
EXTENDING THE SCOPE OF CUBE ROOT ASYMPTOTICS

MYUNG HWAN SEO AND TAISUKE OTSU

Abstract. This article extends the scope of cube root asymptotics for M-estimators in two

directions: allow weakly dependent observations and criterion functions drifting with the sample

size typically due to a bandwidth sequence. For dependent empirical processes that characterize

criterions inducing cube root phenomena, maximal inequalities are established to derive the

convergence rates and limit laws of the M-estimators. The limit theory is applied not only

to extend existing examples, such as the maximum score estimator, nonparametric maximum

likelihood density estimator under monotonicity, and least median of squares, toward weakly

dependent observations, but also to address some open questions, such as asymptotic properties

of the minimum volume predictive region, conditional maximum score estimator for a panel

data discrete choice model, and Hough transform estimator with a drifting tuning parameter.

1. Introduction

There is a class of estimation problems where point estimators converge at the cube root rate
to some non-normal distributions instead of the familiar squared root rate to normals. Since
Chernoff’s (1964) study on estimation of the mode, at least, several papers reported emergence
of the cube root phenomena; see Prakasa Rao (1969) and Andrews et al. (1972), among others.
The literature suggests these cube root phenomena commonly arise when the criterion functions
for point estimation are not continuous in parameters.

A seminal work by Kim and Pollard (1990) explained elegantly these cube root phenomena in
a unified framework by means of empirical process theory; they established a limit theory for a
general class of M-estimators defined by maximization of random processes that induces the cube
root asymptotics. The limit theory of Kim and Pollard (1990) is general enough to encompass
existing examples, such as the shorth (Andrews et al., 1972), least median of squares (Rousseeuw,
1984), nonparametric monotone density estimator (Prakasa Rao, 1969), and maximum score
estimator (Manski, 1975), which are all illustrated in Kim and Pollard (1990). Also their theory
has been applied to other contexts in statistics, such as the Hough transform estimator in image
analysis (Goldenshluger and Zeevi, 2004) and split point estimator in decision trees (Bühlmann
and Yu, 2002, and Banerjee and McKeague, 2007).

Since Kim and Pollard (1990), in spite of the generality, several statistical problems are posed
suggesting emergence of the cube root asymptotics but being outside the scope of Kim and
Pollard’s (1990) framework. Most problems appeared in the course of generalizations of the
existing examples listed above. As a prototype, let us consider construction of a minimum volume
predictive region, studied by Polonik and Yao (2000), in a simplified manner. A statistician who
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observes a bivariate dependent process {yt, xt} wishes to predict y from x by some interval. In
this simple case, Polonik and Yao’s (2000) minimum volume predictive region of y at x = c with
level α may be written as the interval [θ̂ − r̂, θ̂ + r̂], where

θ̂ = arg min
θ
P̂ [θ − r̂, θ + r̂], r̂ = inf

{
r : sup

θ
P̂ [θ − r, θ + r] ≥ α

}
,

and P̂ [a, b] =
∑n

t=1 I{a ≤ yt ≤ b}K
(
xt−c
hn

)
/
∑n

t=1K
(
xt−c
hn

)
is a nonparametric estimator of the

conditional probability P{a ≤ yt ≤ b|xt = c}. K is a kernel function and hn is a bandwidth
varying with the sample size n. This predictive region is a natural generalization of the shorth
to the conditional distribution of dependent observables. Polonik and Yao (2000, Remark 3b)
conjectured that this region would converge at the (nhn)−1/3 rate under certain norm. The
framework of Kim and Pollard (1990) cannot be applied directly to address this question by two
reasons: the observations are taken from a dependent process, and the criterion function drifts
with the sample size due to the bandwidth. To allow dependent observations, the empirical
process theory of Kim and Pollard (1990) for independent observations needs to be adapted. In
particular, maximal inequalities to derive a convergence rate and to establish weak convergence of
the criterion process need to be modified. Also, to allow drifting criterions, the class of criterion
functions in consideration for M-estimation needs to be reformulated.

It should be emphasized that the above example is not an exception; several existing works
call for development of such generalizations. Anevski and Hössjer (2006) extended the limit
theory of nonparametric maximum likelihood under order restrictions toward weakly dependent
and long range dependent data. Their analysis includes monotone density estimation as a special
case. Goldenshluger and Zeevi (2004, p. 1916) emphasized importance of generalization of the
Hough transform estimator to the case of drifting tuning constants and left it for future research.
Honoré and Kyriazidou (2000) proposed the conditional maximum score estimator for a panel
data discrete choice model. Although they showed the consistency, the convergence rate and
limiting distribution are unknown. Also, extensions of the classical least median of squares
and maximum score estimators to dependent observations are still open questions (Zinde-Walsh,
2002, and de Jong and Woutersen, 2011).

To address these open questions, we extend the scope of cube root asymptotics for M-
estimators in two directions: allow weakly dependent observations and criterion functions drifting
with the sample size typically due to a bandwidth sequence. In particular, we consider an abso-
lutely regular dependent process characterized by β-mixing coefficients and study M-estimation
for a class of criterion functions, named the cube root class, which induces the cube root asymp-
totics. In this setup, we establish maximal inequalities to derive the cube root rate and weak
convergence of the normalized process of the criterion so that a continuous mapping theorem
for maximizing values of the criterions delivers limit laws of the M-estimators. Furthermore
we extend the cube root class to deal with criterions drifting with the sample size, named the
drifting cube root class. The limit theory for the cube root class is adapted to the drifting class.
We establish the (nhn)1/3-rate of convergence of the M-estimator, where hn means a bandwidth
sequence, and derive a non-normal limiting distribution. The limit theory is also extended to
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the M-estimation problems where the criterion functions contain estimated nuisance parameters.
Our framework is general enough not only to address the open questions listed above but also to
extend existing results to more general setups, such as split point estimation in dynamic decision
trees.

The paper is organized as follows. Section 2 develops the cube root asymptotic theory for a
class of M-estimators with dependent data. It also considers the case where the criterion contains
estimated nuisance parameters. Section 3 extends the asymptotic theory to drifting criterion
functions. In Section 4, we illustrate our cube root asymptotic theory by some examples; the
maximum score estimator (Section 4.1), nonparametric monotone density estimation (Section
4.2), least median of squares (Section 4.3), conditional maximum score estimator for panel data
(Section 4.4), minimum volume predictive region (Section 4.5), and Hough transform estimator
(Section 4.6).

2. Cube root asymptotics with dependent observations

This section extends Kim and Pollard’s (1990) main theorem on the cube root asymptotics of
the M-estimator to allow for dependent data. This section focuses on the case where the criterion
function does not vary with the sample size. The M-estimator θ̂ maximizes the random criterion

Pnfθ =
1

n

n∑
t=1

fθ(zt),

where {fθ : θ ∈ Θ} is a class of functions indexed by a subset Θ of Rd and {zt} is a strictly
stationary sequence of random variables with marginal P . We characterize a class of criterion
functions that induce cube root phenomena (or “sharp edge effects” in the sense of Kim and
Pollard, 1990) and is general enough to cover the examples discussed in the introduction. Let
Pf =

´
fdP for a function f , | · | be the Euclidean norm of a vector, and ‖·‖2 be the L2(P )-norm

of a random variable. The class of criterions of our interest is defined as follows.

Definition (Cube root class). A class of functions {fθ : θ ∈ Θ} is called the cube root class if

(i): {fθ : θ ∈ Θ} is a class of bounded functions and Pfθ is uniquely maximized and twice
continuously differentiable at θ0 with a negative definite second derivative matrix V.

(ii): There exist positive constants C and C ′ such that

|θ1 − θ2| ≤ C ‖fθ1 − fθ2‖2 ,

for all θ1, θ2 ∈ {θ ∈ Θ : |θ − θ0| ≤ C ′}.
(iii): There exists a positive constant C ′′ such that

P sup
θ∈Θ:|θ−θ0|<ε

|fθ − fθ0 |2 ≤ C ′′ε,

for all ε > 0 small enough.

Condition (i) contains standard identification conditions for M-estimation (cf. Kim and Pol-
lard, 1990, Conditions (ii) and (iv) of their main theorem). Boundedness of the class {fθ : θ ∈ Θ}
is a major requirement. Kim and Pollard (1990) does not impose boundedness even though all
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of their examples consider bounded criterions. In our analysis, boundedness is required to estab-
lish a maximal inequality for the cube root convergence rate (Lemma M below). In particular,
boundedness is used to guarantee the relation ‖fθ − fθ0‖2 ∼ ‖fθ − fθ0‖2,β , where ‖·‖2,β is so-
called the L2,β(P )-norm using β-mixing coefficients defined below. It should be noted that
‖fθ − fθ0‖2 = ‖fθ − fθ0‖2,β for independent observations. We provide a detailed discussion on
boundedness after Lemma M. Condition (ii) is required not only for the maximal inequality to
derive the convergence rate but also for finite dimensional convergence to derive the limiting
distribution of the M-estimator. In particular, this condition is used to relate the L2(P )-norm
to the Euclidean norm over Θ. This condition is implicit in Kim and Pollard (1990, Condition
(v)) and the equivalence ‖fθ − fθ0‖2 = ‖fθ − fθ0‖2,β under independent observations. Condition
(iii), which corresponds to Kim and Pollard (1990, Condition (vi)), is an envelope condition for
the class {fθ− fθ0 : |θ− θ0| ≤ ε}. Similar to the case of independent observations, this condition
plays a key role for the cube root asymptotics. It should be noted that for the familiar squared
root asymptotics, the upper bound in Condition (iii) is of order ε2.

Throughout this section, let {fθ : θ ∈ Θ} be a cube root class. We now study the limit
behavior of the M-estimator, which is precisely defined as a random variable θ̂ satisfying

Pnfθ̂ ≥ sup
θ∈Θ

Pnfθ − op(n−2/3).

