two versions of the Soros chart to Figures

1(a) and (b). More precisely, in Figure 4(a), the smoothed inference of the permanent monetary

base differential is plotted as the green line, while in Figure 4(b) the sum of the smoothed inferences

of the permanent monetary base differential and the non-excess reserve component is displayed as

the green line. Notice that the model’s smoothed inferences on the permanent components of the

non-augmented and augmented monetary base differentials almost perfectly replicate the failure

of the first Soros chart and the success of the second simultaneously. Hence, in our model, the

augmented Soros chart is identified as a common stochastic trend that explains the slow-moving

low-frequency component of the post-Plaza Accord yen/US dollar exchange rate.

15Kano (2013) conducts the similar posterior simulation of the two-country model with the post Bretton Woods

sample of Canada and the United State and found a much smaller posterior mean of κ of 0.612.
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Our model also is able to describe the disconnection of the yen/US dollar exchange rate

with real economic variables. Figure 5 conducts a historical decomposition of the currency return

into the structural shocks. Specifically, each small window in the figure plots the actual currency

return and the smoothed inference of the corresponding structural shock. Observe that none of real

shocks, i.e., the TFP differential shock ϵA,t, the transitory output shock ϵy,t, the PPP deviation

shock ϵq,t, plays a significant role in driving the currency return. Figure 6, on the other hand, plots

the same historical decomposition of the real consumption growth rate into the structural shocks.

It is clear that the TFP shock ϵA,t and the PPP deviation shock ϵq,t are the main drivers of the

consumption differential.16 Therefore, our model interprets the disconnection of the exchange rate

from the real variables in the data plausibly.

Figure 7 reports the historical decomposition of the interest rate differential into the struc-

tural shocks. An amazing smoothed inference the figure reveals is that the news shock to the

permanent monetary base, ϵξ,t, is the only shock to affect the interest rate differential instanta-

neously. This result implies that the interest rate differential is determined by the forward-looking

anticipated information about the monetary base differential in near future. The tight linkage of

the interest rate differential with the currency return in the data is generated by the current news

about future permanent shifts in the relative size of the monetary base between the two countries.

5. Conclusions

The paper’s successful explanation of the major statistical properties of the post-Plaza

Accord yen/US dollar exchange rate is conditional on an important caveat. As shown in Figure

5, our paper identifies the dominant driver of the currency return, i.e., the short-run transitory

component of the yen/US dollar exchange rate, as the money demand shock ϵΦ,t. Because there is no

theoretical restriction the model imposes on this structural shock and the data, the money demand

shock indeed acts as a free parameter in our posterior simulation of the restricted unobserved

component model. Hence, it is still too ambitious to interpret ϵΦ,t as the permanent money demand

shock literally.

The identified shock ϵΦ,t, indeed, backs the sharp depreciation of the yen against the US

dollar that occurred after 2012Q4 when most market participants expected that the extremely

easing monetary policy of the BOJ would be initiated by Prime Minister Abe as his new economic

policy subsequently known as the“Abenomics.” The paper’s absence from a shaper structural

identification of money demand shocks makes it difficult to understand the effect of the Abenomic

on the sudden jump-up of the yen against the US dollar between 2012Q4 and 2013Q3. A reason

16This independence of the consumption growth rate from the monetary disturbances stems from the monetary

super-neutrality with the money-in-utility lifetime utility function and the model’s absence from price stickiness.
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of this failure of our model in detecting the source of the deprecation may be purely empirical:

there have been only a short sample with four quarters since the beginning of the Abenomics. it,

however, is more desirable to find another theoretical restriction to extract a pure money demand

shock from the data by extending our model further. We leave these empirical and theoretical tasks

as a meaningful future research agenda.

Appendix A. Derivation of the saddle path (38)

To understand the equilibrium transitory dynamics of the exchange rate in this model, it is infor-

mative to scrutinize a simpler version of the model that includes two symmetric countries. For this purpose,

I set the parameter d̄ to zero and assume that the transitory output components of the two countries, yh

and yf , are equal to y. Notice that the deterministic steady state in this case is characterized by s∗ = 1,

c∗h = c∗f = y, and p∗h = (γM )−1r∗, where r∗ = γM/β − 1.