The first step is to establish consistency of the M-estimator, i.e., θ̂ converges in probability to
the unique maximizer θ0 of Pfθ. The technical argument to derive the consistency is rather
standard and typically shown by uniform convergence of the empirical criterion Pnfθ to Pfθ over
Θ. Thus, in this section we assume consistency of θ̂. See illustrations in Section 4 for details to
verify consistency.

The next step is to derive the convergence rate of θ̂. A key ingredient for this step is to
obtain the modulus of continuity of the centered empirical process {Gn(fθ − fθ0) : θ ∈ Θ} by
certain maximum inequality, where Gnf =

√
n(Pnf − Pf) for a function f . For independent

observations, several maximal inequalities are available in the literature (see, e.g., Kim and
Pollard, 1990, p. 199). For dependent observations, to best of our knowledge, there is no maximal
inequality which can be applied to the cube root class. Our first task is to establish a maximal
inequality for the cube root class with dependent observations.

To proceed, we now characterize the dependence structure of data. Among several notions of
dependence, this paper focuses on an absolutely regular process. See Doukhan, Massart and Rio
(1995) for a detail on empirical process theory of absolutely regular processes. Let F0

−∞ and F∞m
be σ-fields of {. . . , zt−1, z0} and {zm, zm+1, . . .}, respectively. Define the β-mixing coefficient as
βm = 1

2 sup
∑

(i,j)∈I×J |P{Ai ∩ Bj} − P{Ai}P{Bj}|, where the supremum is taken over all the
finite partitions {Ai}i∈I and {Bj}j∈J respectively F0

−∞ and F∞m measurable. Throughout the
paper, we impose the following assumption on the observations.

Assumption D. {zt} is a strictly stationary and absolutely regular process with β-mixing coef-
ficients {βm} such that βm = O(ρm) for some 0 < ρ < 1.
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This assumption says the mixing coefficient βm should decay at an exponential rate.1 For
example, finite-order ARMA processes typically satisfy this assumption. This assumption is
required not only to establish the maximal inequality in Lemma M below but also to establish a
central limit theorem in Lemma C for finite dimensional convergence. See remarks on Lemmas M
and C for further discussions. Under this assumption, the maximal inequality for the empirical
process Gn(fθ − fθ0) of the cube root class is obtained as follows.

Lemma M. There exist positive constants C and C ′ such that

P sup
|θ−θ0|<δ

|Gn(fθ − fθ0)| ≤ Cδ1/2,

for all n large enough and δ ∈ [n−1/2, C ′].

Proof. For any function g, let Qg(u) be the inverse function of the tail probability function
x 7→ P{|g(zt)| > x}.2 Let β(·) be a function such that β(t) = β[t] if t ≥ 1 and β(t) = 1 otherwise,
and β−1(·) be the càdlàg inverse of β(·). The L2,β(P )-norm is defined as

‖g‖2,β =

√ˆ 1

0
β−1(u)Qg(u)2du.

We use the following sets defined by different norms:

Gβδ = {fθ − fθ0 : ‖fθ − fθ0‖2,β < δ for θ ∈ Θ},

G1
δ = {fθ − fθ0 : |θ − θ0| < δ for θ ∈ Θ},

G2
δ = {fθ − fθ0 : ‖fθ − fθ0‖2 < δ for θ ∈ Θ}.

For any g ∈ G1
δ , g is bounded (Condition (i)) and so is Qg. Thus we can always find a function

ĝ such that ‖g‖22 ≤ ‖ĝ‖
2
2 ≤ 2 ‖g‖22 and

Qĝ(u) =
m∑
j=1

ajI{(j − 1)/m ≤ u < j/m},

satisfying |Qg| ≤ Qĝ, for some positive integer m and sequence of positive constants {aj}. Now
take any C ′ > 0, and then pick any n (so that n−1/2 ≤ C ′) and δ ∈ [n−1/2, C ′]. Throughout the
proof, positive constants Cj (j = 1, 2, . . .) are independent of n and δ.

1Indeed, the polynomial decay rates of βm are often associated with strong dependence and long memory type
behavior in sample statistics. See, e.g., Chen, Hansen and Carrasco (2010) and references therein. Therefore,
asymptotic analysis for the M-estimator will become very different.
2The function Qg(u), called the quantile function in Doukhan, Massart and Rio (1995), is different from a familiar
function u 7→ inf{x : u ≤ P{|g(zt)| ≤ x}} to define quantiles.
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Next, based on the above notation, we derive some set inclusion relationships. Let M =
1
2 sup0<x≤1 x

−1
´ x

0 β
−1(u)du. For any g ∈ G1

δ , it holds

‖g‖22 ≤
ˆ 1

0
β−1(u)Qg(u)2du ≤ 1

m

m∑
j=1

a2
j

{
m

ˆ j/m

(j−1)/m
β−1(u)du

}

≤

{
m

ˆ 1/m

0
β−1(u)du

}ˆ 1

0
Qĝ(u)2du

≤ M ‖g‖22 , (1)

where the first inequality is due to Doukhan, Massart and Rio (1995, Lemma 1), the second
inequality follows from |Qg| ≤ Qĝ, the third inequality follows from monotonicity of β−1(u), and
the last inequality follows by ‖ĝ‖22 ≤ 2 ‖g‖22. This inequality implies

‖fθ − fθ0‖2 ≤ ‖fθ − fθ0‖2,β ≤M ‖fθ − fθ0‖2 . (2)

Based on this, we can deduce the inclusion relationships: there are positive constants C1 and C2

such that
G1
δ ⊂ G2

C1δ1/2
⊂ Gβ

MC1δ1/2
, Gβδ ⊂ G

2
δ ⊂ G1

δC2
, (3)

where the relation G1
δ ⊂ G2

C1δ1/2
follows from Condition (ii) of the cube root class and the relation

G2
δ ⊂ G1

δC2
follows from Condition (iii).

Third, based on the above set inclusion relationships, we derive some relationships for the
bracketing numbers. Let N[](ν,G, ‖·‖) be the bracketing number for a class of functions G with
radius ν > 0 and norm ‖·‖. By (2) and the second relation in (3),

N[](ν,G
β
δ , ‖·‖2,β) ≤ N[](ν,G1

C2δ, ‖·‖2) ≤ C3

(
δ

ν

)2d

,

for some positive constant C3, where the second inequality follows from the argument to derive
Andrews (1993, eq. (4.7)) based on Condition (iii) of the cube root class (called the L2-continuity
assumption in Andrews, 1993). Therefore, for some positive constant C4, it holds

ϕn(δ) =

ˆ δ

0

√
logN[](ν,G

β
δ , ‖·‖2,β)dν ≤ C4δ. (4)

Finally, based on the above entropy condition, we apply the maximal inequality of Doukhan,
Massart and Rio (1995, Theorem 3), i.e., there exists a positive constant C5 depending only on
the mixing sequence {βm} such that

P sup
g∈Gβδ

|Gng| ≤ C5[1 + δ−1qGδ(min{1, vn(δ)})]ϕn(δ), (5)

where qGδ(v) = supu≤v QG(u)
√´ u

0 β
−1(ũ)dũ with the envelope function G of Gβδ (note: Gβδ is a

class of bounded functions) and vn(δ) is the unique solution of

vn(δ)2

´ vn(δ)
0 β−1(ũ)dũ

=
ϕn(δ)2

nδ2
.
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Since ϕn(δ) ≤ C4δ from (4), it holds vn(δ) ≤ C5n
−1 for some positive constant C5. Now take

some n0 such that vn0(δ) ≤ 1, and then pick again any n ≥ n0 and δ ∈ [n−1/2, C ′]. We have

qG(min{1, vn(δ)}) ≤ C6

√
vn(δ)QG(vn(δ)) ≤ C7n

−1/2, (6)

for some positive constants C6 and C7. Therefore, combining (4)-(6), the conclusion follows by

P sup
g∈G1δ
|Gng| ≤ P sup

g∈Gβ
Mδ1/2

|Gng| ≤ C8δ
1/2, (7)

where the first inequality follows from the first relation in (3). �

We now discuss the boundedness requirement on fθ in Condition (i) of the cube root class and
exponential decay requirement on the mixing coefficient βm in Assumption D. Boundedness is
used to obtain the second inequality in (1), which guarantees the norm relation in (2). Without
boundedness, the L2,β(P )-norm is bounded from above only by the L2+η(P )-norm with any η > 0

(Doukhan, Massart and Rio, 1995, pp. 403-404). Therefore, the resulting maximal inequality
will be

P sup
|θ−θ0|<δ

|Gn(fθ − fθ0)| ≤ Cδ1/(2+η),

provided Condition (iii) of the cube root class is replaced with

P sup
θ∈Θ:|θ−θ0|<ε

|fθ − fθ0 |2+η ≤ C ′′ε,

for some positive constant C ′′ and all ε small enough. By applying a similar argument below,
we can show θ̂ − θ0 = Op(n

− 1
4
− 1

6(2+η) ) although this rate may not be sharp.
The exponential decay of the mixing coefficient βm is also used in (1). Lemma M can be

shown under a slightly weaker condition sup0<x≤1 x
−1
´ x

0 β
−1(u)du < ∞ than βm = O(ρm) in

Assumption D. However, this weaker condition already excludes polynomial decay of βm. Note
that for any βm with a polynomial decay rate, it holds supg∈G1δ

‖g‖2,β = ∞. For this point, it
is intuitive to consider the case where g is a binary function (0 or 1). In this case, we have
‖g‖2,β = ‖g‖2

√
x−1
´ x

0 β
−1(u)du for x = P{g(zt) = 1}. Therefore, we have supg∈G1δ

‖g‖2,β =∞
unless sup0<x≤1 x

−1
´ x

0 β
−1(u)du < ∞. See a remark on Lemma C below for an additional

discussion.
To establish the convergence rate (and consistency as well), the following analog of Kim and

Pollard (1990, Lemma 4.1) is useful.

Lemma 1. For each ε > 0, there exist random variables {Rn} of order Op (1) and a positive
constant C such that

|Pn(fθ − fθ0)− P (fθ − fθ0)| ≤ ε|θ − θ0|2 + n−2/3R2
n,

for any n−1/3 ≤ |θ − θ0| ≤ C.

Proof. Define An,j = {θ : (j − 1)n−1/3 ≤ |θ − θ0| < jn−1/3} and

R2
n = n2/3 inf

n−1/3≤|θ−θ0|≤C
{|Pn(fθ − fθ0)− P (fθ − fθ0)| − ε|θ − θ0|2}.
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There exists a positive constant C such that

P{Rn > m} = P
{
|Pn(fθ − fθ0)− P (fθ − fθ0)| > ε|θ − θ0|2 + n−2/3m2 for some θ

}
≤

∞∑
j=1

P
{
n2/3|Pn(fθ − fθ0)− P (fθ − fθ0)| > ε(j − 1)2 +m2 for some θ ∈ An,j

}

≤
∞∑
j=1

C
√
j

ε(j − 1)2 +m2
,

for all m > 0, where the last equality is due to the Markov inequality and Lemma M. Since the
above sum is finite for all m > 0, the conclusion follows. �

Based on Lemma 1, the cube root convergence rate of θ̂ is obtained as follows. Suppose
|θ̂ − θ0| ≥ n−1/3. Then we can take c > 0 such that

op(n
−2/3) ≤ Pn(fθ̂ − fθ0) ≤ P (fθ̂ − fθ0) + ε|θ̂ − θ0|2 + n−2/3R2

n

≤ (−c+ ε)|θ̂ − θ0|2 +Op(n
−2/3),

for each ε > 0, where the second inequality follows from Lemma 1 and the third inequality follows
from Condition (i) of the cube root class. Taking ε small enough to satisfy c− ε > 0 yields the
conclusion that θ̂ − θ0 = Op(n

−1/3).
Given the cube root convergence rate of θ̂, the final step is to derive its limiting distribution.

To this end, it is common to apply a continuous mapping theorem of an argmax element (e.g.,
Kim and Pollard, 1990, Theorem 2.7). A key ingredient for this argument is to establish weak
convergence of the centered and normalized process

Zn(s) = n1/6Gn(fθ0+sn−1/3 − fθ0),

for |s| ≤ K with any K > 0. Weak convergence of the process Zn may be characterized
by its finite dimensional convergence and tightness (or stochastic equicontinuity). If {zt} is
independently and identically distributed as in Kim and Pollard (1990), a classical central limit
theorem combined with the Cramér-Wold device implies finite dimensional convergence, and a
maximal inequality on a suitably regularized class of functions guarantees tightness of the process
of criterion functions. We adapt this approach to dependent observations satisfying Assumption
D.

For finite dimensional convergence, we employ the following central limit theorem, which is
based on Rio’s (1997, Corollary 1) central limit theorem for an α-mixing array. Recall that Qg(u)

means the inverse function of the tail probability function x 7→ P{|g(zt)| > x}.

Lemma C. Suppose Pgn = 0 and

sup
n

ˆ 1

0
β−1(u)Qgn(u)2du <∞. (8)

Then Σ = limn→∞Var(Gngn) exists and Gngn
d→ N(0,Σ).

Proof. First of all, any β-mixing process is α-mixing with αm ≤ βm/2. It is sufficient to check
Conditions (a) and (b) of Rio (1997, Corollary 1). Condition (a) is verified by Rio (1997,
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Proposition 1), which guarantees Var(Gngn) ≤
´ 1

0 β
−1(u)Qgn(u)2du for all n. Since Var(Gngn)

is bounded and zt is strictly stationary in our case, Condition (b) of Rio (1997, Corollary 1) can
be written as ˆ 1

0
β−1(u)Qgn(u)2 inf

n
{n−1/2β−1(u)Qgn(u), 1}du→ 0,

as n→∞. Note that for each u ∈ (0, 1), it holds n−1/2β−1(u)Qgn(u)→ 0 as n→∞. Thus, the
dominated convergence theorem based on (8) implies Condition (b). �

The finite dimensional convergence of Zn follows from Lemma C by setting gn as any fi-
nite dimensional projection of the process {n1/6{(fθ0+sn−1/3 − fθ0) − P (fθ0+sn−1/3 − fθ0)} : s}.
The requirement (8) can be considered as a Lindeberg-type condition to guarantee Rio’s (1997,
Corollary 1) Lindeberg condition in our setup. The condition (8) excludes polynomial decay
of βm. Therefore, exponential decay of βm is required not only for the maximal inequality in
Lemma M but also for the finite dimensional convergence in Lemma C. Also, Doukhan, Mas-
sart and Rio (1994, Theorem 5) provided some result, where any polynomial mixing rate will
destroy the asymptotic normality of Gngn. It should be noted that for the rescaled object
gn = n1/6(fθ0+sn−1/3 − fθ0), the moments P |gn|2+δ with δ > 0 typically diverge. This happens
because the cube root class {fθ} typically involves the indicator function. Thus we cannot apply
central limit theorems for mixing sequences with higher than second moments. The Lindeberg
condition is one of the weakest conditions, if any, for the central limit theorem of mixing sequences
without moment condition higher than two.

To establish tightness of the normalized process Zn, we show the following maximal inequality.

Lemma M’. Consider a sequence of classes of functions Gn = {gn,s : |s| ≤ K} for some K > 0

with envelope functions Gn. Suppose there is a universal positive constant C such that

P sup
s:|s−s′|<ε

|gn,s − gn,s′ |2 ≤ Cε, (9)

for all n large enough, |s′| ≤ K, and ε > 0 small enough. Also assume that there exist 0 ≤ κ < 1/2

and C ′ > 0 such that Gn ≤ C ′nκ and ‖Gn‖2 ≤ C ′ for all n large enough. Then for any σ > 0,
there exist δ > 0 and a positive integer Nδ such that

P sup
|s−s′|<δ

|Gngn,s −Gngn,s′ | ≤ σ,

for all n ≥ Nδ.

Proof. Pick any K > 0 and σ > 0. Let gn,s,s′ = gn,s − gn,s′ , G1
n,δ = {gn,s,s′ : |s − s′| < δ},

Gβn,δ = {gn,s,s′ :
∥∥gn,s,s′∥∥2,β

< δ}, and G2
n,δ = {gn,s,s′ :

∥∥gn,s,s′∥∥2
< δ}. Since gn,s satisfies the

condition (9), there exists a positive constant C1 such that G1
n,δ ⊂ G2

n,C1δ1/2
for all n large enough

and all δ > 0 small enough. Also, by the same argument to derive (2), there exists a positive
constant C2 such that

∥∥gn,s,s′∥∥2
≤
∥∥gn,s,s′∥∥2,β

≤ C2

∥∥gn,s,s′∥∥2
for all n large enough, |s| ≤ K,

and |s′| ≤ K, which implies
G1
n,δ ⊂ G2

n,C1δ1/2
⊂ Gβ

n,C1C2δ1/2
,
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for all n large enough and all δ > 0 small enough. The constant C2 depends only on the mixing
sequence {βm}. Also note that the bracketing numbers satisfy

N[](ν,G
β
n,δ, ‖·‖2,β) ≤ N[](ν,GKn , C2 ‖·‖2) ≤ C1C2ν

−d/2,

where GKn = {gn,s,s′ : |s| ≤ K, |s′| ≤ K} and the second inequality follows from (9). Thus
letting η = C1C2δ

1/2, there is a function ϕ(η) such that ϕ(η) → 0 as η → 0 and ϕn(η) =´ η
0

√
logN[](ν,G

β
n,η, ‖·‖2,β)dν ≤ ϕ(η) for all n large enough and all η > 0 small enough. Based

on this entropy condition, we apply the maximal inequality of Doukhan, Massart and Rio (1995,
Theorem 3), i.e., there exists a positive constant C3 depending only on the mixing sequence {βm}
such that

P sup
g∈Gβn,η

|Gng| ≤ C3[1 + η−1qGn(min{1, vn(η)})]ϕ(η),

for all n large enough and all η > 0 small enough, where qGn(·) with the envelope Gn of Gβn,η is
defined in the same way as the proof of Lemma M (note: by the definition of Gβn,η, we can take
the envelope Gn independently from η), and vn(η) is the unique solution of

vn(η)2

´ vn(η)
0 β−1(ũ)dũ

=
ϕ2
n(η)

nη2
.

Now pick any η > 0 small enough so that 2C3ϕ(η) < σ. Since ϕn(η) ≤ ϕ(η), there is a positive
constant C4 such that vn(η) ≤ C4

ϕ(η)
nη2

for all n large enough and η > 0 small enough. Since Gn ≤
C ′nκ by the definition of Gβn,η, there exists a positive constant C5 such that qGn(min{1, vn(η)}) ≤
C5

√
ϕ(η)η−1nκ−1/2 with 0 < κ < 1/2 for all n large enough. Therefore, the conclusion follows

by
P sup
g∈G1n,η

|Gng| ≤ P sup
g∈Gβ

n,C1η
1/2

|Gng| ≤ σ,

for all n large enough, where the first inequality follows from G1
n,δ ⊂ G

β

n,C1C2δ1/2
. �

Tightness of the process Zn follows by Lemma M’ with gn,s = n1/6(fθ0+sn−1/3 − fθ0). Note
that the condition (9) is satisfied by Condition (iii) of the cube root class. Compared to Lemma
M used to derive the convergence rate of the estimator, Lemma M’ is applied only to establish
tightness of the process Zn. Therefore, we do not need an exact decay rate on the right hand
side of the maximal inequality.3

Based on finite dimensional convergence and tightness of Zn shown by Lemmas C and M’,
respectively, we establish weak convergence of Zn. Then a continuous mapping theorem of an
argmax element (Kim and Pollard, 1990, Theorem 2.7) yields the limiting distribution of the
M-estimator θ̂. The main theorem of this section is presented as follows.