I combine the log-linearized Euler equations of the home and foreign countries, (25) and (29), with

those of the home country’s interest rates (32) to yield the first-order expectational difference equation of

ât + ŝt + ĉt:

ât + ŝt + ĉt − q̂t = κEt(ât+1 + ŝt+1 + ĉt+1 − q̂t+1) + κEt(γ̂H,t+1 + γ̂er,t+1 − γ̂Φ,t+1) + (1− κ)ĥt.

Since κ takes a value between zero and one, the above expectational difference equation has a forward

solution of

ât + ŝt + ĉt − q̂t =
κρH

1− κρH
γ̂H,t +

κ

1− κρH
ξt−1 +

κ2

1− κρH
ξt +

κρer
1− κρer

γ̂er,t

+
κ

1− κρer
ηt−1 +

κ2

1− κρer
ηt −

κρΦ
1− κρΦ

γ̂Φ,t +
1− κ

1− κρh
ĥt

under a suitable transversality condition. By, exploiting this forward solution and the stochastic processes

of both countries’ TFPs (13), I rewrite the foreign UIP condition (30) as

Etŝt+1 − ŝt = ψ(1− κ)b̃t −
κρH(1− ρH)

1− κρH
γ̂H,t −

κ(1− ρH)

1− κρH
ξt−1 +

κ(1− κ)

1− κρH
ξt −

κρer(1− ρer)

1− κρer
γ̂er,t

− κ(1− ρer)

1− κρer
ηt−1 +

κ(1− κ)

1− κρer
ηt +

κρΦ(1− ρΦ)

1− κρΦ
γ̂Φ,t −

(1− κ)(1− ρh)

1− κρh
ĥt, (A.1)

Furthermore, taking a difference between the log-linearized budget constraints of the home and foreign

countries, (24) and (28), I find the law of motion of the international bond holdings

b̃t = β−1b̃t−1 + p∗hy
∗(ât + ŝt − q̂t + ŷt)−

p∗hy
∗κρH

1− κρH
γ̂H,t −

p∗hy
∗κ

1− κρH
ξt−1 −

p∗hy
∗κ2

1− κρH
ξt

− p∗hy
∗κρer

1− κρer
γ̂er,t −

p∗hy
∗κ

1− κρer
ηt−1 −

p∗hy
∗κ2

1− κρer
ηt +

p∗hy
∗κρΦ

1− κρΦ
γ̂Φ,t −

p∗hy
∗(1− κ)

1− κρh
ĥt, (A.2)

where y∗ = y/4 and ŷt ≡ ŷh,t − ŷf,t.
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Combining equation (A.1) with equation (A.2) then yields the following second-order expectational

difference equation with respect to international bond holdings:

Etb̃t+1 − [1 + β−1 + p∗hy
∗ψ(1− κ)]b̃t + β−1b̃t−1 = −p∗hy∗λât + p∗hy

∗(1− ρq)q̂t − p∗hy
∗(1− ρy)ŷt (A.3)

It is straightforward to show that equation (A.3) has two roots, one of which is greater than one and the

other of which is less than one.17 Without losing generality, let η denote the root that is less than one.

Solving equation (A.3) by forward iterations then shows that the equilibrium international bond holdings

level is determined by the following cross-equation restriction (CER):

b̃t = ηb̃t−1 + βηλp∗hy
∗

∞∑
j=0

(βη)jEtât+j + βηp∗hy
∗(1− ρy)

∞∑
j=0

(βη)jEtŷt+j − βηp∗hy
∗(1− ρq)

∞∑
j=0

(βη)jEtq̂t+j ,

= ηb̃t−1 +
βηλp∗hy

∗

1− βη(1− λ)
ât +

βηp∗hy
∗(1− ρy)

1− βηρy
ŷt −

βηp∗hy
∗(1− ρq)

1− βηρq
q̂t. (A.4)