Theorem 1. Suppose {zt} satisfies Assumption D. Let {fθ : θ ∈ Θ} be a cube root class and θ̂
satisfy Pnfθ̂ ≥ supθ∈Θ Pnfθ− op(n−2/3). Assume θ̂ converges in probability to θ0 ∈ intΘ, and (8)
holds with (gn,s − Pgn,s) for each s, where gn,s = n1/6(fθ0+sn−1/3 − fθ0). Then

n1/3(θ̂ − θ0)
d→ arg max

s
Z(s),

3In particular, the process Zn itself does not satisfy Condition (ii) of the cube root class.
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where Z(s) is a Gaussian process with continuous sample paths, expected value s′V s/2, and
covariance kernel H(s1, s2) = limn→∞

∑n
t=−n Cov(gn,s1(z0), gn,s2(zt)) <∞.

This theorem can be considered as an extension of the main theorem of Kim and Pollard
(1990) to an absolutely regular dependent process. The Lindeberg-type condition (8) needs to
be verified for each application. It is often the case that P{gn,s = 0} ≥ 1−cn−1/3 for some c > 0

and all n large enough. In this case, this condition can be verified by
ˆ 1

0
β−1(u)Qgn,s(u)2du ≤ Cn1/3

ˆ cn−1/3

0
β−1(u)du+n1/3{P (fθ0+sn−1/3−fθ0)}2

ˆ 1

0
β−1(u)du <∞,

for some positive constant C and all n, where the first inequality follows from the facts that β−1(·)
is monotonically decreasing and fθ is bounded, and the second inequality follows by Assumption
D and P{gn,s = 0} ≥ 1− cn−1/3.

Once we show that the M-estimator has a proper limiting distribution, Politis, Romano and
Wolf (1999, Theorem 3.3.1) justify the use of subsampling to construct confidence intervals
and make inference. Our mixing condition in Assumption D satisfies the requirement of their
theorem and thus subsampling inference based on b consecutive observations with b/n → ∞
is asymptotically valid. See Politis, Romano and Wolf (1999, Section 3.6) for a discussion on
data-dependent choices of b.4

It is often the case that the criterion function contains some nuisance parameters which can
be estimated by faster rates than Op(n

−1/3). For such a situation, Theorem 1 is extended as
follows. For the rest of this section, let θ̂ and θ̃ satisfy Pnfθ̂,ν̂ ≥ supθ∈Θ Pnfθ,ν̂ +op(n

−2/3), where
ν̂ − ν0 = op(n

−1/3), and Pnfθ̃,ν0 ≥ supθ∈Θ Pnfθ,ν0 + op(n
−2/3), respectively.

Theorem 2. Let {fθ,ν0 : θ ∈ Θ} be a cube root class. Suppose there are some negative definite
matrix V1 and some finite matrix V2 such that

P (fθ,ν − fθ0,ν0) =
1

2
(θ − θ0)′V1(θ − θ0) + (θ − θ0)′V2(ν − ν0) + o(|θ − θ0|2 + |ν − ν0|2), (10)

for all θ and ν in neighborhoods of θ0 and ν0, respectively. Furthermore, suppose {fθ,ν : θ ∈
Θ, ν ∈ Λ} satisfies Condition (iii) of the cube root class. Then θ̂ = θ̃ + op(n

−1/3). Additionally,
if (8) holds with (gn,s − Pgn,s) for each s, where gn,s = n1/6(fθ0+sn−1/3,ν0

− fθ0,ν0), then

n1/3(θ̂ − θ0)
d→ arg max

s
Z(s),

where Z(s) is a Gaussian process with continuous sample paths, expected value s′V1s/2, and
covariance kernel H(s1, s2) = limn→∞

∑n
t=−n Cov(gn,s1(z0), gn,s2(zt)) <∞.

Note that we only need to verify that the subclass {fθ,ν0 : θ ∈ Θ} belongs to the cube root
class. The additional conditions in (10) and an expansion in Condition (iii) for the whole class
{fθ,ν : θ ∈ Θ, ν ∈ Λ} are imposed to guarantee the asymptotic orthogonality between θ̂ and ν̂.
The fact that ν̂ − ν0 = op(n

−1/3) often requires these additional conditions to be satisfied.

4Another candidate to conduct inference based on the M-estimator is the bootstrap. However, even for indepen-
dent observations, it is known that the naive nonparametric bootstrap is typically invalid under the cube root
asymptotics (Abrevaya and Huang, 2005, and Sen, Banerjee and Woodroofe, 2010).
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Proof. To ease notation, let θ0 = ν0 = 0. First, we show that θ̂ = Op(n
−1/3). Since {fθ,ν} satisfies

Condition (iii) of the cube root class, we can apply Lemma M’ with gn,s = n1/6(fθ,cn−1/3 − fθ,0)

for s = (θ′, c′)′, which implies

sup
|θ|≤ε,|c|≤ε

n1/6Gn(fθ,cn−1/3 − fθ,0) = Op(1), (11)

for all ε > 0. Also from (10) and ν̂ = op(n
−1/3), we have

P (fθ,ν̂ − fθ,0)− P (f0,ν̂ − f0,0) ≤ θ′V2ν̂ + ε|θ|2 +Op(n
−2/3), (12)

for all θ in a neighborhood of θ0 and all ε > 0. Combining (11), (12), and Lemma 1,

Pn(fθ,ν̂ − f0,ν̂) = n−1/2{Gn(fθ,ν̂ − fθ,0) + Gn(fθ,0 − f0,0)−Gn(f0,ν̂ − f0,0)}

+P (fθ,ν̂ − fθ,0) + P (fθ,0 − f0,0)− P (f0,ν̂ − f0,0)

≤ P (fθ,0 − f0,0) + θ′V2ν̂ + ε|θ|2 +Op(n
−2/3)

≤ 1

2
θ′V1θ + θ′V2ν̂ + 2ε|θ|2 +Op(n

−2/3),

for all θ in a neighborhood of θ0 and all ε > 0, where the last inequality follows from (10). From
Pn(fθ̂,ν̂ − f0,ν̂) ≥ op(n

−2/3), negative definiteness of V1, and ν̂ = op(n
−1/3), we can find c > 0

such that
op(n

−2/3) ≤ −c|θ̂|2 + |θ̂|op(n−1/3) +Op(n
−2/3),

which implies |θ̂| = Op(n
−1/3).

Next, we show that θ̂ − θ̃ = op(n
−1/3). By reparametrization,

n1/3θ̂ = arg max
s

[n2/3(Pn − P )(fsn−1/3,ν̂ − f0,ν̂) + n2/3P (fsn−1/3,ν̂ − f0,ν̂)] + op(1).

By Lemma M’ (replace θ with (θ, ν)) and ν̂ = op(n
−1/3),

n2/3(Pn − P )(fsn−1/3,ν̂ − f0,0)− n2/3(Pn − P )(fsn−1/3,0 − f0,0) = op(1).

uniformly in s. Also (10) implies P (fsn−1/3,ν̂ − f0,ν̂)− P (fsn−1/3,0 − f0,0) = op(n
−2/3) uniformly

in s. Given θ̂− θ̃ = op(n
−1/3), an application of Theorem 1 to the cube root class {fθ,ν0 : θ ∈ Θ}

implies the limiting distribution of θ̂. �

3. Cube root asymptotics with drifting criterions

We next investigate the case where the criterion function depends on the sample size typically
due to a bandwidth sequence. We maintain Assumption D for the dependence structure of {zt}.
The cube root class is modified as follows.

Definition (Drifting cube root class). A class of functions {fn,θ : θ ∈ Θ} containing a
sequence {hn} for n = 1, 2, . . . is called the drifting cube root class if

(i): {hnfn,θ : θ ∈ Θ} is a class of bounded functions for all n. As n→∞, it holds hn → 0

and nhn → ∞. Also, limn→∞ Pfn,θ is uniquely maximized at θ0, and Pfn,θ is twice
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continuously differentiable at θ0 for all n large enough and admits the expansion

P (fn,θ − fn,θ0) =
1

2
(θ − θ0)′V (θ − θ0) + o(|θ − θ0|2) + o((nhn)−2/3), (13)

for a negative definite matrix V .
(ii): There exist positive constants C and C ′ such that

|θ1 − θ2| ≤ Ch1/2
n ‖fn,θ1 − fn,θ2‖2 ,

for all n large enough and all θ1, θ2 ∈ {θ ∈ Θ : |θ − θ0| ≤ C ′}.
(iii): There exists a positive constant C ′′ such that

P sup
θ∈Θ:|θ−θ0|<ε

hn|fn,θ − fn,θ0 |2 ≤ C ′′ε,

for all n large enough and all ε > 0 small enough.

Similar comments to the ones for the cube root class apply. When the criterion fn,θ involves
some kernel estimate for a nonparametric component, hn is considered as a bandwidth parameter.
Verifications of Conditions (i)-(iii) require more restrictions on hn. For example, negligibility of
the bias term for nonparametric estimation is implicit in (13). Typically the criterion takes
the form of fn,θ(z) = 1

hn
K
(
x−c
hn

)
m(y, x, θ) for z = (y, x) and some function m (see, Sections

4.4-4.6 for examples). In this case, boundedness of {hnfn,θ : θ ∈ Θ} in Condition (i) means
boundedness of K

(
x−c
hn

)
m(y, x, θ). The expansion in (13) can be understood as a restriction for

P (fn,θ − fn,θ0) =
´ ´

K (a)m(y, c + hna, θ)pyx(y, c + hna)dady by a change of variables, where
pyx is the joint density of (y, x). The reasons for multiplications of h1/2

n in Condition (ii) and hn
in (iii) are understood in the same manner.

Throughout this section, let {fn,θ : θ ∈ Θ} be a drifting cube root class. The M-estimator is
precisely defined as a random variable θ̂ satisfying

Pnfn,θ̂ ≥ sup
θ∈Θ

Pnfn,θ − op((nhn)−2/3).

Similar to the previous section, we assume consistency of θ̂ to θ0 and focus on the convergence
rate and limiting distribution. To derive the convergence rate of θ̂, we establish the modulus of
continuity of the empirical process {Gnh

1/2
n (fn,θ − fn,θ0) : θ ∈ Θ} for the drifting cube root class

defined above. We show the following maximal inequality.

Lemma Mn. There exist positive constants C and C ′ such that

P sup
|θ−θ0|<δ

|Gnh
1/2
n (fn,θ − fn,θ0)| ≤ Cδ1/2,

for all n large enough and δ ∈ [(nhn)−1/2, C ′].

Proof. The proof is similar to that of Lemma M. Pick any C ′ > 0 and then pick any n and
δ ∈ [(nhn)−1/2, C ′]. Hereafter positive constants Cj (j = 1, 2, . . .) are independent of n and
δ. By changing the notation to indicate the drifting classes of functions, a similar argument to
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derive (5) implies the bound

P sup
g∈Gβn,δ

|Gng| ≤ C1[1 + δ−1qGn,δ(min{1, vn(δ)})]ϕn(δ),

where Gβn,δ = {fn,θ−fn,θ0 :
∥∥∥h1/2

n (fn,θ − fn,θ0)
∥∥∥

2,β
< δ for θ ∈ Θ} with an envelope function Gn,δ,

and ϕn(δ) =
´ δ

0

√
logN[](ν,G

β
n,δ, ‖·‖2,β)dν. By Condition (iii) of the drifting cube root class, we

can conclude ϕn(δ) ≤ C2δ, which in turn implies vn(δ) ≤ C3n
−1 as in the proof of Lemma M.

Therefore, the conclusion follows by

δ−1qGn,δ(min{1, vn(δ)}) ≤ C4δ
−1h−1/2

n n−1/2,

for all n large enough. �

Compared to Lemma M, the modulus of continuity of the empirical process {Gn(fn,θ−fn,θ0) :

θ ∈ Θ} changes from δ1/2 to h−1/2
n δ1/2 (because of the change of the envelope in Condition (iii)

of the drifting cube root class). Consequently, the convergence rate of θ̂ will change from n1/3

to (nhn)1/3. In order to derive the convergence rate of θ̂, we modify Lemma 1 as follows. Since
the proof is similar, it is omitted.

Lemma 2. For each ε > 0, there exist random variables {Rn} of order Op (1) and a positive
constant C such that

|Pn(fn,θ − fn,θ0)− P (fn,θ − fn,θ0)| ≤ ε|θ − θ0|2 + (nhn)−2/3R2
n,

for any (nhn)−1/3 ≤ |θ − θ0| ≤ C.

It should be noted that Lemma Mn is used to derive this lemma. Based on Lemma 2, the
convergence rate of θ̂ is obtained as follows. Suppose |θ̂ − θ0| ≥ (nhn)−1/3. Then we can take
c > 0 such that

op((nhn)−2/3) ≤ Pn(fn,θ̂ − fn,θ0) ≤ P (fn,θ̂ − fn,θ0) + ε|θ̂ − θ0|2 + (nhn)−2/3R2
n

≤ (−c+ ε)|θ̂ − θ0|2 + o(|θ̂ − θ0|) +Op((nhn)−2/3),

for each ε > 0, where the second inequality follows from Lemma 2 and the third inequality follows
from Condition (i) of the drifting cube root class. Taking ε small enough to satisfy c − ε > 0

yields the conclusion that θ̂ − θ0 = Op((nhn)−1/3).
In order to derive the limiting distribution, we need to establish tightness of the centered

process
Zn(s) = n1/6h2/3

n Gn(fn,θ0+s(nhn)−1/3 − fn,θ0),

for |s| ≤ K with any K > 0. The finite dimensional convergence and tightness of Zn follows
from Lemmas M’ and C in the previous section by setting gn,s = n1/6h

2/3
n (fn,θ0+s(nhn)−1/3−fn,θ0)

and gn = gn,s − Pgn,s, respectively. Therefore, the argmax theorem (Kim and Pollard, 1990,
Theorem 2.7) implies the limiting distribution of the M-estimator θ̂ for the drifting cube root
class. The main theorem of this section is summarized as follows.
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Theorem 3. Suppose {zt} satisfies Assumption D. Let {fn,θ : θ ∈ Θ} be a drifting cube root class
and θ̂ satisfy Pnfn,θ̂ ≥ supθ∈Θ Pnfn,θ − op((nhn)−2/3). Assume θ̂ converges in probability to θ0 ∈
intΘ, and (8) holds with (gn,s−Pgn,s) for each s, where gn,s = n1/6h

2/3
n (fn,θ0+s(nhn)−1/3 −fn,θ0).

Then
(nhn)1/3(θ̂ − θ0)

d→ arg max
s
Z(s),

where Z(s) is a Gaussian process with continuous sample paths, expected value s′V s/2, and
covariance kernel H(s1, s2) = limn→∞

∑n
t=−n Cov(gn,s1(z0), gn,s2(zt)) <∞.

This theorem extends Kim and Pollard’s (1990) main theorem to the case where the criterion
function varies with the sample size typically due to a bandwidth sequence. Since hn → 0, the
convergence rate Op((nhn)−1/3) is slower than the conventional Op(n−1/3) rate. This theorem
can be extended to the case where the criterion function contains estimated nuisance parameters
that converge faster than the Op((nhn)−1/3) rate. Let θ̂ and θ̃ satisfy Pnfn,θ̂,ν̂ ≥ supθ∈Θ Pnfn,θ,ν̂+

op((nhn)−2/3), where ν̂ − ν0 = op((nhn)−1/3), and Pnfn,θ̃,ν0 ≥ supθ∈Θ Pnfn,θ,ν0 + op((nhn)−2/3),
respectively.

Theorem 4. Let {fn,θ,ν0 : θ ∈ Θ} be a drifting cube root class. Suppose there are some negative
definite matrix V1 and some finite matrix V2 such that

P (fn,θ,ν−fn,θ0,ν0) =
1

2
(θ−θ0)′V1(θ−θ0)+(θ−θ0)′V2(ν−ν0)+o(|θ−θ0|2+|ν−ν0|2)+o((nhn)−2/3),

(14)
for all θ and ν in neighborhoods of θ0 and ν0, respectively. Furthermore, {fn,θ,ν : θ ∈ Θ, ν ∈ Λ}
satisfies Condition (iii) of the drifting cube root class. Then θ̂ = θ̃+op((nhn)−1/3). Additionally,
if (8) holds with (gn,s − Pgn,s) for each s, where gn,s = n1/6h

2/3
n (fn,θ0+s(nhn)−1/3,ν0

− fn,θ0,ν0),
then

(nhn)1/3(θ̂ − θ0)
d→ arg max

s
Z(s),

where Z(s) is a Gaussian process with continuous sample paths, expected value s′V1s/2 and
covariance kernel H(s1, s2) = limn→∞

∑n
t=−n Cov(gn,s1(z0), gn,s2(zt)) <∞.

Since the proof is similar to that of Theorem 2, it is omitted. In the next section, we illustrate
the above theoretical results by several examples.

4. Applications

4.1. Maximum score estimator. As an application of Theorem 1, consider the maximum
score estimator for the regression model yt = x′tθ0 + ut, that is

θ̂ = arg max
θ∈S

n∑
t=1

[I{yt ≥ 0, x′tθ ≥ 0}+ I{yt < 0, x′tθ < 0}],

where S is the surface of the unit sphere in Rd. Since θ̂ is determined only up to scalar multiples,
we standardize it to be unit length. We impose the following assumptions. Let h(x, u) =

I{x′θ0 + u ≥ 0} − I{x′θ0 + u < 0}.

(a): {xt, ut} satisfies Assumption D. xt has compact support and a continuously differen-
tiable density p. The angular component of xt, considered as a random variable on S,
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has a bounded and continuous density, and the density for the orthogonal angle to θ0 is
bounded away from zero.

(b): Assume that |θ0| = 1, median(ut|xt) = 0, the function κ(x) = E[h(xt, ut)|xt = x] is
non-negative for x′θ0 ≥ 0 and non-positive for x′θ0 < 0 and is continuously differentiable,
and P{x′tθ0 = 0, κ̇(xt)

′θ0p(xt) > 0} > 0.

Except for Assumption D, which allows dependent observations, all assumptions are similar to
the ones in Kim and Pollard (1990, Section 6.4). First, note that the criterion function is written
as

fθ(x, u) = h(x, u)[I{x′θ ≥ 0} − I{x′θ0 ≥ 0}].

We can see that θ̂ = arg maxθ∈S Pnfθ and θ0 = arg maxθ∈S Pfθ. Existence and uniqueness
of θ0 are guaranteed by (b) (see, Manski, 1985). Also the uniform law of large numbers for an
absolutely regular process by Nobel and Dembo (1993, Theorem 1) implies supθ∈S |Pnfθ−Pfθ|

p→
0. Therefore, θ̂ is consistent for θ0.