Substituting equation (A.4) back into equation (A.2) provides the CER for the exchange rate (38):

ŝt =
βη − 1

βp∗hy
∗ b̃t−1 +

βη − 1

1− βη(1− λ)
ât +

1− κ

1− κρh
ĥt +

βη − 1

1− βηρy
ŷt −

βη − 1

1− βηρq
q̂t +

κρH
1− κρH

γ̂H,t

+
κ

1− κρH
ξt−1 +

κ2

1− κρH
ξt +

κρer
1− κρer

γ̂er,t +
κ

1− κρer
ηt−1 +

κ2

1− κρer
ηt −

κρΦ
1− κρΦ

γ̂Φ,t

Therefore, in this symmetric case, the competitive equilibrium along the balanced growth path is character-

ized by a lower dimensional dynamic system of (ŝt, b̃t, ât, γ̂H,t, ξt, γ̂er,t, ηt, γ̂Φ,t, ĥt, ŷt, q̂t).

Appendix B. Derivation of the error correction representation (35)

Let nt denote the fundamental of the DSGE-PVM (34): nt ≡ lnMt − ln Γt − lnCt − ψκb̃t + ln qt.

Consider the currency return ∆ lnSt adjusted by the fundamental (1− κ)nt−1: ∆ lnSt + (1− κ)nt−1. The

DSGE-PVM (34) then implies:

∆ lnSt + (1− κ)nt−1 = (1− κ)
∞∑
j=0

κj(Et − Et−1)nt+i + (1− κ)
∞∑
j=0

κjEt−1nt+i

− (1− κ)
∞∑
j=0

κjEt−1nt+i−1 + (1− κ)nt−1,

= (1− κ)

∞∑
j=0

κj(Et − Et−1)nt+i +
(1− κ)2

κ

∞∑
i=0

κiEt−1nt+i−1 −
(1− κ)2

κ
nt−1,

= (1− κ)
∞∑
j=0

κj(Et − Et−1)nt+i +
1− κ

κ
lnSt−1 −

(1− κ)2

κ
nt−1.

This result means that the currency return has the following error correction representation, given by equation

17To characterize the roots of the second-order expectational difference equation, see, for example, Sargent (1987).
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(35):

∆ lnSt =
1− κ

κ
(lnSt−1 − lnMt−1 + lnΓt−1 + lnCt−1 + ψκb̃t−1 − ln qt−1)

+ (1− κ)
∞∑
j=0

κj(Et − Et−1)nt+i.

Appendix C. Data description and construction

All data for the United States are distributed by Federal Reserve Economic Data (FRED), operated

by the Federal Reserve Bank of St. Louis (http://research.stlouisfed.org/fred2/). The consumption data

are constructed as the sum of the real personal consumption expenditures on non-durables and services.

FRED, however, distributes only the nominal values of two categories of personal consumption expenditures

as Personal Consumption Expenditure on Non-Durables (PCND) and Personal Consumption Expenditure

on Services (PCESV). To construct the real series of two categories of personal consumption expenditure

Cus,t, we first calculate the share of the two nominal consumption categories in the nominal total personal

consumption expenditure Personal Consumption Expenditure and then multiply the real total personal

consumption expenditures, Real Personal Consumption Expenditures at Chained 2005 Dollars (PCECC96),

by the calculated share. The output Yus,t is employed Real Gross Domestic Product (GDPMC1). As the

aggregate monetary supply Mus,t and the excess reserve, we employ St. Louis Adjusted Monetary Base

(BASE) and Excess Reserves of Depository Institutions (EXCSRESNS). The nominal interest rate rus,t is

provided by three-month Treasury Bill (TB3MS).

As for the Japanese data, the series of the real consumption expenditures on non-durables and

services, and real GDP are distributed by the Systems of National Accounts (SNA) database, released by

Cabinet Office, Government of Japan. We combine the series from the data whose benchmark year is 2000

and the one whose benchmark year is 2005 in the first quarter of the year 1994 using the growth rate of

the series of the benchmark year being equal to 2000. The Japanese monetary data are obtained from

Bank of Japan website. We use Monetary Base (Reserve Requirement Rate Change Adjusted)/Seasonally

Adjusted (X-12-ARIMA)/Average Amounts Outstanding as the money supply Mjpn,t, and calculate the

excess reserve by subtracting Required Reserve (Average Outstanding) from Reserves/Average Outstanding.

Only the nominal interest rate rjpn,t is downloaded Interest Rates, Government Securities, Treasury Bills

for Japan (INTGSTJPM193N) from FRED.

Finally, the nominal exchange rate between the United States and Japan is employed Japan / U.S.

Foreign Exchange Rate (EXJPUS) in the FRED database.
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Table 1: Prior Distributions of Structural Parameters

Parameters Distribution Mean S.D. 95 % Coverage

β Household Subjective Discount Factor Uniform(0,1) — — [0.025 0.975]

ψ Debt Elasticity of Risk Premium Gamma 0.010 0.001 [0.008 0.012]

γH Deterministic (Gross) Monetary Base Growth Gamma 1.015 0.005 [1.005 1.024]

λ Technology Diffusion Speed Beta 0.010 0.001 [0.008 0.012]

ρH Monetary Base Growth AR(1) Coef. Beta 0.100 0.010 [0.081 0.120]

ρq RER AR(1) Coef. Beta 0.850 0.200 [0.739 0.933]

ρΦ Money Demand Growth AR(1) Coef. Beta 0.100 0.010 [0.081 0.120]

ρer Non Excess Reserve Growth AR(1) Coef. Beta 0.100 0.010 [0.081 0.120]

Note 1. The AR(1) coefficients of the transitory money and output shocks, ρh and ρy respectively, have the mass

points of zero for identification.

Note 2. The standard deviations of all the structural shocks, σH , σA, σh, σy, σq, σΦ, σer, σξ, ση have the identical

inverse Gamma prior distribution, with a mean of 0.01 and standard deviation of 0.01 for the benchmark information

set.
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Table 2: Posterior Distributions of Structural Parameters

Parameters Mean S.D. 90 % Interval

κ 0.963 0.003 [0.958 0.967]

β 0.981 0.005 [0.973 0990]

ψ 0.010 0.001 [0.008 0.011]

γH 1.018 0.004 [1.011 1.025]

λ 0.010 0.001 [0.009 0.012]

ρH 0.098 0.008 [0.084 0.112]

ρq 0.977 0.008 [0.965 0.992]

ρΦ 0.091 0.009 [0.077 0.107]

ρer 0.104 0.011 [0.087 0.121]

σH 0.053 0.005 [0.045 0.061]

σA 0.009 0.001 [0.008 0.011]

σh 0.006 0.001 [0.004 0.008]

σy 0.005 0.001 [0.004 0.006]

σq 0.014 0.003 [0.009 0.018]

σΦ 0.052 0.004 [0.045 0.058]

σer 0.050 0.004 [0.043 0.056]

σξ 0.018 0.002 [0.014 0.022]

ση 0.017 0.002 [0.013 0.021]

Marginal Likelihood 1514.876

Note 1: The marginal likelihoods are estimated based on Geweke’s (1999) harmonic mean estimator.

22



19
90

19
95

20
00

20
05

20
10

−
1

−
0.

8

−
0.

6

−
0.

4

−
0.

20

0.
2

0.
4

(
a
)

 

 

A
ct

ua
l e

xc
ha

ng
e 

ra
te

s
M

B
 d

iff
er

en
tia

l

19
90

19
95

20
00

20
05

20
10

−
0.

4

−
0.

3

−
0.

2

−
0.