We next compute the expected value and covariance kernel of the limit process (i.e., V and H
in Theorem 1). Due to strict stationarity (in Assumption D), we can apply the same argument
to Kim and Pollard (1990, pp. 214-215) to derive the second derivative

V =
∂2Pfθ
∂θ∂θ′

∣∣∣∣
θ=θ0

= −
ˆ

I{x′θ0 = 0}κ̇(x)′θ0p(x)xx′dσ,

where σ is the surface measure on the boundary of the set {x : x′θ0 ≥ 0}. The matrix
V is negative definite under the last condition of (b). Now pick any s1 and s2, and define
gn,t = fθ0+n−1/3s1

(xt, ut) − fθ0+n−1/3s2
(xt, ut). The covariance kernel is written as H(s1, s2) =

1
2{L(s1, 0) + L(0, s2)− L(s1, s2)}, where

L(s1, s2) = lim
n→∞

n4/3Var(Pngn,t) = lim
n→∞

n1/3{Var(gn,t) +

∞∑
m=1

Cov(gn,t, gn,t+m)}.

The limit of n1/3Var(gn,t) is given in Kim and Pollard (1990, p. 215). For the covariance
Cov(gn,t, gn,t+m), note that gn,t can take only three values, −1, 0, or 1. By the definition of βm,
Assumption D implies

|P{gn,t = j, gn,t+m = k} − P{gn,t = j}P{gn,t+m = k}| ≤ n−2/3βm,

for all n,m ≥ 1 and j, k = −1, 0, 1, i.e., {gn,t} is a β-mixing array whose mixing coefficients
are bounded by n−2/3βm. In turn, this implies that {gn,t} is an α-mixing array whose mixing
coefficients are bounded by 2n−2/3βm. Thus, by applying the α-mixing inequality, the covariance
is bounded as

Cov(gn,t, gn,t+m) ≤ Cn−2/3βm ‖gn,t‖2p ,

for some C > 0 and p > 2. Note that

‖gn,t‖2p ≤ [P |I{x′t(θ0 + s1n
−1/3) > 0} − I{x′t(θ0 + s2n

−1/3) > 0}|]2/p = O(n−2/(3p)).

Combining these results, n1/3
∑∞

m=1 Cov(gn,t, gn,t+m)→ 0 as n→∞. Therefore, the covariance
kernel H is same as the independent case in Kim and Pollard (1990, p. 215).
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We now verify that {fθ : θ ∈ S} belongs to the cube root class. Condition (i) is already
verified. By Jensen’s inequality,

‖fθ1 − fθ2‖2 =
√
P |I{x′tθ1 ≥ 0} − I{x′tθ2 ≥ 0}| ≥ P{x′tθ1 ≥ 0 > x′tθ2 or x′tθ2 ≥ 0 > x′tθ1},

for any θ1, θ2 ∈ S. Since the right hand side is the probability for a pair of wedge shaped regions
with an angle of order |θ1 − θ2|, the last condition in (a) implies Condition (ii) of the cube root
class. For Condition (iii), pick any ε > 0 and observe that

P sup
θ∈Θ:|θ−θ0|<ε

|fθ − fθ0 |2 = P sup
θ∈Θ:|θ−θ0|<ε

I{x′tθ ≥ 0 > x′tθ0 or x′tθ0 ≥ 0 > x′tθ}.

Again, the right hand side is the probability for a pair of wedge shaped regions with an angle
of order ε. Thus the last condition in (a) also guarantees Condition (iii) of the cube root class.
Since {fθ : θ ∈ S} belongs to the cube root class, Theorem 1 implies that even if the data obey
a dependence process specified in Assumption D, the maximum score estimator possesses the
same limiting distribution as the independent sampling case.

4.2. Nonparametric monotone density estimation. Preliminary results (Lemmas M, M’,
C, and 1) to show Theorem 1 may be applied to establish weak convergence of certain processes.
As an example, consider estimation of a decreasing marginal density function of zt with support
[0,∞). We impose Assumption D for {zt}. The nonparametric maximum likelihood estimator
γ̂(c) of the density γ(c) at a fixed c > 0 is given by the left derivative of the concave majorant of
the empirical distribution function Γ̂. It is known that n1/3(γ̂(c)−γ(c)) can be written as the left
derivative of the concave majorant of the processWn(s) = n2/3{Γ̂(c+sn−1/3)−Γ̂(c)−γ(c)sn−1/3}
(Prakasa Rao, 1969). Let fθ(z) = I{z ≤ c+θ} and Γ be the distribution function of γ. Decompose

Wn(s) = n1/6Gn(fsn−1/3 − f0) + n2/3{Γ(c+ sn−1/3)− Γ(c)− γ(c)sn−1/3}.

A Taylor expansion implies convergence of the second term to 1
2 γ̇(c)s2 < 0. For the first term

Zn(s) = n1/6Gn(fsn−1/3−f0), we can apply Lemmas C and M’ to establish the weak convergence.
Lemma C (setting gn as any finite dimensional projection of the process {n1/6(fsn−1/3 − f0) : s})
implies finite dimensional convergence of Zn to projections of a centered Gaussian process with
the covariance kernel

H(s1, s2) = lim
n→∞

n1/3
n∑

t=−n
{Γ0t(c+ s1n

−1/3, c+ s2n
−1/3)− Γ(c+ s1n

−1/3)Γ(c+ s2n
−1/3)},

where Γ0t is the joint distribution function of (z0, zt). For tightness of Zn, we apply Lemma M’
by setting gn,s = n1/6(fsn−1/3 − f0). The envelope condition is clearly satisfied. The condition
in (9) is verified as

P sup
s:|s−s′|<ε

|gn,s − gn,s′ |2

= n1/3P sup
s:|s−s′|<ε

|I{z ≤ c+ sn−1/3} − I{z ≤ c+ s′n−1/3}|

≤ n1/3 max{Γ(c+ sn−1/3)− Γ(c+ (s− ε)n−1/3),Γ(c+ (s+ ε)n−1/3)− Γ(c+ sn−1/3)}

≤ γ(0)ε.
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Therefore, by applying Lemmas C and M’, Wn weakly converges to Z, a Gaussian process with
expected value 1

2 γ̇(c)s2 and covariance kernel H.
The remaining part follows by the same argument to Kim and Pollard (1990, pp. 216-218)

(by replacing their Lemma 4.1 with our Lemma 1). Then we can conclude that n1/3(γ̂(c)−γ(c))

converges in distribution to the derivative of the concave majorant of Z evaluated at 0.

4.3. Least median of squares. As an application of Theorem 2, consider the least median of
squares estimator for the regression model yt = x′tβ0 + ut, that is

β̂ = arg min
β

median{(y1 − x′1β)2, . . . , (yn − x′nβ)2}.

We impose the following assumptions. Except for Assumption D, which allows dependent obser-
vations, all assumptions are similar to the ones in Kim and Pollard (1990, Section 6.3).

(a): {xt, ut} satisfies Assumption D. xt and ut are independent. P |xt|2 < ∞, Pxtx′t is
positive definite, and the distribution of xt puts zero mass on each hyperplane.

(b): The density γ of ut is bounded, differentiable, and symmetric around zero, and de-
creases away from zero. |ut| has the unique median ν0 and γ̇(ν0) < 0.

It is known that θ̂ = β̂ − β0 is written as θ̂ = arg maxθ Pnfθ,ν̂ , where

fθ,ν(x, u) = I{x′θ − ν ≤ u ≤ x′θ + ν},

and ν̂ = inf{ν : supθ Pnfθ,ν ≥ 1
2}. Let ν0 = 1 to simplify the notation. Since {fθ,ν : θ ∈ Rd, ν ∈

R} is a VC subgraph class, Arcones and Yu (1994, Theorem 1) implies the uniform convergence
supθ,ν |Pnfθ,ν − Pfθ,ν | = Op(n

−1/2). Thus, the same argument to Kim and Pollard (1990, pp.
207-208) yields the convergence rate ν̂ − 1 = Op(n

−1/2).
By expansions, the condition in (10) is verified as

P (fθ,ν − f0,1) = P |{Γ(x′θ + ν)− Γ(ν)} − {Γ(x′θ − ν)− Γ(−ν)}|

+P |{Γ(ν)− Γ(1)} − {Γ(−ν)− Γ(−1)}|

= γ̇(1)θ′Pxx′θ + o(|θ|2 + |ν − 1|2). (15)

To check Condition (iii) of the cube root class for {fθ,ν : θ ∈ Rd, ν ∈ R}, pick any ε > 0 and
decompose

P sup
(θ,ν):|(θ,ν)−(0,1)|<ε

|fθ,ν − f0,1|2 ≤ P sup
(θ,ν):|(θ,ν)−(0,1)|<ε

|fθ,ν − fθ,1|2 + P sup
θ:|θ|<ε

|fθ,1 − f0,1|2.

By similar arguments to (15), these terms are of order |ν − 1|2 and |θ|2, respectively, which are
bounded by Cε with some C > 0.

We now verify that {fθ,1 : θ ∈ Rd} belongs to the cube root class. By (b), Pfθ,1 is uniquely
maximized at θ0 = 0. So Condition (i) is satisfied. Since Condition (iii) is already shown, it
remains to verify Condition (ii). Some expansions (using symmetry of γ(·)) yield

‖fθ1,1 − fθ2,1‖
2
2 = P |Γ(x′θ1 + 1)− Γ(x′θ2 + 1) + Γ(x′θ1 − 1)− Γ(x′θ2 − 1)|

≥ (θ2 − θ1)′P γ̇(−1)xx′(θ2 − θ1) + o(|θ2 − θ1|2),
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i.e., Condition (ii) is satisfied under (b). Therefore, {fθ,1 : θ ∈ Rd} belongs to the cube root
class.