10

0.
1

0.
2

0.
3

0.
4

(
b
)

 

 

A
ct

ua
l e

xc
ha

ng
e 

ra
te

s
A

dj
us

te
d 

M
B

 d
iff

er
en

tia
l

F
ig
u
re

1
:
T
h
e
S
or
os

C
h
ar
t



1
9

9
0

1
9

9
5

2
0

0
0

2
0

0
5

2
0

1
0

−
0

.0
20

0
.0

2
US TB Rate − JAN TB Rate

 

 

1
9

9
0

1
9

9
5

2
0

0
0

2
0

0
5

2
0

1
0

−
0

.2

00
.2

Currency return

T
B

 d
iff

e
re

n
tia

l
C

u
rr

e
n

cy
 r

e
tu

rn

F
ig
u
re

2:
T
h
re
e-
m
on

th
T
B

D
iff
er
en
ti
al

an
d
Y
en
/U

S
D
ol
la
r
C
u
rr
en
cy

R
et
u
rn



19
90

19
95

20
00

20
05

20
10

−
0.

2

−
0.

15

−
0.

1

−
0.

050

0.
050.
1

0.
15

 

 
C

ur
re

nc
y 

re
tu

rn
S

m
oo

th
ed

 m
on

et
ar

y 
di

st
ur

ba
nc

es

F
ig
u
re

3:
C
u
rr
en
cy

R
et
u
rn

an
d
S
m
o
ot
h
ed

M
on

et
ar
y
D
is
tu
rb
an

ce
s



19
90

19
95

20
00

20
05

20
10

−
1

−
0.

8

−
0.

6

−
0.

4

−
0.

20

0.
2

0.
4

(
a
)

 

 

A
ct

ua
l e

xc
ha

ng
e 

ra
te

s
M

B
 d

iff
er

en
tia

l
S

m
oo

th
ed

 in
fe

re
nc

e

19
90

19
95

20
00

20
05

20
10

−
0.

4

−
0.

3

−
0.

2

−
0.

10

0.
1

0.
2

0.
3

0.
4

(
b
)

 

 

A
ct

ua
l e

xc
ha

ng
e 

ra
te

s
A

dj
us

te
d 

M
B

 d
iff

er
en

tia
l

S
m

oo
th

ed
 in

fe
re

nc
e

F
ig
u
re

4
:
S
m
o
ot
h
ed

In
fe
re
n
ce
s
on

th
e
S
or
os

C
h
ar
t



19
90

19
95

20
00

20
05

20
10

−
0.

2

−
0.

10

0.
1

0.
2

T
F

P
 s

ho
ck

s

 

 
C

ur
re

nc
y 

re
tu

rn
S

m
oo

th
ed

 in
fe

re
nc

e

19
90

19
95

20
00

20
05

20
10

−
0.

2

−
0.

10

0.
1

0.
2

T
ra

ns
ito

ry
 m

on
ey

 s
up

pl
y 

sh
oc

ks

19
90

19
95

20
00

20
05

20
10

−
0.

2

−
0.

10

0.
1

0.
2

T
ra

ns
ito

ry
 o

ut
pu

t s
ho

ck
s

19
90

19
95

20
00

20
05

20
10

−
0.

2

−
0.

10

0.
1

0.
2

P
P
P
 
s
h
o
c
k
s

19
90

19
95

20
00

20
05

20
10

−
0.

2

−
0.

10

0.
1

0.
2

M
on

ey
 d

em
an

d 
sh

oc
ks

19
90

19
95

20
00

20
05

20
10

−
0.

4

−
0.

20

0.
2

0.
4

P
er

m
an

en
t m

on
ey

 s
up

pl
y 

sh
oc

ks

19
90

19
95

20
00

20
05

20
10

−
0.

2

−
0.

10

0.
1

0.
2

P
er

m
an

en
t m

on
ey

 s
up

pl
y 

sh
oc

ks
 +

 N
on

 e
xc

es
s 

re
se

rv
e 

co
m

po
ne

nt
 s

ho
ck

s

19
90

19
95

20
00

20
05

20
10

−
0.

2

−
0.

10

0.
1

0.
2

N
ew

s 
sh

oc
ks

19
90

19
95

20
00

20
05

20
10

−
0.

2

−
0.

10

0.
1

0.
2

T
ot

al
 c

ur
re

nc
y 

re
tu

rn

F
ig
u
re

5
:
H
is
to
ri
ca
l
D
ec
om

p
os
it
io
n
:
C
u
rr
en
cy

R
et
u
rn



19
90

19
95

20
00

20
05

20
10

−
0.

04

−
0.

020

0.
02

0.
04

T
F

P
 s

ho
ck

s

 

 
D

at
a

S
m

oo
th

ed
 in

fe
re

nc
e

19
90

19
95

20
00

20
05

20
10

−
0.

04

−
0.

020

0.
02

0.
04

T
ra

ns
ito

ry
 m

on
ey

 s
up

pl
y 

sh
oc

ks

19
90

19
95

20
00

20
05

20
10

−
0.

04

−
0.

020

0.
02

0.
04

T
ra

ns
ito

ry
 o

ut
pu

t s
ho

ck
s

19
90

19
95

20
00

20
05

20
10

−
0.

04

−
0.

020

0.
02

0.
04

P
P

P
 s

ho
ck

s

19
90

19
95

20
00

20
05

20
10

−
0.

04

−
0.

020

0.
02

0.
04

M
on

ey
 d

em
an

d 
sh

oc
ks

19
90

19
95

20
00

20
05

20
10

−
0.

04

−
0.

020

0.
02

0.
04

P
er

m
an

en
t m

on
ey

 s
up

pl
y 

sh
oc

ks

19
90

19
95

20
00

20
05

20
10

−
0.

04

−
0.

020

0.
02

0.
04

N
on

 e
xc

es
s 

re
se

rv
e 

co
m

po
ne

nt
 s

ho
ck

s

19
90

19
95

20
00

20
05

20
10

−
0.

04

−
0.

020

0.
02

0.
04

N
ew

s 
sh

oc
ks

19
90

19
95

20
00

20
05

20
10

−
0.

04

−
0.

020

0.
02

0.
04

T
ot

al
 c

on
su

m
pt

io
n 

gr
ow

th

F
ig
u
re

6
:
H
is
to
ri
ca
l
D
ec
om

p
os
it
io
n
:
C
on

su
m
p
ti
on

G
ro
w
th



19
90

19
95

20
00

20
05

20
10

−
0.

01

−
0.

00
50

0.
00

5

0.
01

T
F

P
 s

ho
ck

s

 

 

19
90

19
95

20
00

20
05

20
10

−
0.

01

−
0.

00
50

0.
00

5

0.
01

T
ra

ns
ito

ry
 m

on
ey

 s
up

pl
y 

sh
oc

ks

19
90

19
95

20
00

20
05

20
10

−
0.

01

−
0.

00
50

0.
00

5

0.
01

T
ra

ns
ito

ry
 o

ut
pu

t s
ho

ck
s

19
90

19
95

20
00

20
05

20
10

−
0.

01

−
0.

00
50

0.
00

5

0.
01

P
P

P
 s

ho
ck

s

19
90

19
95

20
00

20
05

20
10

−
0.

01

−
0.

00
50

0.
00

5

0.
01

M
on

ey
 d

em
an

d 
sh

oc
ks

19
90

19
95

20
00

20
05

20
10

−
0.

01

−
0.

00
50

0.
00

5

0.
01

P
er

m
an

en
t m

on
ey

 s
up

pl
y 

sh
oc

ks

19
90

19
95

20
00

20
05

20
10

−
0.

01

−
0.

00
50

0.
00

5

0.
01

N
on

 e
xc

es
s 

re
se

rv
e 

sh
oc

ks

19
90

19
95

20
00

20
05

20
10

−
0.

01

−
0.

00
50

0.
00

5

0.
01

N
ew

s 
sh

oc
ks

19
90

19
95

20
00

20
05

20
10

−
0.

01

−
0.

00
50

0.
00

5

0.
01

T
ot

al
 in

te
re

st
 d

iff
er

en
tia

l

D
at

a
S

m
oo

th
ed

 in
fe

re
nc

e F
ig
u
re

7
:
H
is
to
ri
ca
l
D
ec
om

p
os
it
io
n
:
In
te
re
st

R
at
e
D
iff
er
en
ti
al