We finally compute the covariance kernel H. Pick any s1 and s2. The covariance kernel is writ-
ten as H(s1, s2) = 1

2{L(s1, 0) + L(0, s2)− L(s1, s2)}, where L(s1, s2) = limn→∞ n
4/3Var(Pngn,t)

and gn,t = I{|x′ts1n
−1/3 − ut| ≤ 1} − I{|x′ts2n

−1/3 − ut| ≤ 1}. By a similar argument to the
maximum score example in Section 4.1, we can show that H is the same as the one for the
independent case derived in Kim and Pollard (1990, p. 213). Therefore, by Theorem 2, we
conclude that n1/3(β̂ − β0) converges in distribution to the argmax of Z(s), a Gaussian process
with expected value γ̇(1)s′Pxx′s and the covariance kernel H.

4.4. Panel data discrete choice model. As an illustration of Theorem 3, we consider a
dynamic panel data model with a binary dependent variable

P{yi0 = 1|xi, αi} = F0(xi, αi),

P{yit = 1|xi, αi, yi0, . . . , yit−1} = F (x′itβ0 + γ0yit−1 + αi),

for i = 1, . . . , n and t = 1, 2, 3, where yit is binary, xit is a k-vector, and both F0 and F are
unknown functions. Honoré and Kyriazidou (2000) proposed the conditional maximum score
estimator

(β̂, γ̂) = arg max
β,γ

n∑
i=1

K

(
xi2 − xi3

bn

)
(yi2 − yi1)sgn{(xi2 − xi1)′β + (yi3 − yi0)γ},

where K is a kernel function and bn is a bandwidth. Honoré and Kyriazidou (2000) obtained
consistency of this estimator but the convergence rate and limiting distribution are unknown.
Theorem 3 answers these open questions. Let z = (z′1, z2, z

′
3)′ with z1 = x2 − x3, z2 = y2 − y1,

and z3 = ((x2 − x1)′, y3 − y0). Also define x21 = x2 − x1 and x23 = x2 − x3. Based on Honoré
and Kyriazidou (2000, Theorem 4), we impose the following assumptions.

(a): {zi}ni=1 is an iid sample. z1 has a bounded density which is continuously differen-
tiable at zero. The conditional density of z1|z2 6= 0, z3 is positive in a neighborhood
of zero, and P{z2 6= 0|z3} > 0 for almost every z3. Support of x21 conditional on
x23 in a neighborhood of zero is not contained in any proper linear subspace of Rk.
There exists at least one j ∈ {1, . . . , k} such that β(j)

0 6= 0 and x
(j)
21 |x

j−
21 , x23, where

xj−21 = (x
(1)
21 , . . . , x

(j−1)
21 , x

(j+1)
21 , . . . , x

(k)
21 ), has everywhere positive conditional density for

almost every xj−21 and almost every x23 in a neighborhood of zero. E[z2|z3, z1 = 0] is
differentiable in z3. E[z2sgn((β′0, γ0)′z3)|z1] is continuously differentiable at z1 = 0. F is
strictly increasing.

(b): K is a bounded symmetric density function with
´
s2K(s)ds < ∞. As n → ∞, it

holds nbkn/ lnn→∞ and nbk+3
n → 0.

Note that the estimator θ̂ = (β̂′, γ̂)′ can be written as θ̂ = arg maxθ Pnfn,θ, where

fn,θ (z) = b−kn K(b−1
n z1)z2{sgn(z′3θ)− sgn(z′3θ0)}

= en(z)(I{z′3θ ≥ 0} − I{z′3θ0 ≥ 0}),
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and en(z) = 2b−kn K(b−1
n z1)z2.

We verify that {fn,θ} belongs to the drifting cube root class with hn = bkn. We first check
Condition (ii) of the drifting cube root class. By the definition of z2 = y2 − y1 (which can take
−1, 0, or 1) and change of variables a = b−1

n z1,

E[en(z)2|z3] = 4b−kn

ˆ
K(a)2p1(bna|z2 6= 0, z3)daP{z2 6= 0|z3},

almost surely for all n, where p1 is the conditional density of z1 given z2 6= 0 and z3. Thus under
(a), bknE[en(z)2|z3] > c almost surely, for some c > 0. Pick any θ1 and θ2. Note that

h1/2
n ‖fn,θ1 − fn,θ2‖2 =

(
P
{
hnE[en(z)2|z3]|I{z′3θ1 ≥ 0} − I{z′3θ2 ≥ 0}|

})1/2
≥ c1/2P |I{z′3θ1 ≥ 0} − I{z′3θ2 ≥ 0}|

≥ c1|θ1 − θ2|,

for some c1 > 0, where the last inequality follows from the same argument to the maximum score
example in Section 4.1 using Condition (a). Similarly, Condition (iii) of the drifting cube root
class is verified as

hnP sup
|θ−θ0|<ε

|fn,θ − fn,θ0 |2 ≤ C1P sup
|θ−θ0|<ε

|I{z′3θ ≥ 0} − I{z′3θ0 ≥ 0}| ≤ C2ε,

for some positive constants C1 and C2 and all n. We now verify Condition (i). Since hnfn,θ is
clearly bounded, it is enough to verify (13). A change of variables a = b−1

n z1 and Condition (b)
imply

Pfn,θ =

ˆ
K(a)E[z2{sgn(z′3θ)− sgn(z′3θ0)}|z1 = a]p1(bna)da

= p1(0)E[z2{sgn(z′3θ)− sgn(z′3θ0)}|z1 = 0]

+b2n

ˆ
a2K(a)

∂E[z2{sgn(z′3θ)− sgn(z′3θ0)}|z1 = t]p1(t)

∂t

∣∣∣∣
t=ta

da,

where ta is a point on the line joining a and 0, and the second equality follows from the dominated
convergence and mean value theorems. Since b2n = o((nbkn)−2/3) by (b), the second term is
negligible. Thus, for the condition in (13), it is enough to derive a second order expansion of
E[z2{sgn(z′3θ) − sgn(z′3θ0)}|z1 = 0]. Let Zθ = {z3 : I{z′3θ ≥ 0} 6= I{z′3θ0 ≥ 0}}. Honoré and
Kyriazidou (2000, p. 872) showed that

−E[z2{sgn(z′3θ)− sgn(z′3θ0)}|z1 = 0] = 2

ˆ
Zθ
|E[z2|z1 = 0, z3]|dFz3|z1=0 > 0,

for all θ 6= θ0 on the unit sphere and that sgn(E[z2|z3, z1 = 0]) = sgn(z′3θ0). Therefore, by apply-
ing the same argument as Kim and Pollard (1990, pp. 214-215), we obtain ∂

∂θE[z2sgn(z′3θ)|z1 = 0]
∣∣
θ=θ0

=

0 and

−∂
2E[z2{sgn(z′3θ)− sgn(z′3θ0)}|z1 = 0]

∂θ∂θ′
=

ˆ
I{z′3θ0 = 0}κ̇(z3)′θ0z3z

′
3p3(z3|z1 = 0)dµθ0 ,

where κ̇(z3) = ∂
∂z3

E[z2|z3, z1 = 0], p3 is the conditional density of z3 given z1 = 0, and µθ0 is the
surface measure on the boundary of {z3 : z′3θ0 ≥ 0}. Combining these results, the condition in
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(13) is satisfied with

V = −2p1(0)

ˆ
I{z′3θ0 = 0}κ̇(z3)′θ0z3z

′
3p3(z3|z1 = 0)dµθ0 .

Finally the covariance kernel H is obtained in the same manner to Kim and Pollard (1990).
That is, decompose z3 into r′θ0 + z̄3 with z̄3 orthogonal to θ0. Then it holds H(s1, s2) = L(s1) +

L(s2)− L(s1 − s2), where

L(s) = 4p1(0)

ˆ
|z̄′3s|p3(0, z̄3|z1 = 0)dz̄3.

4.5. Minimum volume predictive region. As an illustration of Theorem 4, consider a min-
imum volume predictor for a strictly stationary process proposed by Polonik and Yao (2000).
Suppose we are interested in predicting y ∈ R from x ∈ R based on the observations {yt, xt}.
The minimum volume predictor of y at x = c in the class I of intervals of R at level α ∈ [0, 1] is
defined as

Î = arg min
S∈I

µ(S) s.t. P̂ (S) ≥ α,

where µ is the Lebesgue measure and P̂ (S) =
∑n

t=1 I{yt ∈ S}K
(
xt−c
hn

)
/
∑n

t=1K
(
xt−c
hn

)
is the

kernel estimator of the conditional probability P{yt ∈ S|xt = c}. Since Î is an interval, it can
be written as Î = [θ̂ − ν̂, θ̂ + ν̂], where

θ̂ = arg min
θ
P̂ ([θ − ν̂, θ + ν̂]), ν̂ = inf{ν : sup

θ
P̂ ([θ − ν, θ + ν]) ≥ α}.

To study the asymptotic property of Î, we impose the following assumptions.

(a): {yt, xt} satisfies Assumption D. I0 = [θ0−ν0, θ0+ν0] is the unique shortest interval such
that P{yt ∈ I0|xt = c} ≥ α. The conditional density γy|x=c of yt given xt = c is bounded
and strictly positive at θ0±ν0, and its derivative satisfies γ̇y|x=c(θ0−ν0)−γ̇y|x=c(θ0+ν0) >

0.
(b): K is bounded and symmetric, and satisfies lima→∞ |a|K(a) = 0. As n→∞, nhn →∞

and nh4
n → 0.

For notational convenience, assume θ0 = 0 and ν0 = 1. We first derive the convergence rate for ν̂.
Note that ν̂ = inf{ν : supθ ĝ([θ−ν, θ+ν]) ≥ αγ̂(c)}, where ĝ(S) = 1

nhn

∑n
t=1 I{yt ∈ S}K

(
xt−c
hn

)
and γ̂(c) = 1

nhn

∑n
t=1K

(
xt−c
hn

)
. By applying Lemma M’ and a central limit theorem, we can

obtain uniform convergence rate

max

{
|γ̂(c)− γ(c)|, sup

θ,ν
|ĝ([θ − ν, θ + ν])− P{yt ∈ [θ − ν, θ + ν]|xt = c}γ(c)|

}
= Op((nhn)−1/2+h2

n).

Thus the same argument to Kim and Pollard (1990, pp. 207-208) yields ν̂− 1 = Op((nhn)−1/2 +

h2
n). Let θ̂ = arg minθ ĝ([θ− ν̂, θ+ ν̂]). Consistency follows from uniqueness of (θ0, ν0) in (a) and

the uniform convergence

sup
θ
|ĝ([θ − ν̂, θ + ν̂])− P{yt ∈ [θ − 1, θ + 1]|xt = c}γ(c)| p→ 0,

which is obtained by applying Nobel and Dembo (1993, Theorem 1).
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Now let z = (y, x)′ and

fn,θ,ν(z) =
1

hn
K

(
x− c
hn

)
[I{y ∈ [θ − ν, θ + ν]} − I{y ∈ [−ν, ν]}].

Note that θ̂ = arg maxθ Pnfn,θ,ν̂ . We apply Theorem 4 to obtain the convergence rate of θ̂. For
the condition in (14), observe that

P (fn,θ,ν − fn,0,1) = P (fn,θ,ν − fn,0,ν) + P (fn,0,ν − fn,0,1)

= −1

2
{−γ̇y|x(1|c) + γ̇y|x(−1|c)}γx(c)θ2 + {γ̇y|x(1|c) + γ̇y|x(−1|c)}γx(c)θν + o(θ2 + |ν − 1|2) +O(h2

n).

The condition (14) holds with V1 = {γ̇y|x(1|c)−γ̇y|x(−1|c)}γx(c) and V2 = {γ̇y|x(1|c)+γ̇y|x(−1|c)}γx(c).
Condition (iii) of the drifting cube root class for {fn,θ,ν : θ ∈ R, ν ∈ R} is verified in the same
manner as in Section 4.3. It remains to verify Condition (ii) of the drifting cube root class for
{fn,θ,1 : θ ∈ R}. Pick any θ1 and θ2. Some expansions yield

hn ‖fn,θ1,1 − fn,θ2,1‖
2
2

=

ˆ
K(a)2

∣∣∣∣∣ Γy|x(θ2 + 1|x = c+ ahn)− Γy|x(θ1 + 1|x = c+ ahn)

+Γy|x(θ2 − 1|x = c+ ahn)− Γy|x(θ1 − 1|x = c+ ahn)

∣∣∣∣∣ γx(c+ ahn)da

≥
ˆ
K(a)2{γy|x(θ̇ + 1|x = c+ ahn) + γy|x(θ̈ − 1|x = c+ ahn)}γx(c+ ahn)da|θ1 − θ2|,

where Γy|x is the conditional distribution function of y given x, and θ̇ and θ̈ are points be-
tween θ1 and θ2. By (a), Condition (ii) is satisfied. Therefore, we can conclude that ν̂ − ν0 =

Op((nhn)−1/2 + h2
n) and θ̂ − θ0 = Op((nhn)−1/3 + hn). This result confirms positively the con-

jecture of Polonik and Yao (2000, Remark 3b) on the exact convergence rate of Î.

4.6. Hough transform estimator. As a final illustration, we consider an example where the
criterion function does not belong to the (drifting) cube root class and discuss how our main the-
orems can be modified. In particular, consider the Hough transform estimator for the regression
model yt = x′tβ0 + ut with the drifting tuning constant hn,

β̂ = arg max
β

n∑
t=1

I{|yt − x′tβ| ≤ hn|xt|},

where xt = (1, x̃t)
′ for a scalar x̃t. Goldenshluger and Zeevi (2004) studied the case when hn

does not vary with n and derived the cube root asymptotics for β̂ and left the analysis for the
case of hn → 0 as an open question. Here we answer this question. We impose the following
assumptions.

(a): {xt, ut} satisfies Assumption D. xt and ut are independent. P |xt|3 < ∞, Pxtx′t is
positive definite, and the distribution of xt puts zero mass on each hyperplane. The den-
sity γ of ut is bounded, continuously differentiable in a neighborhood of zero, symmetric
around zero, and strictly unimodal at zero.

(b): As n→∞, hn → 0 and nh5
n →∞.
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Let z = (x, u). Note that θ̂ = β̂ − β0 is written as θ̂ = arg maxθ Pnfn,θ, where

fn,θ(z) = h−1
n I{|u− x′θ| ≤ hn|x|}.

The consistency of θ̂ follows from the uniform convergence supθ |Pnfn,θ−Pfn,θ|
p→ 0 by applying

Nobel and Dembo (1993, Theorem 1).
In order to apply Theorem 3, we need to verify that {fn,θ} belongs to the drifting cube root

class. Obviously hnfn,θ is bounded for all n. Since limn→∞ Pfn,θ = 2Pγ(x′θ)|x| and γ is uniquely
maximized at zero (by Condition (a)), limn→∞ Pfn,θ is uniquely maximized at θ = 0. Since γ is
continuously differentiable in a neighborhood of zero, Pfn,θ is twice continuously differentiable
at θ = 0 for all n large enough. Let Γ be the distribution function of γ. An expansion yields

P (fn,θ − fn,0) = h−1
n P{Γ(x′θ + hn|x|)− Γ(hn|x|)} − h−1

n P{Γ(x′θ − hn|x|)− Γ(−hn|x|)}

= γ̈(0)θ′P (|x|xx′)θ{1 +O(hn)}+ o(|θ|2),

i.e., the condition in (13) holds with V = γ̈(0)P (|x|xx′). Note that γ̈(0) < 0 by Condition (a).
Therefore, Condition (i) of the drifting cube root class is satisfied.

For Condition (ii), pick any θ1 and θ2 and note that

hn ‖fn,θ1 − fn,θ2‖
2
2 = 2P{γ(x′θ1) + γ(x′θ2)}|x|

−2h−1
n P{x′θ1 − hn|x| < u < x′θ2 + hn|x|, − 2hn|x| < x′(θ2 − θ1) < 0}

−2h−1
n P{x′θ2 − hn|x| < u < x′θ1 + hn|x|, − 2hn|x| < x′(θ1 − θ2) < 0}.

Since the second and third terms converge to zero (by a change of variable), Condition (ii) of
the drifting cube root class holds true.

However, we can see that Condition (iii) of the drifting cube root class is not satisfied in this
case. Although Theorem 3 is not directly applicable, Condition (iii) can be modified as follows.

(iii)’: There exists a positive constant C ′′ such that

P sup
θ∈Θ:|θ−θ0|<ε

h2
n|fn,θ − fn,θ0 |2 ≤ C ′′ε,

for all n large enough and all ε > 0 small enough.

Compared to Condition (iii) of the drifting cube root class, Condition (iii)’ assumes a larger
envelope for the class {|fn,θ − fn,θ0 |2 : |θ − θ0| < ε}. Thus, Lemma Mn in Section 3 is modified
as follows.

Lemma Mn’. Suppose that Assumption D holds and {fn,θ} satisfies Condition (ii) of the drifting
cube root class and Condition (iii)’ above. Then there exist positive constants C and C ′ such that

P sup
|θ−θ0|<δ

|Gnh
1/2
n (fn,θ − fn,θ0)| ≤ Ch−1/2

n δ1/2,

for all n large enough and δ ∈ [(nh2
n)−1/2, C ′].

Proof. The proof is similar to that of Lemma Mn except that for some positive constant C ′′′, we
have

G1
δ ⊂ G2

C′′h
−1/2
n δ1/2

⊂ Gβ
C′′′h

−1/2
n δ1/2

,
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which reflects the component “h2
n” in Condition (iii)’ instead of “hn” in Condition (iii) of the

drifting cube root class. As a consequence of this change, the upper bound in the maximal
inequality becomes Ch−1/2

n δ1/2 instead of Cδ1/2. All the other parts remain the same. �

We now check Condition (iii)’. Observe that

P sup
θ∈Θ:|θ−θ0|<ε

h2
n|fn,θ − fn,0|2 ≤ P sup

θ∈Θ:|θ−θ0|<ε
I{|u| ≤ hn|x|, |u− x′θ| > hn|x|}

+P sup
θ∈Θ:|θ−θ0|<ε

I{|u− x′θ| ≤ hn|x|, |u| > hn|x|}.

Since the same argument applies to the second term, we focus on the first term (say, T ). If
ε ≤ 2hn, then an expansion around ε = 0 implies

T ≤ P{(hn − ε)|x| ≤ u ≤ hn|x|} = Pγ(hn|x|)|x|ε+ o(ε).

Also, if ε > 2hn, then an expansion around hn = 0 implies

T ≤ P{−hn|x| ≤ u ≤ hn|x|} ≤ Pγ(0)|x|ε+ o(hn).

Therefore, Condition (iii)’ is satisfied.
Finally, the covariance kernel is obtained by a similar way as Section 4.1. Let rn = (nh2

n)1/3 be
the convergence rate in this example. The covariance kernel is written byH(s1, s2) = 1

2{L(s1, 0)+

L(0, s2)−L(s1, s2)}, where L(s1, s2) = limn→∞Var(r2
nPngn,t) with gn,t = fn,s1/rn − fn,s2/rn . An

expansion implies n−1Var(r2
ngn,t) → 2γ(0)P |x′(s1 − s2)|. We can also see that the covariance

term n−1
∑∞

m=1 Cov(r2
ngn,t, r

2
ngn,t+m) is negligible. Therefore, by a similar argument to Theorem

3, the limiting distribution of the Hough transform estimator with drifting hn is obtained as

(nh2
n)1/3(β̂ − β0)

d→ arg max
s
Z(s),

where Z(s) is a Gaussian process with continuous sample paths, expected value γ̈(0)s′P (|x|xx′)s/2,
and covariance kernel H(s1, s2) = 2γ(0)P |x′(s1 − s2)|.
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